Inversion algorithm of black carbon mixing state based on machine learning

The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric measurement techniques Jg. 18; H. 5; S. 1149 - 1162
Hauptverfasser: Tian, Zeyuan, Wang, Jiandong, Wang, Jiaping, Liu, Chao, Xing, Jia, Wang, Jinbo, Zhang, Zhouyang, Jin, Yuzhi, Shen, Sunan, Wang, Bin, Nie, Wei, Huang, Xin, Ding, Aijun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 06.03.2025
Copernicus Publications
Schlagworte:
ISSN:1867-8548, 1867-1381, 1867-8548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records individual particle signals, it requires complex data processing to convert raw signals into particle size and mixing states. Furthermore, the rapid accumulation of substantial data volumes impedes real-time analysis of BC mixing states. This study employs the Light Gradient-Boosting Machine (LightGBM), an advanced tree-based ensemble learning algorithm, to establish an inversion model that directly correlates SP2 signals with the mixing state of BC-containing particles. Our model achieves high accuracy for both particle size inversion and optical cross-section inversion of BC-containing particles, with a coefficient of determination R2 higher than 0.98. We further employ the SHapley Additive exPlanation (SHAP) method to analyze the importance of input features from SP2 signals in the inversion model of the entire particle diameter (Dp) and explore their underlying physical significance. Compared to the widely used leading-edge-only (LEO) fitting method, the machine learning (ML) method utilizes a larger coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate capture of the diverse characteristics of particles. Moreover, the ML method uses signals with a high signal-to-noise ratio, providing better noise resistance. Our model is capable of accurately and efficiently acquiring the single-particle information and statistical results of the BC mixing state, which provides essential data for BC aging mechanism investigation and the assessment of further BC radiative effects.
AbstractList The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records individual particle signals, it requires complex data processing to convert raw signals into particle size and mixing states. Furthermore, the rapid accumulation of substantial data volumes impedes real-time analysis of BC mixing states. This study employs the Light Gradient-Boosting Machine (LightGBM), an advanced tree-based ensemble learning algorithm, to establish an inversion model that directly correlates SP2 signals with the mixing state of BC-containing particles. Our model achieves high accuracy for both particle size inversion and optical cross-section inversion of BC-containing particles, with a coefficient of determination R2 higher than 0.98. We further employ the SHapley Additive exPlanation (SHAP) method to analyze the importance of input features from SP2 signals in the inversion model of the entire particle diameter (Dp) and explore their underlying physical significance. Compared to the widely used leading-edge-only (LEO) fitting method, the machine learning (ML) method utilizes a larger coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate capture of the diverse characteristics of particles. Moreover, the ML method uses signals with a high signal-to-noise ratio, providing better noise resistance. Our model is capable of accurately and efficiently acquiring the single-particle information and statistical results of the BC mixing state, which provides essential data for BC aging mechanism investigation and the assessment of further BC radiative effects.
The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records individual particle signals, it requires complex data processing to convert raw signals into particle size and mixing states. Furthermore, the rapid accumulation of substantial data volumes impedes real-time analysis of BC mixing states. This study employs the Light Gradient-Boosting Machine (LightGBM), an advanced tree-based ensemble learning algorithm, to establish an inversion model that directly correlates SP2 signals with the mixing state of BC-containing particles. Our model achieves high accuracy for both particle size inversion and optical cross-section inversion of BC-containing particles, with a coefficient of determination R.sup.2 higher than 0.98. We further employ the SHapley Additive exPlanation (SHAP) method to analyze the importance of input features from SP2 signals in the inversion model of the entire particle diameter (D.sub.p) and explore their underlying physical significance. Compared to the widely used leading-edge-only (LEO) fitting method, the machine learning (ML) method utilizes a larger coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate capture of the diverse characteristics of particles. Moreover, the ML method uses signals with a high signal-to-noise ratio, providing better noise resistance. Our model is capable of accurately and efficiently acquiring the single-particle information and statistical results of the BC mixing state, which provides essential data for BC aging mechanism investigation and the assessment of further BC radiative effects.
Audience Academic
Author Tian, Zeyuan
Liu, Chao
Nie, Wei
Xing, Jia
Wang, Jiaping
Jin, Yuzhi
Wang, Bin
Huang, Xin
Wang, Jiandong
Shen, Sunan
Wang, Jinbo
Zhang, Zhouyang
Ding, Aijun
Author_xml – sequence: 1
  givenname: Zeyuan
  surname: Tian
  fullname: Tian, Zeyuan
– sequence: 2
  givenname: Jiandong
  orcidid: 0000-0003-3000-622X
  surname: Wang
  fullname: Wang, Jiandong
– sequence: 3
  givenname: Jiaping
  surname: Wang
  fullname: Wang, Jiaping
– sequence: 4
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
– sequence: 5
  givenname: Jia
  surname: Xing
  fullname: Xing, Jia
– sequence: 6
  givenname: Jinbo
  surname: Wang
  fullname: Wang, Jinbo
– sequence: 7
  givenname: Zhouyang
  surname: Zhang
  fullname: Zhang, Zhouyang
– sequence: 8
  givenname: Yuzhi
  surname: Jin
  fullname: Jin, Yuzhi
– sequence: 9
  givenname: Sunan
  surname: Shen
  fullname: Shen, Sunan
– sequence: 10
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
– sequence: 11
  givenname: Wei
  orcidid: 0000-0002-6048-0515
  surname: Nie
  fullname: Nie, Wei
– sequence: 12
  givenname: Xin
  orcidid: 0000-0003-0922-5014
  surname: Huang
  fullname: Huang, Xin
– sequence: 13
  givenname: Aijun
  orcidid: 0000-0003-4481-5386
  surname: Ding
  fullname: Ding, Aijun
BookMark eNptks2PFCEQxYlZE3dX7x478eShV6BhgONm48eYTUz8OJOCLnoZu5sVGLP-9zKOUScxHCCvfvVSFd4FOVvTioQ8Z_RKMiNewVJ7pnvGhOk55fIROWd6o3othT775_2EXJSyo3QjmOLn5P12_Y65xLR2ME8px3q3dCl0bgb_tfOQXass8SGuU1cqVOwcFBy7gwr-Lq7YzQh5bfWn5HGAueCz3_cl-fLm9eebd_3th7fbm-vb3otB1n50ZgQlAwpOwYH3ypg2nfTCS6rQwOioMqAFV15yyhQGjabxlFGhdRguyfboOybY2fscF8g_bIJofwkpTxZyjX5Ga0aHwY8KFQjBtdEDInCUbOOcYgGa14uj131O3_ZYqt2lfV7b-HZgqs0r-cD_UhM007iGVDP4JRZvrzU3WhqlaKOu_kO1M-ISffutEJt-0vDypKExFR_qBPtS7PbTx1OWHlmfUykZw5_FGbWHANgWAMu0PQTAHgIw_AQcUKOc
Cites_doi 10.1080/02786820500421521
10.1364/AO.42.003726
10.1080/02786826.2010.484450
10.1093/nsr/nwaa307
10.1016/j.jaerosci.2007.12.002
10.1080/02786826.2023.2202243
10.5194/acp-21-7863-2021
10.1029/2021JD036055
10.5194/acp-10-219-2010
10.3390/jmse9050496
10.1109/ACCESS.2019.2897754
10.5194/amt-8-1701-2015
10.1371/journal.pcbi.0030116
10.1016/j.agwat.2019.105758
10.1126/science.aaa8415
10.1109/ACCESS.2022.3165792
10.1029/2008JD010680
10.1038/s41467-018-05635-1
10.1103/RevModPhys.91.045002
10.1029/2006JD007076
10.1016/j.accre.2024.06.007
10.1080/02786820701199728
10.1029/2021GL096437
10.1016/j.frl.2018.12.032
10.1029/1998JD100069
10.1002/jgrd.50171
10.1080/02786826.2015.1074978
10.1016/j.apr.2020.02.011
10.1016/j.atmosres.2022.106238
10.5194/amt-5-1031-2012
10.1126/science.1223447
10.1029/2007JD009042
10.1038/ngeo2901
10.1038/35055518
10.5194/amt-9-1833-2016
10.1080/02786820701197078
10.1029/2005JD006046
10.1016/j.jenvman.2020.111061
10.1021/acs.estlett.7b00418
10.1029/2008JD010546
10.1080/02786820601118398
10.5194/gmd-12-1209-2019
10.3390/s18082674
10.1029/2012GL050905
10.1038/ngeo156
10.5194/acp-14-10061-2014
10.1029/2021JD034620
10.1073/pnas.1919723117
ContentType Journal Article
Copyright COPYRIGHT 2025 Copernicus GmbH
2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 Copernicus GmbH
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.5194/amt-18-1149-2025
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 1162
ExternalDocumentID oai_doaj_org_article_9dbefcd7e7a4428983eea2e516bb71fa
A829859770
10_5194_amt_18_1149_2025
GroupedDBID 23N
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
Q2X
RKB
RNS
TR2
TUS
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c435t-db9da75fe420abacc7991865c4c507e9adb079a8427c52017ef8e95fe010488f3
IEDL.DBID RKB
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001438020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-8548
1867-1381
IngestDate Tue Oct 14 19:05:24 EDT 2025
Fri Jul 25 21:30:31 EDT 2025
Tue Nov 11 10:51:46 EST 2025
Tue Nov 04 18:13:01 EST 2025
Thu Nov 13 16:00:09 EST 2025
Sat Nov 29 08:12:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-db9da75fe420abacc7991865c4c507e9adb079a8427c52017ef8e95fe010488f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0922-5014
0000-0003-4481-5386
0000-0002-6048-0515
0000-0003-3000-622X
OpenAccessLink https://doaj.org/article/9dbefcd7e7a4428983eea2e516bb71fa
PQID 3174355232
PQPubID 105742
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9dbefcd7e7a4428983eea2e516bb71fa
proquest_journals_3174355232
gale_infotracmisc_A829859770
gale_infotracacademiconefile_A829859770
gale_incontextgauss_ISR_A829859770
crossref_primary_10_5194_amt_18_1149_2025
PublicationCentury 2000
PublicationDate 2025-03-06
PublicationDateYYYYMMDD 2025-03-06
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-06
  day: 06
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2025
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref2
  doi: 10.1080/02786820500421521
– ident: ref38
  doi: 10.1364/AO.42.003726
– ident: ref26
  doi: 10.1080/02786826.2010.484450
– ident: ref51
  doi: 10.1093/nsr/nwaa307
– ident: ref25
  doi: 10.1016/j.jaerosci.2007.12.002
– ident: ref27
  doi: 10.1080/02786826.2023.2202243
– ident: ref46
  doi: 10.5194/acp-21-7863-2021
– ident: ref29
  doi: 10.1029/2021JD036055
– ident: ref39
  doi: 10.5194/acp-10-219-2010
– ident: ref9
  doi: 10.3390/jmse9050496
– ident: ref50
  doi: 10.1109/ACCESS.2019.2897754
– ident: ref42
  doi: 10.5194/amt-8-1701-2015
– ident: ref41
  doi: 10.1371/journal.pcbi.0030116
– ident: ref6
  doi: 10.1016/j.agwat.2019.105758
– ident: ref12
  doi: 10.1126/science.aaa8415
– ident: ref13
– ident: ref1
  doi: 10.1109/ACCESS.2022.3165792
– ident: ref28
  doi: 10.1029/2008JD010680
– ident: ref23
  doi: 10.1038/s41467-018-05635-1
– ident: ref5
  doi: 10.1103/RevModPhys.91.045002
– ident: ref32
  doi: 10.1029/2006JD007076
– ident: ref20
  doi: 10.1016/j.accre.2024.06.007
– ident: ref24
  doi: 10.1080/02786820701199728
– ident: ref45
  doi: 10.1029/2021GL096437
– ident: ref40
  doi: 10.1016/j.frl.2018.12.032
– ident: ref8
  doi: 10.1029/1998JD100069
– ident: ref3
  doi: 10.1002/jgrd.50171
– ident: ref35
  doi: 10.1080/02786826.2015.1074978
– ident: ref48
  doi: 10.1016/j.apr.2020.02.011
– ident: ref16
  doi: 10.1016/j.atmosres.2022.106238
– ident: ref15
  doi: 10.5194/amt-5-1031-2012
– ident: ref4
  doi: 10.1126/science.1223447
– ident: ref33
  doi: 10.1029/2007JD009042
– ident: ref19
  doi: 10.1038/ngeo2901
– ident: ref11
  doi: 10.1038/35055518
– ident: ref22
– ident: ref49
  doi: 10.5194/amt-9-1833-2016
– ident: ref37
  doi: 10.1080/02786820701197078
– ident: ref31
  doi: 10.1029/2005JD006046
– ident: ref47
  doi: 10.1016/j.jenvman.2020.111061
– ident: ref43
  doi: 10.1021/acs.estlett.7b00418
– ident: ref36
  doi: 10.1029/2008JD010546
– ident: ref10
  doi: 10.1080/02786820601118398
– ident: ref14
  doi: 10.5194/gmd-12-1209-2019
– ident: ref17
  doi: 10.3390/s18082674
– ident: ref21
– ident: ref34
  doi: 10.1029/2012GL050905
– ident: ref30
  doi: 10.1038/ngeo156
– ident: ref18
  doi: 10.5194/acp-14-10061-2014
– ident: ref44
  doi: 10.1029/2021JD034620
– ident: ref7
  doi: 10.1073/pnas.1919723117
SSID ssj0064172
Score 2.3967314
Snippet The radiative properties of black carbon (BC) are significantly influenced by its mixing state. The single-particle soot photometer (SP2) is a widely...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1149
SubjectTerms Aerosols
Algorithms
Analysis
Black carbon
Carbon
Data analysis
Data mining
Data processing
Decision making
Ensemble learning
Lasers
Leading edges
Learning algorithms
Light
Machine learning
Optical properties
Particle size
Photometers
Physical properties
Protective coatings
Radiation
Real time
Sensors
Signal to noise ratio
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELWqVQ-9IFpaEViQhaqiHiLWThzbR0CsoFJRxYfEzbIdZ1lpd4Oy2ao_nxkni9hDxYVjnDnEM7bnzWT8hpDvkmfeacvSAP4PUzcidVmpUunR-ZYO1oiPzSbk9bV6eNB_XrX6wpqwjh64U9yJLl2ofCmDtDlAZa2yECwPghXOSVZFaDSSeh1MdWdwkbPYtgnZ2pBlj3U_KAGt5Cd23qYMIicIDWCJYIvsVw4p8vb_73SOLme8TbZ6rEhPu2_8TD6ExReS_AaYWzcxG05_0PPZFDBnfNohv5A1I-a_qJ1Naoj7H-e0rqjDLB31tnHwZj79B-6KxptEFJ1YSXE0FlUG2neRmHwl9-OLu_PLtG-WkHpAPG1aOl1aKaqQ85F11nsJyE8VwuceIF_QtnSgJqtyLr0Ary9DpYIGeQzIlKqyb2SwqBdhl1APUFZy5wKXLBcZh3NIWi6FZ4WQLtiE_FxrzDx1nBgGYgnUrgHtGqbwrrM2qN2EnKFKX-SQzToOgI1Nb2Pzlo0TcoQGMchXscCCmIldLZfm6vbGnCquFXLojRJy3AtVddtYb_v7BTAnpLjakBxuSMKG8puv13Y3_YZemgwjNwFRO997jxntk0-onVjMVgzJoG1W4YB89H_b6bI5jGv5GW6W94c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZo6aGXlqfYPpCFEIhD1LUTx_apaisqQKKqeEgVF8uvLCt1N22SVvz8zni90D3AhWPiURJnJjPfTOxvCHkteemdtqyIEP-wdCMKVwZVSI_BNziwEZ-aTcizM3Vxoc9zwa3PyyqXPjE56tB6rJEflAidBaRN_PDqusCuUfh3NbfQWCMPkSUBWzecix9LT1xXLDVvQs425Npji9-UgFmqAzsbCgb5EyQIYCjYKPteWErs_X_z0SnwnG7_7yM_IlsZctKjhY08Jg_i_AkZfQa03HapqE7f0JPLKUDXdPSUfELyjVRGo_ZyAlccfs5o21CHxT7qbedgZDb9BVGPpg1JFGNhoHg2rc2MNDejmDwj30_ffzv5UOSeC4WHZx2K4HSwUjSx4mPrrPcSAKSqha88IMeobXBjqa2quPQCwIOMjYoa5DGvU6opn5P1eTuPLwj1gIgldy5yySpRcnBn0nIpPKuFdNGOyLvlKzdXC2oNAykJqseAegxTuGVaG1TPiByjTn7LISl2OtF2E5O_MaODi40PMkpbQValVRmj5VGw2jnJGrjhK9SoQdqLOa6rmdibvjcfv34xR4prhVR84xF5m4Waduist3mbAswJmbJWJPdWJOG79KvDS6sw2S_05o9J7Px7eJds4rzTard6j6wP3U3cJxv-dpj23ctk5nf0nwP5
  priority: 102
  providerName: ProQuest
Title Inversion algorithm of black carbon mixing state based on machine learning
URI https://www.proquest.com/docview/3174355232
https://doaj.org/article/9dbefcd7e7a4428983eea2e516bb71fa
Volume 18
WOSCitedRecordID wos001438020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: P5Z
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: PCBAR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: PIMPY
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhzaGXpk_qNl1ECQk9mKxky5KOSUhIAlnMNoW0FyHJ8nYhuw5ep_Tnd0Z2SvZQekguBstjsEaP-WY8-oaQXckz77RlaQD7h6EbkbqsUqn0aHwrB3PEx2ITcjJR19e6fFDqC3PCenrgXnEHunKh9pUM0uYAlbXKQrA8CFY4J1mN0AimIS7JKdZw6_fgImexbBOytSHLHut_UAJayQ_soksZeE7gGsAUwRLZDwxS5O3_1-4cTc7p9iM-9iV5MeBMeti_8opshOVrklwCRG7aGEmne_T4Zg54Nd69IRfIuBFjZ9TezJp23v1c0KamDiN81NvWwZPF_DeYOhpPIVE0gBXF1piQGehQgWL2lnw7Pbk6PkuHQgupB7TUpZXTlZWiDjkfW2e9l4AaVSF87gEuBm0rN5baqpxLLwAxyFCroEEenTml6uwd2Vw2y_CeUA8wWHLnApcsFxmHPUxaLoVnhZAu2IR8ude2ue35NAz4ITgyBkbGMIXnpLXBkUnIEWr4rxwyYccGULkZVG7-p_KEfMbBNMh1scRkmpm9W63M-depOVRcK-TfGydkfxCqm6613g5nE6BPSI-1JrmzJgmL0a8_vp8zZtgMViZDr0-Ax88_PEWPPpLnqJ2YCFfskM2uvQufyJb_1c1X7Yg8OzqZlNNRDC7AtRQ_oK08vyy_j-Ia-QN78w_W
