BP-CVaR: A novel model of estimating CVaR with back propagation algorithm
We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DI...
Gespeichert in:
| Veröffentlicht in: | Economics letters Jg. 209; S. 110125 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.12.2021
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0165-1765, 1873-7374 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DIJA index and compare the results by back-testing approaches. We find that (i) BP-CVaR is more reliable and has higher accuracy than Monte Carlo CVaR model and (ii) BP-CVaR can react to the change of markets more quickly than traditional CVaR model.
•We introduce BP algorithm to calculate CVaR, i.e., BP-CVaR.•BP-CVaR performs better than Monte Carlo CVaR.•BP-CVaR is more sensitive to the change of markets. |
|---|---|
| AbstractList | We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DIJA index and compare the results by back-testing approaches. We find that (i) BP-CVaR is more reliable and has higher accuracy than Monte Carlo CVaR model and (ii) BP-CVaR can react to the change of markets more quickly than traditional CVaR model.
•We introduce BP algorithm to calculate CVaR, i.e., BP-CVaR.•BP-CVaR performs better than Monte Carlo CVaR.•BP-CVaR is more sensitive to the change of markets. We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the change of markets and use the information to adjust the next CVaR result. We use three samples including S&P 500 index, Nasdaq index, DIJA index and compare the results by back-testing approaches. We find that (i) BP-CVaR is more reliable and has higher accuracy than Monte Carlo CVaR model and (ii) BP-CVaR can react to the change of markets more quickly than traditional CVaR model. |
| ArticleNumber | 110125 |
| Author | Zhu, Chun-Long Wang, Gang-Jin |
| Author_xml | – sequence: 1 givenname: Gang-Jin surname: Wang fullname: Wang, Gang-Jin email: wanggangjin@hnu.edu.cn – sequence: 2 givenname: Chun-Long orcidid: 0000-0001-9538-7911 surname: Zhu fullname: Zhu, Chun-Long email: zhuchunlong@hnu.edu.cn |
| BookMark | eNqFkE1PAyEQhompibX6E0xIvHjZCssCWz2Y2viVNNEY9UooHSp1CxW2Gv-91PbkpRdImOedGZ5D1PHBA0InlPQpoeJ83gcTfANtvyQl7dP8WPI91KW1ZIVksuqgbuZ4QaXgB-gwpTnJyEDyLnq4fipGb_r5Ag-xD1_Q4EWY5jNYDKl1C906P8NrAn-79h1PtPnAyxiWepZLwWPdzELMlcUR2re6SXC8vXvo9fbmZXRfjB_vHkbDcWEqxtvCSilqYyQIYSXngwlnVUknvGaMVMwQIKxmkhJriawGIMFWQnOwFioiprZkPXS26Zu3-FzlJdXCJQNNoz2EVVKlYELI9ZSMnv5D52EVfd4uU2VdU0n5IFOXG8rEkFIEq4xr_z7XRu0aRYlaa1ZztdWs1prVRnNO83_pZcza4s_O3NUmB9nVl4OoknHgDUxdBNOqaXA7OvwC8-aZnw |
| CitedBy_id | crossref_primary_10_3390_axioms14050391 crossref_primary_10_3390_math13091410 crossref_primary_10_1155_2022_6975824 crossref_primary_10_3934_GF_2025009 crossref_primary_10_3390_math10163018 crossref_primary_10_1016_j_asoc_2021_108186 |
| Cites_doi | 10.3905/jod.1995.407942 10.1016/j.eswa.2021.114952 10.2307/2527341 10.1016/j.eswa.2011.09.048 10.1198/073500104000000370 10.1016/j.eswa.2015.04.023 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 2021 |
| DBID | AAYXX CITATION 8BJ FQK JBE 7S9 L.6 |
| DOI | 10.1016/j.econlet.2021.110125 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISSN | 1873-7374 |
| ExternalDocumentID | 10_1016_j_econlet_2021_110125 S016517652100402X |
| GroupedDBID | --K --M --Z -~X .L6 .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29G 3R3 4.4 457 4G. 5GY 5VS 63O 6TJ 7-5 71M 8P~ 9JO AABNK AACTN AAEDT AAEDW AAFFL AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABLJU ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACNCT ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AETEA AEYQN AFFNX AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AI. AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HVGLF HZ~ IHE IXIXF J1W KOM LPU LY5 M41 MO0 MS~ MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PVJ Q38 R2- RIG ROL RPZ SDF SDG SDP SEB SEE SES SEW SPCBC SSB SSF SSZ T5K TN5 TWZ ULY UQL VH1 WH7 WUQ XPP YK3 ZMT ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 8BJ FQK JBE 7S9 L.6 |
| ID | FETCH-LOGICAL-c435t-f7768cc7e66f7559b53421b5833043c0e0383710ff0749e7ef46a5effe406df23 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719648100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1765 |
| IngestDate | Thu Oct 02 06:19:36 EDT 2025 Sat Nov 08 20:42:05 EST 2025 Tue Nov 18 22:37:53 EST 2025 Sat Nov 29 07:22:17 EST 2025 Fri Feb 23 02:41:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Risk measure G10 C58 Back propagation CVaR BP-CVaR Back-testing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c435t-f7768cc7e66f7559b53421b5833043c0e0383710ff0749e7ef46a5effe406df23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9538-7911 |
| PQID | 2628817159 |
| PQPubID | 816354 |
| ParticipantIDs | proquest_miscellaneous_2636677768 proquest_journals_2628817159 crossref_citationtrail_10_1016_j_econlet_2021_110125 crossref_primary_10_1016_j_econlet_2021_110125 elsevier_sciencedirect_doi_10_1016_j_econlet_2021_110125 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Economics letters |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Ahmed, Soleymani, Ullah, Hasan (b1) 2021; 402 Kupiec (b5) 1995; 3 Bai, Zhang, Wu, Zhu, Li (b2) 2021; 177 Christoffersen (b3) 1998; 39 Righi, Ceretta (b7) 2015; 42 Orhan, Köksal (b6) 2012; 39 Engle, Manganelli (b4) 2004; 22 Engle (10.1016/j.econlet.2021.110125_b4) 2004; 22 Righi (10.1016/j.econlet.2021.110125_b7) 2015; 42 Bai (10.1016/j.econlet.2021.110125_b2) 2021; 177 Kupiec (10.1016/j.econlet.2021.110125_b5) 1995; 3 Ahmed (10.1016/j.econlet.2021.110125_b1) 2021; 402 Orhan (10.1016/j.econlet.2021.110125_b6) 2012; 39 Christoffersen (10.1016/j.econlet.2021.110125_b3) 1998; 39 |
| References_xml | – volume: 39 start-page: 841 year: 1998 end-page: 862 ident: b3 article-title: Evaluating interval forecasts publication-title: Internat. Econom. Rev. – volume: 39 start-page: 3582 year: 2012 end-page: 3592 ident: b6 article-title: A comparison of GARCH models for var estimation publication-title: Expert Syst. Appl. – volume: 402 year: 2021 ident: b1 article-title: Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution publication-title: Appl. Math. Comput. – volume: 22 start-page: 367 year: 2004 end-page: 381 ident: b4 article-title: CAViaR: Conditional autoregressive value at risk by regression quantiles publication-title: J. Bus. Econom. Statist. – volume: 42 start-page: 6380 year: 2015 end-page: 6390 ident: b7 article-title: Forecasting value at risk and expected shortfall based on serial pair-copula constructions publication-title: Expert Syst. Appl. – volume: 177 year: 2021 ident: b2 article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems publication-title: Expert Syst. Appl. – volume: 3 start-page: 73 year: 1995 end-page: 84 ident: b5 article-title: Techniques for verifying the accuracy of risk measurement models publication-title: J. Deriv. – volume: 3 start-page: 73 issue: 2 year: 1995 ident: 10.1016/j.econlet.2021.110125_b5 article-title: Techniques for verifying the accuracy of risk measurement models publication-title: J. Deriv. doi: 10.3905/jod.1995.407942 – volume: 402 year: 2021 ident: 10.1016/j.econlet.2021.110125_b1 article-title: Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution publication-title: Appl. Math. Comput. – volume: 177 year: 2021 ident: 10.1016/j.econlet.2021.110125_b2 article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114952 – volume: 39 start-page: 841 issue: 4 year: 1998 ident: 10.1016/j.econlet.2021.110125_b3 article-title: Evaluating interval forecasts publication-title: Internat. Econom. Rev. doi: 10.2307/2527341 – volume: 39 start-page: 3582 issue: 3 year: 2012 ident: 10.1016/j.econlet.2021.110125_b6 article-title: A comparison of GARCH models for var estimation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.048 – volume: 22 start-page: 367 issue: 4 year: 2004 ident: 10.1016/j.econlet.2021.110125_b4 article-title: CAViaR: Conditional autoregressive value at risk by regression quantiles publication-title: J. Bus. Econom. Statist. doi: 10.1198/073500104000000370 – volume: 42 start-page: 6380 issue: 17–18 year: 2015 ident: 10.1016/j.econlet.2021.110125_b7 article-title: Forecasting value at risk and expected shortfall based on serial pair-copula constructions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.023 |
| SSID | ssj0012975 |
| Score | 2.3700914 |
| Snippet | We propose a more flexible and useful model, BP-CVaR, to estimate conditional value-at-risk (CVaR) using back propagation (BP) algorithm, which can capture the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110125 |
| SubjectTerms | Algorithms Back propagation Back-testing BP-CVaR CVaR Estimating techniques Indexes Markets Markov analysis Monte Carlo method Monte Carlo simulation Risk measure |
| Title | BP-CVaR: A novel model of estimating CVaR with back propagation algorithm |
| URI | https://dx.doi.org/10.1016/j.econlet.2021.110125 https://www.proquest.com/docview/2628817159 https://www.proquest.com/docview/2636677768 |
| Volume | 209 |
| WOSCitedRecordID | wos000719648100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012975 issn: 0165-1765 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQ4IXxKdWGMhIiJfJJV-2E97K1MGmqkyog4oXy01s2ChJ6ce0P5-72EkLGtp44CWtEjuJ7ufYv7vz3RHyMrFxJtKQMw3aAoP1VrCMJzkzWL0IFlxeuCSuAzkcpuNxduwr6i3qcgKyLNOLi2z2X6GGcwA2hs7-A9ztTeEE_AfQ4Qiww_FawL89Zvuf9EcXcl5W52bqyt0gLcSUGkhR0dcPbZwVdqLz77hPC6YWNxr09Gs1hys_fjPb-wjmxd60jgBqufhnb3F-B7_s6LQdbF--rZw_f1WyQeUXSG9fiMKNvRre5Cg4ppHkm3NmFGR7MwwhAH7ELp2JnVHgrItqPbxXF2_tO6yXnsbdPvygDk4GAzXqj0evZj8ZFgVD57mvkHKTbEeSZzDvbvcO--Oj1k2EYcEuebt7xXWI1utLn_w38vHHMlxzi9E9ctcrBbTnwLxPbpjyAbndSvwhOfSgvqE9WkNKa0hpZekaUootKEJKEVK6ASltIX1ETg76o_33zBfBYDkw2SWzEhTCPJdGCCtB_ZvwOInCCQbLBUmcByZAG0MYWAtkMDPS2ERojpuBgKoVNoofk62yKs0OoYkGddUardMiSwprJoKbtIhsxrXMuQw6JGmko3KfIR4LlUxVsxXwTHmhKhSqckLtkG7bbeZSpFzVIW1ErzzPc_xNweC5qutuA5Xy39xCRVgyO5RAzDvkRXsZpkn0fenSVCtsEwshUZZPrtHmKbmz_hR2ydZyvjLPyK38fHm6mD_3o_AXKOuFoA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BP-CVaR%3A+A+novel+model+of+estimating+CVaR+with+back+propagation+algorithm&rft.jtitle=Economics+letters&rft.au=Wang%2C+Gang-Jin&rft.au=Zhu%2C+Chun-Long&rft.date=2021-12-01&rft.issn=0165-1765&rft.volume=209+p.110125-&rft_id=info:doi/10.1016%2Fj.econlet.2021.110125&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1765&client=summon |