BP-CVaR: A novel model of estimating CVaR with back propagation algorithm

We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economics letters Jg. 209; S. 110125
Hauptverfasser: Wang, Gang-Jin, Zhu, Chun-Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.12.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0165-1765, 1873-7374
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DIJA index and compare the results by back-testing approaches. We find that (i) BP-CVaR is more reliable and has higher accuracy than Monte Carlo CVaR model and (ii) BP-CVaR can react to the change of markets more quickly than traditional CVaR model. •We introduce BP algorithm to calculate CVaR, i.e., BP-CVaR.•BP-CVaR performs better than Monte Carlo CVaR.•BP-CVaR is more sensitive to the change of markets.
AbstractList We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DIJA index and compare the results by back-testing approaches. We find that (i) BP-CVaR is more reliable and has higher accuracy than Monte Carlo CVaR model and (ii) BP-CVaR can react to the change of markets more quickly than traditional CVaR model. •We introduce BP algorithm to calculate CVaR, i.e., BP-CVaR.•BP-CVaR performs better than Monte Carlo CVaR.•BP-CVaR is more sensitive to the change of markets.
We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DIJA index and compare the results by back-testing approaches. We find that (i) BP-CVaR is more reliable and has higher accuracy than Monte Carlo CVaR model and (ii) BP-CVaR can react to the change of markets more quickly than traditional CVaR model.
ArticleNumber 110125
Author Zhu, Chun-Long
Wang, Gang-Jin
Author_xml – sequence: 1
  givenname: Gang-Jin
  surname: Wang
  fullname: Wang, Gang-Jin
  email: wanggangjin@hnu.edu.cn
– sequence: 2
  givenname: Chun-Long
  orcidid: 0000-0001-9538-7911
  surname: Zhu
  fullname: Zhu, Chun-Long
  email: zhuchunlong@hnu.edu.cn
BookMark eNqFkE1PAyEQhompibX6E0xIvHjZCssCWz2Y2viVNNEY9UooHSp1CxW2Gv-91PbkpRdImOedGZ5D1PHBA0InlPQpoeJ83gcTfANtvyQl7dP8WPI91KW1ZIVksuqgbuZ4QaXgB-gwpTnJyEDyLnq4fipGb_r5Ag-xD1_Q4EWY5jNYDKl1C906P8NrAn-79h1PtPnAyxiWepZLwWPdzELMlcUR2re6SXC8vXvo9fbmZXRfjB_vHkbDcWEqxtvCSilqYyQIYSXngwlnVUknvGaMVMwQIKxmkhJriawGIMFWQnOwFioiprZkPXS26Zu3-FzlJdXCJQNNoz2EVVKlYELI9ZSMnv5D52EVfd4uU2VdU0n5IFOXG8rEkFIEq4xr_z7XRu0aRYlaa1ZztdWs1prVRnNO83_pZcza4s_O3NUmB9nVl4OoknHgDUxdBNOqaXA7OvwC8-aZnw
CitedBy_id crossref_primary_10_3390_axioms14050391
crossref_primary_10_3390_math13091410
crossref_primary_10_1155_2022_6975824
crossref_primary_10_3934_GF_2025009
crossref_primary_10_3390_math10163018
crossref_primary_10_1016_j_asoc_2021_108186
Cites_doi 10.3905/jod.1995.407942
10.1016/j.eswa.2021.114952
10.2307/2527341
10.1016/j.eswa.2011.09.048
10.1198/073500104000000370
10.1016/j.eswa.2015.04.023
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 2021
DBID AAYXX
CITATION
8BJ
FQK
JBE
7S9
L.6
DOI 10.1016/j.econlet.2021.110125
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1873-7374
ExternalDocumentID 10_1016_j_econlet_2021_110125
S016517652100402X
GroupedDBID --K
--M
--Z
-~X
.L6
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
3R3
4.4
457
4G.
5GY
5VS
63O
6TJ
7-5
71M
8P~
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACNCT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AETEA
AEYQN
AFFNX
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HVGLF
HZ~
IHE
IXIXF
J1W
KOM
LPU
LY5
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PVJ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEB
SEE
SES
SEW
SPCBC
SSB
SSF
SSZ
T5K
TN5
TWZ
ULY
UQL
VH1
WH7
WUQ
XPP
YK3
ZMT
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
8BJ
FQK
JBE
7S9
L.6
ID FETCH-LOGICAL-c435t-f7768cc7e66f7559b53421b5833043c0e0383710ff0749e7ef46a5effe406df23
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719648100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1765
IngestDate Thu Oct 02 06:19:36 EDT 2025
Sat Nov 08 20:42:05 EST 2025
Tue Nov 18 22:37:53 EST 2025
Sat Nov 29 07:22:17 EST 2025
Fri Feb 23 02:41:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Risk measure
G10
C58
Back propagation
CVaR
BP-CVaR
Back-testing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-f7768cc7e66f7559b53421b5833043c0e0383710ff0749e7ef46a5effe406df23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9538-7911
PQID 2628817159
PQPubID 816354
ParticipantIDs proquest_miscellaneous_2636677768
proquest_journals_2628817159
crossref_citationtrail_10_1016_j_econlet_2021_110125
crossref_primary_10_1016_j_econlet_2021_110125
elsevier_sciencedirect_doi_10_1016_j_econlet_2021_110125
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Economics letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Ahmed, Soleymani, Ullah, Hasan (b1) 2021; 402
Kupiec (b5) 1995; 3
Bai, Zhang, Wu, Zhu, Li (b2) 2021; 177
Christoffersen (b3) 1998; 39
Righi, Ceretta (b7) 2015; 42
Orhan, Köksal (b6) 2012; 39
Engle, Manganelli (b4) 2004; 22
Engle (10.1016/j.econlet.2021.110125_b4) 2004; 22
Righi (10.1016/j.econlet.2021.110125_b7) 2015; 42
Bai (10.1016/j.econlet.2021.110125_b2) 2021; 177
Kupiec (10.1016/j.econlet.2021.110125_b5) 1995; 3
Ahmed (10.1016/j.econlet.2021.110125_b1) 2021; 402
Orhan (10.1016/j.econlet.2021.110125_b6) 2012; 39
Christoffersen (10.1016/j.econlet.2021.110125_b3) 1998; 39
References_xml – volume: 39
  start-page: 841
  year: 1998
  end-page: 862
  ident: b3
  article-title: Evaluating interval forecasts
  publication-title: Internat. Econom. Rev.
– volume: 39
  start-page: 3582
  year: 2012
  end-page: 3592
  ident: b6
  article-title: A comparison of GARCH models for var estimation
  publication-title: Expert Syst. Appl.
– volume: 402
  year: 2021
  ident: b1
  article-title: Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution
  publication-title: Appl. Math. Comput.
– volume: 22
  start-page: 367
  year: 2004
  end-page: 381
  ident: b4
  article-title: CAViaR: Conditional autoregressive value at risk by regression quantiles
  publication-title: J. Bus. Econom. Statist.
– volume: 42
  start-page: 6380
  year: 2015
  end-page: 6390
  ident: b7
  article-title: Forecasting value at risk and expected shortfall based on serial pair-copula constructions
  publication-title: Expert Syst. Appl.
– volume: 177
  year: 2021
  ident: b2
  article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 73
  year: 1995
  end-page: 84
  ident: b5
  article-title: Techniques for verifying the accuracy of risk measurement models
  publication-title: J. Deriv.
– volume: 3
  start-page: 73
  issue: 2
  year: 1995
  ident: 10.1016/j.econlet.2021.110125_b5
  article-title: Techniques for verifying the accuracy of risk measurement models
  publication-title: J. Deriv.
  doi: 10.3905/jod.1995.407942
– volume: 402
  year: 2021
  ident: 10.1016/j.econlet.2021.110125_b1
  article-title: Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution
  publication-title: Appl. Math. Comput.
– volume: 177
  year: 2021
  ident: 10.1016/j.econlet.2021.110125_b2
  article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114952
– volume: 39
  start-page: 841
  issue: 4
  year: 1998
  ident: 10.1016/j.econlet.2021.110125_b3
  article-title: Evaluating interval forecasts
  publication-title: Internat. Econom. Rev.
  doi: 10.2307/2527341
– volume: 39
  start-page: 3582
  issue: 3
  year: 2012
  ident: 10.1016/j.econlet.2021.110125_b6
  article-title: A comparison of GARCH models for var estimation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.048
– volume: 22
  start-page: 367
  issue: 4
  year: 2004
  ident: 10.1016/j.econlet.2021.110125_b4
  article-title: CAViaR: Conditional autoregressive value at risk by regression quantiles
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1198/073500104000000370
– volume: 42
  start-page: 6380
  issue: 17–18
  year: 2015
  ident: 10.1016/j.econlet.2021.110125_b7
  article-title: Forecasting value at risk and expected shortfall based on serial pair-copula constructions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.023
SSID ssj0012975
Score 2.3700914
Snippet We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110125
SubjectTerms Algorithms
Back propagation
Back-testing
BP-CVaR
CVaR
Estimating techniques
Indexes
Markets
Markov analysis
Monte Carlo method
Monte Carlo simulation
Risk measure
Title BP-CVaR: A novel model of estimating CVaR with back propagation algorithm
URI https://dx.doi.org/10.1016/j.econlet.2021.110125
https://www.proquest.com/docview/2628817159
https://www.proquest.com/docview/2636677768
Volume 209
WOSCitedRecordID wos000719648100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012975
  issn: 0165-1765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQ4IXxKdWGMhIiJfJJV-2E97K1MGmqkyog4oXy01s2ChJ6ce0P5-72EkLGtp44CWtEjuJ7ufYv7vz3RHyMrFxJtKQMw3aAoP1VrCMJzkzWL0IFlxeuCSuAzkcpuNxduwr6i3qcgKyLNOLi2z2X6GGcwA2hs7-A9ztTeEE_AfQ4Qiww_FawL89Zvuf9EcXcl5W52bqyt0gLcSUGkhR0dcPbZwVdqLz77hPC6YWNxr09Gs1hys_fjPb-wjmxd60jgBqufhnb3F-B7_s6LQdbF--rZw_f1WyQeUXSG9fiMKNvRre5Cg4ppHkm3NmFGR7MwwhAH7ELp2JnVHgrItqPbxXF2_tO6yXnsbdPvygDk4GAzXqj0evZj8ZFgVD57mvkHKTbEeSZzDvbvcO--Oj1k2EYcEuebt7xXWI1utLn_w38vHHMlxzi9E9ctcrBbTnwLxPbpjyAbndSvwhOfSgvqE9WkNKa0hpZekaUootKEJKEVK6ASltIX1ETg76o_33zBfBYDkw2SWzEhTCPJdGCCtB_ZvwOInCCQbLBUmcByZAG0MYWAtkMDPS2ERojpuBgKoVNoofk62yKs0OoYkGddUardMiSwprJoKbtIhsxrXMuQw6JGmko3KfIR4LlUxVsxXwTHmhKhSqckLtkG7bbeZSpFzVIW1ErzzPc_xNweC5qutuA5Xy39xCRVgyO5RAzDvkRXsZpkn0fenSVCtsEwshUZZPrtHmKbmz_hR2ydZyvjLPyK38fHm6mD_3o_AXKOuFoA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BP-CVaR%3A+A+novel+model+of+estimating+CVaR+with+back+propagation+algorithm&rft.jtitle=Economics+letters&rft.au=Wang%2C+Gang-Jin&rft.au=Zhu%2C+Chun-Long&rft.date=2021-12-01&rft.issn=0165-1765&rft.volume=209+p.110125-&rft_id=info:doi/10.1016%2Fj.econlet.2021.110125&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1765&client=summon