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceCO2FLAQD3GIunEedg4IlULVpd3VCorUnoztONuVupuSpDz-FL-RGW8C7AFuPXCMPXJk-_O87JkBeCJ4ZE2mw8Ch_CPXTRKYKJeBsCR8c4MYsb7YhBiP5dFRNlmDH10sDD2r7HiiZ9R5aclHvhWR6pyg2cRfnX0OqGoU3a52JTSWsNh337-iyVa_HL7B_X3K-e7bw529oK0qEFgcoAlyk-VaJIWL-UAbba1AFUmmiY0t6kYu07kZiEzLmAuboHgUrpAuQ3qyXKQsIhz3EqzHBPYerE-Go8lxx_vTOPTloihLHGX3C5cXo6glxVt63gQhWmxokiA0qTT3H4LQ1wv4m1Twom73-v-2SDfgWqtUs-3lKbgJa25xC_ojtAfKyl8bsGds53SGyrn_ug3vKL2IdxQyfTrFGTQnc1YWzJA7k1ldGeyZz76hXGc-5IqRtM8ZtfrXp4615Tamd-DjhUztLvQW5cLdA2ZR5xfcGMdFGCcRR4YtNBeJDdNEGKf78KLbYnW2TB6i0OgiOCiEgwolBYVniuDQh9eEgV90lPbbN5TVVLVcRGW5cYXNhRMa8SczGTmnuUvC1BgRFvjDx4QgRYk9FvRyaKrP61oNP7xX25JnkpINDvrwvCUqyqbSVreBGDgnygW2Qrm5Qomcx652dyhULeer1W8Ibvy7-xFc2TscHaiD4Xj_PlylNfBv-9JN6DXVuXsAl-2XZlZXD9tDxuDTRUP2J9kuYsk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUK98EYsFLAQD3GIduM87BwQ6oMVS-mqPCp6M7bjbFfqbkqS8vhr_DpmvAmwB7j1wDH2yJHtzzPz-TED8EjwyJpMh4FD-0dbN0lgolwGwpLxzQ1ixPpkE2IykUdH2cEa_OjewtC1yk4nekWdl5b2yAcRuc4J0iY-KNprEQe7oxennwPKIEUnrV06jSVE9tz3r0jf6ufjXZzrx5yPXn7YeRW0GQYCi401QW6yXIukcDEfaqOtFeguyTSxsUU_yWU6N0ORaRlzYRM0lcIV0mUoTyxGyiLCdi_AukxTOezB-vZo_-3Hzg6kcehTR1HEOIr0Fy4PSdFjigd63gQhsjekJwhTStP9h1H0uQP-ZiG82Rtd-Z8H7Cpcbp1ttrVcHddgzS2uQ38feUJZ-eME9oTtnMzQafdfN-A1hR3xG4hMn0yxB83xnJUFM7TNyayuDNbMZ9_Q3jP_FIuRF5AzKvW3Uh1r03BMb8LhuXTtFvQW5cLdBmaRCwhujOMijJOIoyIXmovEhmkijNN9eNZNtzpdBhVRSMYIGgqhoUJJj8UzRdDowzbh4ZcchQP3BWU1Va12UVluXGFz4YSOkU9mMnJOc5eEqTEiLPCHDwlNigJ-LAgJU31W12r8_p3akjyTFIRw2IenrVBRNpW2un2ggX2iGGErkpsrkqiR7Gp1h0jVasRa_YbjnX9XP4BLiFP1ZjzZuwsbNAT-yl-6Cb2mOnP34KL90szq6n673hh8Om_E_gRWlGtp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+algorithm+of+black+carbon+mixing+state+based+on+machine+learning&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Tian%2C+Zeyuan&rft.au=Wang%2C+Jiandong&rft.au=Wang%2C+Jiaping&rft.au=Liu%2C+Chao&rft.date=2025-03-06&rft.issn=1867-8548&rft.eissn=1867-8548&rft.volume=18&rft.issue=5&rft.spage=1149&rft.epage=1162&rft_id=info:doi/10.5194%2Famt-18-1149-2025&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_amt_18_1149_2025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon