Inversion algorithm of black carbon mixing state based on machine learning
The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records...
Gespeichert in:
| Veröffentlicht in: | Atmospheric measurement techniques Jg. 18; H. 5; S. 1149 - 1162 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
06.03.2025
Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1867-8548, 1867-1381, 1867-8548 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records individual particle signals, it requires complex data processing to convert raw signals into particle size and mixing states. Furthermore, the rapid accumulation of substantial data volumes impedes real-time analysis of BC mixing states. This study employs the Light Gradient-Boosting Machine (LightGBM), an advanced tree-based ensemble learning algorithm, to establish an inversion model that directly correlates SP2 signals with the mixing state of BC-containing particles. Our model achieves high accuracy for both particle size inversion and optical cross-section inversion of BC-containing particles, with a coefficient of determination R2 higher than 0.98. We further employ the SHapley Additive exPlanation (SHAP) method to analyze the importance of input features from SP2 signals in the inversion model of the entire particle diameter (Dp) and explore their underlying physical significance. Compared to the widely used leading-edge-only (LEO) fitting method, the machine learning (ML) method utilizes a larger coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate capture of the diverse characteristics of particles. Moreover, the ML method uses signals with a high signal-to-noise ratio, providing better noise resistance. Our model is capable of accurately and efficiently acquiring the single-particle information and statistical results of the BC mixing state, which provides essential data for BC aging mechanism investigation and the assessment of further BC radiative effects. |
|---|---|
| AbstractList | The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records individual particle signals, it requires complex data processing to convert raw signals into particle size and mixing states. Furthermore, the rapid accumulation of substantial data volumes impedes real-time analysis of BC mixing states. This study employs the Light Gradient-Boosting Machine (LightGBM), an advanced tree-based ensemble learning algorithm, to establish an inversion model that directly correlates SP2 signals with the mixing state of BC-containing particles. Our model achieves high accuracy for both particle size inversion and optical cross-section inversion of BC-containing particles, with a coefficient of determination R2 higher than 0.98. We further employ the SHapley Additive exPlanation (SHAP) method to analyze the importance of input features from SP2 signals in the inversion model of the entire particle diameter (Dp) and explore their underlying physical significance. Compared to the widely used leading-edge-only (LEO) fitting method, the machine learning (ML) method utilizes a larger coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate capture of the diverse characteristics of particles. Moreover, the ML method uses signals with a high signal-to-noise ratio, providing better noise resistance. Our model is capable of accurately and efficiently acquiring the single-particle information and statistical results of the BC mixing state, which provides essential data for BC aging mechanism investigation and the assessment of further BC radiative effects. The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records individual particle signals, it requires complex data processing to convert raw signals into particle size and mixing states. Furthermore, the rapid accumulation of substantial data volumes impedes real-time analysis of BC mixing states. This study employs the Light Gradient-Boosting Machine (LightGBM), an advanced tree-based ensemble learning algorithm, to establish an inversion model that directly correlates SP2 signals with the mixing state of BC-containing particles. Our model achieves high accuracy for both particle size inversion and optical cross-section inversion of BC-containing particles, with a coefficient of determination R.sup.2 higher than 0.98. We further employ the SHapley Additive exPlanation (SHAP) method to analyze the importance of input features from SP2 signals in the inversion model of the entire particle diameter (D.sub.p) and explore their underlying physical significance. Compared to the widely used leading-edge-only (LEO) fitting method, the machine learning (ML) method utilizes a larger coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate capture of the diverse characteristics of particles. Moreover, the ML method uses signals with a high signal-to-noise ratio, providing better noise resistance. Our model is capable of accurately and efficiently acquiring the single-particle information and statistical results of the BC mixing state, which provides essential data for BC aging mechanism investigation and the assessment of further BC radiative effects. |
| Audience | Academic |
| Author | Tian, Zeyuan Liu, Chao Nie, Wei Xing, Jia Wang, Jiaping Jin, Yuzhi Wang, Bin Huang, Xin Wang, Jiandong Shen, Sunan Wang, Jinbo Zhang, Zhouyang Ding, Aijun |
| Author_xml | – sequence: 1 givenname: Zeyuan surname: Tian fullname: Tian, Zeyuan – sequence: 2 givenname: Jiandong orcidid: 0000-0003-3000-622X surname: Wang fullname: Wang, Jiandong – sequence: 3 givenname: Jiaping surname: Wang fullname: Wang, Jiaping – sequence: 4 givenname: Chao surname: Liu fullname: Liu, Chao – sequence: 5 givenname: Jia surname: Xing fullname: Xing, Jia – sequence: 6 givenname: Jinbo surname: Wang fullname: Wang, Jinbo – sequence: 7 givenname: Zhouyang surname: Zhang fullname: Zhang, Zhouyang – sequence: 8 givenname: Yuzhi surname: Jin fullname: Jin, Yuzhi – sequence: 9 givenname: Sunan surname: Shen fullname: Shen, Sunan – sequence: 10 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 11 givenname: Wei orcidid: 0000-0002-6048-0515 surname: Nie fullname: Nie, Wei – sequence: 12 givenname: Xin orcidid: 0000-0003-0922-5014 surname: Huang fullname: Huang, Xin – sequence: 13 givenname: Aijun orcidid: 0000-0003-4481-5386 surname: Ding fullname: Ding, Aijun |
| BookMark | eNptks2PFCEQxYlZE3dX7x478eShV6BhgONm48eYTUz8OJOCLnoZu5sVGLP-9zKOUScxHCCvfvVSFd4FOVvTioQ8Z_RKMiNewVJ7pnvGhOk55fIROWd6o3othT775_2EXJSyo3QjmOLn5P12_Y65xLR2ME8px3q3dCl0bgb_tfOQXass8SGuU1cqVOwcFBy7gwr-Lq7YzQh5bfWn5HGAueCz3_cl-fLm9eebd_3th7fbm-vb3otB1n50ZgQlAwpOwYH3ypg2nfTCS6rQwOioMqAFV15yyhQGjabxlFGhdRguyfboOybY2fscF8g_bIJofwkpTxZyjX5Ga0aHwY8KFQjBtdEDInCUbOOcYgGa14uj131O3_ZYqt2lfV7b-HZgqs0r-cD_UhM007iGVDP4JRZvrzU3WhqlaKOu_kO1M-ISffutEJt-0vDypKExFR_qBPtS7PbTx1OWHlmfUykZw5_FGbWHANgWAMu0PQTAHgIw_AQcUKOc |
| Cites_doi | 10.1080/02786820500421521 10.1364/AO.42.003726 10.1080/02786826.2010.484450 10.1093/nsr/nwaa307 10.1016/j.jaerosci.2007.12.002 10.1080/02786826.2023.2202243 10.5194/acp-21-7863-2021 10.1029/2021JD036055 10.5194/acp-10-219-2010 10.3390/jmse9050496 10.1109/ACCESS.2019.2897754 10.5194/amt-8-1701-2015 10.1371/journal.pcbi.0030116 10.1016/j.agwat.2019.105758 10.1126/science.aaa8415 10.1109/ACCESS.2022.3165792 10.1029/2008JD010680 10.1038/s41467-018-05635-1 10.1103/RevModPhys.91.045002 10.1029/2006JD007076 10.1016/j.accre.2024.06.007 10.1080/02786820701199728 10.1029/2021GL096437 10.1016/j.frl.2018.12.032 10.1029/1998JD100069 10.1002/jgrd.50171 10.1080/02786826.2015.1074978 10.1016/j.apr.2020.02.011 10.1016/j.atmosres.2022.106238 10.5194/amt-5-1031-2012 10.1126/science.1223447 10.1029/2007JD009042 10.1038/ngeo2901 10.1038/35055518 10.5194/amt-9-1833-2016 10.1080/02786820701197078 10.1029/2005JD006046 10.1016/j.jenvman.2020.111061 10.1021/acs.estlett.7b00418 10.1029/2008JD010546 10.1080/02786820601118398 10.5194/gmd-12-1209-2019 10.3390/s18082674 10.1029/2012GL050905 10.1038/ngeo156 10.5194/acp-14-10061-2014 10.1029/2021JD034620 10.1073/pnas.1919723117 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 Copernicus GmbH 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 Copernicus GmbH – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.5194/amt-18-1149-2025 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1867-8548 |
| EndPage | 1162 |
| ExternalDocumentID | oai_doaj_org_article_9dbefcd7e7a4428983eea2e516bb71fa A829859770 10_5194_amt_18_1149_2025 |
| GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC Q2X RKB RNS TR2 TUS 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c435t-db9da75fe420abacc7991865c4c507e9adb079a8427c52017ef8e95fe010488f3 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001438020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1867-8548 1867-1381 |
| IngestDate | Tue Oct 14 19:05:24 EDT 2025 Fri Jul 25 21:30:31 EDT 2025 Tue Nov 11 10:51:46 EST 2025 Tue Nov 04 18:13:01 EST 2025 Thu Nov 13 16:00:09 EST 2025 Sat Nov 29 08:12:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c435t-db9da75fe420abacc7991865c4c507e9adb079a8427c52017ef8e95fe010488f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0922-5014 0000-0003-4481-5386 0000-0002-6048-0515 0000-0003-3000-622X |
| OpenAccessLink | https://doaj.org/article/9dbefcd7e7a4428983eea2e516bb71fa |
| PQID | 3174355232 |
| PQPubID | 105742 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9dbefcd7e7a4428983eea2e516bb71fa proquest_journals_3174355232 gale_infotracmisc_A829859770 gale_infotracacademiconefile_A829859770 gale_incontextgauss_ISR_A829859770 crossref_primary_10_5194_amt_18_1149_2025 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-06 |
| PublicationDateYYYYMMDD | 2025-03-06 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2025 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref2 doi: 10.1080/02786820500421521 – ident: ref38 doi: 10.1364/AO.42.003726 – ident: ref26 doi: 10.1080/02786826.2010.484450 – ident: ref51 doi: 10.1093/nsr/nwaa307 – ident: ref25 doi: 10.1016/j.jaerosci.2007.12.002 – ident: ref27 doi: 10.1080/02786826.2023.2202243 – ident: ref46 doi: 10.5194/acp-21-7863-2021 – ident: ref29 doi: 10.1029/2021JD036055 – ident: ref39 doi: 10.5194/acp-10-219-2010 – ident: ref9 doi: 10.3390/jmse9050496 – ident: ref50 doi: 10.1109/ACCESS.2019.2897754 – ident: ref42 doi: 10.5194/amt-8-1701-2015 – ident: ref41 doi: 10.1371/journal.pcbi.0030116 – ident: ref6 doi: 10.1016/j.agwat.2019.105758 – ident: ref12 doi: 10.1126/science.aaa8415 – ident: ref13 – ident: ref1 doi: 10.1109/ACCESS.2022.3165792 – ident: ref28 doi: 10.1029/2008JD010680 – ident: ref23 doi: 10.1038/s41467-018-05635-1 – ident: ref5 doi: 10.1103/RevModPhys.91.045002 – ident: ref32 doi: 10.1029/2006JD007076 – ident: ref20 doi: 10.1016/j.accre.2024.06.007 – ident: ref24 doi: 10.1080/02786820701199728 – ident: ref45 doi: 10.1029/2021GL096437 – ident: ref40 doi: 10.1016/j.frl.2018.12.032 – ident: ref8 doi: 10.1029/1998JD100069 – ident: ref3 doi: 10.1002/jgrd.50171 – ident: ref35 doi: 10.1080/02786826.2015.1074978 – ident: ref48 doi: 10.1016/j.apr.2020.02.011 – ident: ref16 doi: 10.1016/j.atmosres.2022.106238 – ident: ref15 doi: 10.5194/amt-5-1031-2012 – ident: ref4 doi: 10.1126/science.1223447 – ident: ref33 doi: 10.1029/2007JD009042 – ident: ref19 doi: 10.1038/ngeo2901 – ident: ref11 doi: 10.1038/35055518 – ident: ref22 – ident: ref49 doi: 10.5194/amt-9-1833-2016 – ident: ref37 doi: 10.1080/02786820701197078 – ident: ref31 doi: 10.1029/2005JD006046 – ident: ref47 doi: 10.1016/j.jenvman.2020.111061 – ident: ref43 doi: 10.1021/acs.estlett.7b00418 – ident: ref36 doi: 10.1029/2008JD010546 – ident: ref10 doi: 10.1080/02786820601118398 – ident: ref14 doi: 10.5194/gmd-12-1209-2019 – ident: ref17 doi: 10.3390/s18082674 – ident: ref21 – ident: ref34 doi: 10.1029/2012GL050905 – ident: ref30 doi: 10.1038/ngeo156 – ident: ref18 doi: 10.5194/acp-14-10061-2014 – ident: ref44 doi: 10.1029/2021JD034620 – ident: ref7 doi: 10.1073/pnas.1919723117 |
| SSID | ssj0064172 |
| Score | 2.3967314 |
| Snippet | The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 1149 |
| SubjectTerms | Aerosols Algorithms Analysis Black carbon Carbon Data analysis Data mining Data processing Decision making Ensemble learning Lasers Leading edges Learning algorithms Light Machine learning Optical properties Particle size Photometers Physical properties Protective coatings Radiation Real time Sensors Signal to noise ratio |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELWqVQ-9IFpaEViQhaqiHiLWThzbR0CsoFJRxYfEzbIdZ1lpd4Oy2ao_nxkni9hDxYVjnDnEM7bnzWT8hpDvkmfeacvSAP4PUzcidVmpUunR-ZYO1oiPzSbk9bV6eNB_XrX6wpqwjh64U9yJLl2ofCmDtDlAZa2yECwPghXOSVZFaDSSeh1MdWdwkbPYtgnZ2pBlj3U_KAGt5Cd23qYMIicIDWCJYIvsVw4p8vb_73SOLme8TbZ6rEhPu2_8TD6ExReS_AaYWzcxG05_0PPZFDBnfNohv5A1I-a_qJ1Naoj7H-e0rqjDLB31tnHwZj79B-6KxptEFJ1YSXE0FlUG2neRmHwl9-OLu_PLtG-WkHpAPG1aOl1aKaqQ85F11nsJyE8VwuceIF_QtnSgJqtyLr0Ary9DpYIGeQzIlKqyb2SwqBdhl1APUFZy5wKXLBcZh3NIWi6FZ4WQLtiE_FxrzDx1nBgGYgnUrgHtGqbwrrM2qN2EnKFKX-SQzToOgI1Nb2Pzlo0TcoQGMchXscCCmIldLZfm6vbGnCquFXLojRJy3AtVddtYb_v7BTAnpLjakBxuSMKG8puv13Y3_YZemgwjNwFRO997jxntk0-onVjMVgzJoG1W4YB89H_b6bI5jGv5GW6W94c priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZo6aGXlqfYPpCFEIhD1LUTx_apaisqQKKqeEgVF8uvLCt1N22SVvz8zni90D3AhWPiURJnJjPfTOxvCHkteemdtqyIEP-wdCMKVwZVSI_BNziwEZ-aTcizM3Vxoc9zwa3PyyqXPjE56tB6rJEflAidBaRN_PDqusCuUfh3NbfQWCMPkSUBWzecix9LT1xXLDVvQs425Npji9-UgFmqAzsbCgb5EyQIYCjYKPteWErs_X_z0SnwnG7_7yM_IlsZctKjhY08Jg_i_AkZfQa03HapqE7f0JPLKUDXdPSUfELyjVRGo_ZyAlccfs5o21CHxT7qbedgZDb9BVGPpg1JFGNhoHg2rc2MNDejmDwj30_ffzv5UOSeC4WHZx2K4HSwUjSx4mPrrPcSAKSqha88IMeobXBjqa2quPQCwIOMjYoa5DGvU6opn5P1eTuPLwj1gIgldy5yySpRcnBn0nIpPKuFdNGOyLvlKzdXC2oNAykJqseAegxTuGVaG1TPiByjTn7LISl2OtF2E5O_MaODi40PMkpbQValVRmj5VGw2jnJGrjhK9SoQdqLOa6rmdibvjcfv34xR4prhVR84xF5m4Waduist3mbAswJmbJWJPdWJOG79KvDS6sw2S_05o9J7Px7eJds4rzTard6j6wP3U3cJxv-dpj23ctk5nf0nwP5 priority: 102 providerName: ProQuest |
| Title | Inversion algorithm of black carbon mixing state based on machine learning |
| URI | https://www.proquest.com/docview/3174355232 https://doaj.org/article/9dbefcd7e7a4428983eea2e516bb71fa |
| Volume | 18 |
| WOSCitedRecordID | wos001438020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: P5Z dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: PCBAR dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: PIMPY dateStart: 20100501 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhzaGXpk_qNl1ECQk9mKxky5KOSUhIAlnMNoW0FyHJ8nYhuw5ep_Tnd0Z2SvZQekguBstjsEaP-WY8-oaQXckz77RlaQD7h6EbkbqsUqn0aHwrB3PEx2ITcjJR19e6fFDqC3PCenrgXnEHunKh9pUM0uYAlbXKQrA8CFY4J1mN0AimIS7JKdZw6_fgImexbBOytSHLHut_UAJayQ_soksZeE7gGsAUwRLZDwxS5O3_1-4cTc7p9iM-9iV5MeBMeti_8opshOVrklwCRG7aGEmne_T4Zg54Nd69IRfIuBFjZ9TezJp23v1c0KamDiN81NvWwZPF_DeYOhpPIVE0gBXF1piQGehQgWL2lnw7Pbk6PkuHQgupB7TUpZXTlZWiDjkfW2e9l4AaVSF87gEuBm0rN5baqpxLLwAxyFCroEEenTml6uwd2Vw2y_CeUA8wWHLnApcsFxmHPUxaLoVnhZAu2IR8ude2ue35NAz4ITgyBkbGMIXnpLXBkUnIEWr4rxwyYccGULkZVG7-p_KEfMbBNMh1scRkmpm9W63M-depOVRcK-TfGydkfxCqm6613g5nE6BPSI-1JrmzJgmL0a8_vp8zZtgMViZDr0-Ax88_PEWPPpLnqJ2YCFfskM2uvQufyJb_1c1X7Yg8OzqZlNNRDC7AtRQ_oK08vyy_j-Ia-QN78w_W |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceCO2FLAQD3GIunEedg4IlULVpd3VCorUnoztONuVupuSpDz-FL-RGW8C7AFuPXCMPXJk-_O87JkBeCJ4ZE2mw8Ch_CPXTRKYKJeBsCR8c4MYsb7YhBiP5dFRNlmDH10sDD2r7HiiZ9R5aclHvhWR6pyg2cRfnX0OqGoU3a52JTSWsNh337-iyVa_HL7B_X3K-e7bw529oK0qEFgcoAlyk-VaJIWL-UAbba1AFUmmiY0t6kYu07kZiEzLmAuboHgUrpAuQ3qyXKQsIhz3EqzHBPYerE-Go8lxx_vTOPTloihLHGX3C5cXo6glxVt63gQhWmxokiA0qTT3H4LQ1wv4m1Twom73-v-2SDfgWqtUs-3lKbgJa25xC_ojtAfKyl8bsGds53SGyrn_ug3vKL2IdxQyfTrFGTQnc1YWzJA7k1ldGeyZz76hXGc-5IqRtM8ZtfrXp4615Tamd-DjhUztLvQW5cLdA2ZR5xfcGMdFGCcRR4YtNBeJDdNEGKf78KLbYnW2TB6i0OgiOCiEgwolBYVniuDQh9eEgV90lPbbN5TVVLVcRGW5cYXNhRMa8SczGTmnuUvC1BgRFvjDx4QgRYk9FvRyaKrP61oNP7xX25JnkpINDvrwvCUqyqbSVreBGDgnygW2Qrm5Qomcx652dyhULeer1W8Ibvy7-xFc2TscHaiD4Xj_PlylNfBv-9JN6DXVuXsAl-2XZlZXD9tDxuDTRUP2J9kuYsk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUK98EYsFLAQD3GIduM87BwQ6oMVS-mqPCp6M7bjbFfqbkqS8vhr_DpmvAmwB7j1wDH2yJHtzzPz-TED8EjwyJpMh4FD-0dbN0lgolwGwpLxzQ1ixPpkE2IykUdH2cEa_OjewtC1yk4nekWdl5b2yAcRuc4J0iY-KNprEQe7oxennwPKIEUnrV06jSVE9tz3r0jf6ufjXZzrx5yPXn7YeRW0GQYCi401QW6yXIukcDEfaqOtFeguyTSxsUU_yWU6N0ORaRlzYRM0lcIV0mUoTyxGyiLCdi_AukxTOezB-vZo_-3Hzg6kcehTR1HEOIr0Fy4PSdFjigd63gQhsjekJwhTStP9h1H0uQP-ZiG82Rtd-Z8H7Cpcbp1ttrVcHddgzS2uQ38feUJZ-eME9oTtnMzQafdfN-A1hR3xG4hMn0yxB83xnJUFM7TNyayuDNbMZ9_Q3jP_FIuRF5AzKvW3Uh1r03BMb8LhuXTtFvQW5cLdBmaRCwhujOMijJOIoyIXmovEhmkijNN9eNZNtzpdBhVRSMYIGgqhoUJJj8UzRdDowzbh4ZcchQP3BWU1Va12UVluXGFz4YSOkU9mMnJOc5eEqTEiLPCHDwlNigJ-LAgJU31W12r8_p3akjyTFIRw2IenrVBRNpW2un2ggX2iGGErkpsrkqiR7Gp1h0jVasRa_YbjnX9XP4BLiFP1ZjzZuwsbNAT-yl-6Cb2mOnP34KL90szq6n673hh8Om_E_gRWlGtp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+algorithm+of+black+carbon+mixing+state+based+on+machine+learning&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Tian%2C+Zeyuan&rft.au=Wang%2C+Jiandong&rft.au=Wang%2C+Jiaping&rft.au=Liu%2C+Chao&rft.date=2025-03-06&rft.issn=1867-8548&rft.eissn=1867-8548&rft.volume=18&rft.issue=5&rft.spage=1149&rft.epage=1162&rft_id=info:doi/10.5194%2Famt-18-1149-2025&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_amt_18_1149_2025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |