Beyond mind-reading: multi-voxel pattern analysis of fMRI data

A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Trends in cognitive sciences Ročník 10; číslo 9; s. 424 - 430
Hlavní autoři: Norman, Kenneth A., Polyn, Sean M., Detre, Greg J., Haxby, James V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Elsevier Ltd 01.09.2006
Elsevier
Témata:
ISSN:1364-6613, 1879-307X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-6613
1879-307X
DOI:10.1016/j.tics.2006.07.005