Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders
There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (an...
Gespeichert in:
| Veröffentlicht in: | Survey of ophthalmology Jg. 67; H. 2; S. 411 - 426 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.03.2022
|
| Schlagworte: | |
| ISSN: | 0039-6257, 1879-3304, 1879-3304 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.
[Display omitted] |
|---|---|
| AbstractList | There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target. There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target. There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target. [Display omitted] |
| Author | Sharma, Samridhi Mirzaei, Mehdi Chitranshi, Nitin You, Yuyi Basavarajappa, Devaraj Wall, Roshana Vander Klistorner, Alexander Gupta, Vivek Graham, Stuart L |
| Author_xml | – sequence: 1 givenname: Samridhi orcidid: 0000-0002-1167-6511 surname: Sharma fullname: Sharma, Samridhi email: samridhi.sharma@mq.edu.au organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 2 givenname: Nitin orcidid: 0000-0002-6508-9865 surname: Chitranshi fullname: Chitranshi, Nitin organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 3 givenname: Roshana Vander surname: Wall fullname: Wall, Roshana Vander organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 4 givenname: Devaraj surname: Basavarajappa fullname: Basavarajappa, Devaraj organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 5 givenname: Vivek surname: Gupta fullname: Gupta, Vivek organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 6 givenname: Mehdi surname: Mirzaei fullname: Mirzaei, Mehdi organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 7 givenname: Stuart L surname: Graham fullname: Graham, Stuart L organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 8 givenname: Alexander surname: Klistorner fullname: Klistorner, Alexander organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia – sequence: 9 givenname: Yuyi surname: You fullname: You, Yuyi email: yuyi.you@mq.edu.au organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34146577$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcFu1DAQhi1URLeFV0DhxoEEO3HihAuqVrQgVXApZ8uxJ10vXjvYTqo8Bm-Mt9sVqKc9eez55xvP_BfozDoLCL0juCCYNB-3RZj87MZN3AhTlLgkBW4KjMkLtCIt6_KqwvQMrTCuurwpa3aOLkLYYoxp1bFX6LyihDY1Yyv0584LG_KwWDFGLTMF92DBi6idzbTN4gayWYdJmGwUcfMglk_Zd5h8uktnLcioZx2XD4_Z9KMlaGfcfXoQVmXSaKtl0urdaFKwp4Y91iaE-9drhkzp4LwCH16jl4MwAd48nZfo5_WXu_XX_PbHzbf11W0uaVXHXDUAPWmhpUMvejY0bV1i0ZGS0b4cesZEqdLkDETbSNpK1rK26VU71CBZR4fqEr0_cEfvfk8QIt_pIMEYYcFNgZc1rSilmHRJ-vZJOvU7UHz0eif8wo9rTILPB4H0LgQPA5c6Pk4bvdCGE8z3xvEt_884vjeO44Yn4xKhe0Y4Njmldn2ohbSuWYPnQWqwEpT2ySCunD6JcvWMcnTvFywnMv4ClZbW6A |
| CitedBy_id | crossref_primary_10_1186_s12888_024_06100_8 crossref_primary_10_1016_j_ajo_2022_03_019 crossref_primary_10_3390_jcm13216585 crossref_primary_10_1016_j_jocn_2025_111492 crossref_primary_10_1371_journal_pone_0298006 crossref_primary_10_1016_j_neuroscience_2024_08_030 crossref_primary_10_1093_schbul_sbae102 crossref_primary_10_3390_brainsci15090934 crossref_primary_10_1097_WNR_0000000000002178 crossref_primary_10_1089_neu_2023_0574 crossref_primary_10_3389_fneur_2025_1598510 crossref_primary_10_1016_j_seizure_2025_07_010 crossref_primary_10_1136_bmjophth_2024_001902 crossref_primary_10_1080_01658107_2025_2456039 crossref_primary_10_1097_WNR_0000000000002190 crossref_primary_10_1016_j_autrev_2024_103667 crossref_primary_10_1007_s00415_023_11709_y crossref_primary_10_1186_s40478_023_01575_0 crossref_primary_10_4103_NRR_NRR_D_24_00394 crossref_primary_10_1111_ceo_14341 crossref_primary_10_3390_brainsci14101030 crossref_primary_10_4103_NRR_NRR_D_23_01907 crossref_primary_10_1016_j_preteyeres_2022_101092 crossref_primary_10_3389_fnins_2021_813044 crossref_primary_10_1002_jmri_28352 crossref_primary_10_1111_aos_17461 crossref_primary_10_3390_ijms25084287 crossref_primary_10_1080_00207454_2025_2520029 crossref_primary_10_1016_j_survophthal_2025_01_002 crossref_primary_10_1097_WNO_0000000000002228 |
| Cites_doi | 10.3109/13506120308995249 10.1016/j.celrep.2014.06.063 10.1155/2012/631965 10.1016/j.neuron.2012.06.009 10.1016/S1474-4422(10)70254-4 10.1136/jnnp-2014-308189 10.1002/mds.26533 10.1016/j.neurad.2012.04.001 10.1212/WNL.0000000000000522 10.1136/jnnp.49.10.1150 10.1167/iovs.11-8732 10.1101/750208 10.1136/jnnp.2010.239715 10.1159/000496233 10.1016/j.visres.2004.06.009 10.1167/iovs.09-4577 10.1093/brain/awv396 10.1371/journal.pone.0073208 10.1523/JNEUROSCI.1711-16.2016 10.1016/j.ajo.2014.03.015 10.1177/1352458507087326 10.1167/iovs.03-0566 10.1016/j.conb.2018.09.001 10.1002/hbm.21343 10.1371/journal.pone.0183957 10.1016/j.ophtha.2005.10.040 10.1016/j.neuron.2006.09.003 10.1016/S0002-9394(14)71283-8 10.1167/iovs.19-27447 10.1167/iovs.05-0830 10.1080/01658107.2016.1276935 10.1038/nature09612 10.1016/j.exer.2006.09.013 10.1093/brain/awq346 10.1371/journal.pone.0097444 10.1371/journal.pone.0102546 10.1016/S1474-4422(19)30485-5 10.1167/iovs.11-7434 10.1111/ene.13897 10.1002/ana.24030 10.1093/brain/aws242 10.1016/j.neubiorev.2020.02.028 10.1007/s11940-017-0452-7 10.1016/j.jacc.2017.07.724 10.1371/journal.pone.0093682 10.1126/science.aao0862 10.1167/iovs.05-0618 10.1155/2011/871296 10.1136/bjo.2005.086769 10.5301/EJO.2010.1318 10.1111/gbb.12190 10.1155/2013/134858 10.3233/JAD-191346 10.1016/j.brainres.2007.04.062 10.1007/s10633-007-9091-8 10.1167/iovs.14-14733 10.1177/1352458516679035 10.1074/jbc.M808759200 10.3233/JAD-141659 10.1016/j.pharmthera.2016.11.010 10.1016/j.neurad.2012.10.004 10.1016/j.exer.2005.11.025 10.1016/j.survophthal.2017.09.010 10.1016/j.conb.2011.09.011 10.1186/s13195-019-0516-x 10.1212/WNL.0000000000005686 10.1212/NXI.0000000000000665 10.1167/iovs.05-0921 10.2174/0929867325666180307114332 10.1212/WNL.0000000000002841 10.1038/nn.4340 10.1177/1352458517753722 10.1016/j.ophtha.2012.11.021 10.1016/j.ophtha.2019.04.002 10.1002/mds.25543 10.1038/ncomms10472 10.1016/j.exer.2005.08.001 10.1167/iovs.18-25966 10.1016/j.neuron.2018.10.014 10.1212/NXI.0000000000000427 10.1038/nn1074 10.1093/brain/awz364 10.1038/s41419-018-0740-5 10.1111/ene.13404 10.1093/brain/awy338 10.1016/j.nicl.2019.101826 10.1111/ceo.12751 10.1155/2019/6248185 10.1371/journal.pone.0050230 10.1093/brain/awr324 10.1056/NEJMcibr1202401 10.1016/j.neuron.2011.07.006 10.1016/j.tins.2015.06.004 10.1007/s00330-014-3358-8 10.1016/j.ajoc.2018.09.011 10.1001/archopht.124.2.217 10.2147/OPTH.S81749 10.1093/brain/awp068 10.1073/pnas.1019434108 10.1098/rspb.2018.2733 10.2174/1389450116666150825113655 10.1136/jnnp-2012-304854 10.1038/nrn3901 10.1097/01.wno.0000235587.41040.39 10.1186/s13195-016-0173-2 10.1111/j.1442-9071.1997.tb01400.x 10.3174/ajnr.A2486 10.1097/01.wno.0000204645.56873.26 10.3174/ajnr.A2714 10.1097/WNO.0000000000000182 10.1126/science.1131864 10.1371/journal.pone.0013877 10.1016/0002-9394(82)90197-0 10.1136/jnnp-2013-306902 10.1155/2013/627325 10.1001/archneurol.2009.107 10.1177/1352458516637679 10.1016/j.conb.2010.08.016 10.1111/j.1442-9071.2012.02832.x 10.1093/brain/awp001 10.1016/j.ejrad.2014.05.014 10.1016/j.msard.2017.11.017 10.1097/WNO.0b013e318267fd5f 10.1002/ana.22692 10.1523/JNEUROSCI.0707-09.2009 10.1016/j.neuron.2013.12.024 10.1016/j.radcr.2021.01.017 10.3389/fneur.2017.00162 10.1136/bcr-2021-241967 10.1093/brain/awl039 10.1177/1352458513485146 10.1016/j.cell.2020.04.033 10.1016/j.ajo.2005.03.059 10.1212/WNL.0b013e31827deb39 10.2147/EB.S293765 10.1016/j.neuron.2014.06.010 10.1002/hbm.20985 10.1093/brain/124.9.1813 10.1080/01658107.2019.1617748 10.1096/fj.07-095398 10.1002/hbm.23330 10.1016/j.ajo.2013.09.028 10.1371/journal.pone.0053547 10.1016/j.neuroimage.2011.03.025 10.1001/archophthalmol.2009.106 10.1155/2016/2394957 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. |
| Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.survophthal.2021.06.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-3304 |
| EndPage | 426 |
| ExternalDocumentID | 34146577 10_1016_j_survophthal_2021_06_001 S0039625721001387 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LZ2 M29 M41 MO0 N4W N9A O-L O9- OAUVE OF- OPF OQ~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSZ T5K UV1 WH7 WUQ X7M XPP Z5R ZGI ZXP ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR RIG ZA5 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c435t-d6eeb18e84fbab7f68520a91274b2fb77a2d2577ea86c48c78786bd8f5ec794f3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760878200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0039-6257 1879-3304 |
| IngestDate | Thu Oct 02 19:20:31 EDT 2025 Wed Feb 19 02:27:11 EST 2025 Sat Nov 29 07:26:39 EST 2025 Tue Nov 18 21:01:45 EST 2025 Fri Feb 23 02:40:31 EST 2024 Tue Oct 14 19:30:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Trans-synaptic degeneration retrograde bidirectional trans-synaptic degeneration neurodegenerative disorders anterograde visual pathway axonal loss synapse dysfunction |
| Language | English |
| License | Copyright © 2021. Published by Elsevier Inc. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c435t-d6eeb18e84fbab7f68520a91274b2fb77a2d2577ea86c48c78786bd8f5ec794f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1167-6511 0000-0002-6508-9865 |
| PMID | 34146577 |
| PQID | 2543444019 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2543444019 pubmed_primary_34146577 crossref_citationtrail_10_1016_j_survophthal_2021_06_001 crossref_primary_10_1016_j_survophthal_2021_06_001 elsevier_sciencedirect_doi_10_1016_j_survophthal_2021_06_001 elsevier_clinicalkey_doi_10_1016_j_survophthal_2021_06_001 |
| PublicationCentury | 2000 |
| PublicationDate | March-April 2022 2022-03-00 2022 Mar-Apr 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March-April 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Survey of ophthalmology |
| PublicationTitleAlternate | Surv Ophthalmol |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Balk, Steenwijk, Tewarie (bib0009) 2015; 86 Herro, Lam (bib0065) 2015; 9 Fisher JB, Jacobs DA, Markowitz CE, et al.: Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. 113:324-332, 2006 Hains, Waxman (bib0058) 2005; 46 Patel, Ramsey, Metcalf (bib0111) 2016; 87 Martin, Quigley, Valenta (bib0098) 2006; 83 Petracca M, Cordano C, Cellerino M, et al.: Retinal degeneration in primary-progressive multiple sclerosis: a role for cortical lesions? 23:43-50, 2017 Lim, Stafford, Nguyen (bib0094) 2016; 19 Raz N, Dotan S, Chokron S, et al.: Demyelination affects temporal aspects of perception: an optic neuritis study. 71:531-538, 2012 Bukalo, Dityatev (bib0017) 2012 Debanne D, Inglebert Y, Russier MJCoin: Plasticity of intrinsic neuronal excitability. 54:73-82, 2019 Hasegawa M, Nonaka T, Masuda-Suzukake MJP, therapeutics: Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. 172:22-33, 2017 Pellegrini F, Interlandi E, Pichi F, Lee AGJN-O: Retrogeniculate lesion of the visual pathways: retinal optical coherence tomography angiography shows evidence of transsynaptic retrograde degeneration. 44:114-117, 2020 Audoin B, Fernando KT, Swanton JK, et al.: Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. 129:1031-1039, 2006 Iseri, Altinas, Tokay, Yuksel (bib0070) 2006; 26 Kolbe, Bajraszewski, Chapman (bib0086) 2012; 33 den Haan J, Csinscik L, Parker T, et al.: Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease. 11:62, 2019 Klistorner A, Graham E, Yiannikas C, et al.: Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. 24:1392-1398, 2017 Siddiqui TJ, Craig AMJCoin: Synaptic organizing complexes. 21:132-143, 2011 Dejanovic B, Huntley MA, De Mazière A, et al.: Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. 100:1322-1336. e1327, 2018 Costello FJISRN: The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. 2013, 2013 Garcia-Martin, Larrosa, Polo (bib0052) 2014; 157 Rajanala AP, Shariati MA, Liao YJ: Long distance retrograde degeneration of the retino-geniculo-cortical pathway in homonymous hemianopia. 2019 Balk L, Twisk J, Steenwijk M, et al.: A dam for retrograde axonal degeneration in multiple sclerosis? 85:782-789, 2014 Xicota Vila L, Rodríguez-Morató J, Dierssen M, Torre Fornell Rdl: Potential Role of (-)-Epigallocatechin-3-Gallate (EGCG) in the secondary prevention of Alzheimer disease. 2017 Ferris III FL, Kassoff A, Bresnick GH, Bailey IJAjoo: New visual acuity charts for clinical research. 94:91-96, 1982 Frezzotti, Giorgio, Toto (bib0047) 2016; 37 Rocca MA, Mesaros S, Preziosa P, et al.: Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. 19:1610-1617, 2013 Shimazawa, Tomita, Taniguchi (bib0126) 2006; 82 Beauchamp, Oswalt, Sun (bib0011) 2020; 181 Rizzo G, Tozer KR, Tonon C, et al.: Secondary post-geniculate involvement in Leber's hereditary optic neuropathy. 7:e50230, 2012 Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, et al.: Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. 75:98-107, 2014 Hokazono K, Monteiro MLRJAjoocr: Homonymous quadrantic macular ganglion cell complex loss as a sign of trans-synaptic degeneration from occipital lobe lesion. 13:76-79, 2019 Jenkins T, Ciccarelli O, Atzori M, et al.: Early pericalcarine atrophy in acute optic neuritis is associated with conversion to multiple sclerosis. 82:1017-1021, 2011 Gupta N, Ly T, Zhang Q, et al.: Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. 84:176-184, 2007 Bogorodzki, Piatkowska-Janko, Szaflik (bib0014) 2014; 9 Grimaldi A, Brighi C, Peruzzi G, et al.: Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse model. 9:1-10, 2018 You, Klistorner, Thie, Graham (bib0150) 2011; 52 Stasi K, Nagel D, Yang X, et al.: Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. 47:1024-1029, 2006 Park H-YL, Park YG, Cho A-H, Park CKJO: Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. 120:1292-1299, 2013 Chataway, De Angelis, Connick (bib0020) 2020; 19 Yamashita, Miki, Goto (bib0146) 2016; 2016 Crawford ML, Harwerth RS, Smith EL, et al.: Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. 42:358-364, 2001 Moschos MM, Tagaris G, Markopoulos L, et al.: Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. 21:24-29, 2011 Brandt AU, Martinez-Lapiscina EH, Nolan R, Saidha SJCtoin: Monitoring the course of MS with optical coherence tomography. 19:15, 2017 La Morgia C, Rizzo G, Tozer KR, et al.: Secondary Post-geniculate Involvement In Leber's Hereditary Optic Neuropathy. 53:4883-4883, 2012 Inzelberg R, Ramirez JA, Nisipeanu P, Ophir AJVr: Retinal nerve fiber layer thinning in Parkinson disease. 44:2793-2797, 2004 Mehta JS, Plant GTJAjoo: Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia. 140:727-729, 2005 Yamagata, Kobayashi, Umeda (bib0145) 2009; 29 Kaiser PKJTotAOS: Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis). 107:311, 2009 DeSimone CV, Graff-Radford J, El-Harasis MA, et al.: Cerebral amyloid angiopathy: diagnosis, clinical implications, and management strategies in atrial fibrillation. 70:1173-1182, 2017 Graham, Klistorner (bib0053) 2017; 45 Espinosa, Stryker (bib0039) 2012; 75 Frost B, Jacks RL, Diamond MIJJoBC: Propagation of tau misfolding from the outside to the inside of a cell. 284:12845-12852, 2009 Klistorner, Sriram, Vootakuru (bib0083) 2014; 82 Chen, Lin, Wang (bib0023) 2013; 41 Al-Louzi O, Button J, Newsome SD, et al.: Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: a case series. 23:1035-1039, 2017 Onofrj M, Ghilardi M, Basciani M, et al.: Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. 49:1150-1159, 1986 Evangelou N, Konz D, Esiri M, et al.: Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. 124:1813-1820, 2001 You, Joseph, Wang (bib0149) 2019; 142 Lee, Yoon, Lee (bib0092) 2016; 31 Eshtiaghi, Micieli (bib0038) 2021; 14 Yucel, Gupta, Zhang (bib0152) 2006; 124 Bemben MA, Shipman SL, Nicoll RA, Roche KWJTin: The cellular and molecular landscape of neuroligins. 38:496-505, 2015 Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al.: Exogenous induction of cerebral ß-amyloidogenesis is governed by agent and host. 313:1781-1784, 2006 Tur, Goodkin, Altmann (bib0136) 2016; 139 Kaushik, Graham, Wang, Klistorner (bib0076) 2014; 55 Visanji, Orsi, Johnston (bib0140) 2008; 22 Keller J, Sánchez-Dalmau BF, Villoslada PJPO: Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. 9:e97444, 2014 Lawlor, Danesh-Meyer, Levin (bib0090) 2018; 63 Yu, Xie, Yin (bib0151) 2013; 8 Matsushita T, Madireddy L, Sprenger T, et al.: Genetic associations with brain cortical thickness in multiple sclerosis. 14:217-227, 2015 Osterhout JA, El-Danaf RN, Nguyen PL, Huberman ADJCr: Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. 8:1006-1017, 2014 Schneider CL, Prentiss EK, Busza A, et al.: Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. 286:20182733, 2019 Hosp, Luft (bib0068) 2011; 2011 McCoskey, Addis, Goodyear (bib0100) 2018; 18 Crawford ML, Harwerth RS, Smith EL, et al.: Glaucoma in primates: cytochrome oxidase reactivity in parvo-and magnocellular pathways. 41:1791-1802, 2000 Fornito, Zalesky, Breakspear (bib0046) 2015; 16 Hardy, Revesz (bib0060) 2012; 366 Yücel YH, Zhang Q, Weinreb RN, et al.: Atrophy of relay neurons in magno-and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. 42:3216-3222, 2001 Hell (bib0064) 2014; 81 Abalo-Lojo J, Treus A, Arias M, et al.: Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: a long term 5 year follow-up. 19:124-128, 2018 Sidek, Ramli, Rahmat (bib0128) 2014; 83 Chaturvedi, Hedley-Whyte, Dreyer (bib0021) 1993; 116 Mancino, Cesareo, Martucci (bib0096) 2019; 26 Yamada M, Hashimoto T, Hayashi N, et al.: Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization. 1165:5-14, 2007 Sotirchos, Saidha (bib0131) 2018; 24 Zhang X, Kedar S, Lynn MJ, et al.: Homonymous hemianopia in stroke. 26:180-183, 2006 Asanad S, Ross-Cisneros FN, Nassisi M, et al.: The retina in Alzheimer's disease: histomorphometric analysis of an ophthalmologic biomarker. 60:1491-1500, 2019 Ji K, Miyauchi J, Tsirka SEJNp: Microglia: an active player in the regulation of synaptic activity. 2013, 2013 El-Boustani S, Ip JP, Breton-Provencher V, et al.: Locally coordinated synaptic plasticity of visual cortex neurons in vivo. 360:1349-1354, 2018 Gabilondo I, Sepúlveda M, Ortiz-Perez S, et al.: Retrograde retinal damage after acute optic tract lesion in MS. 84:824-826, 2013 Chen Z, Wang J, Lin F, et al.: Correlation between lateral geniculate nucleus atrophy and damage to the optic disc in glaucoma. 40:281-287, 2013 Meier PG, Maeder P, Kardon RH, Borruat F-XJJoN-o: Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. 35:112-116, 2015 Reich DS, Smith SA, Gordon-Lipkin EM, et al.: Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual di 10.1016/j.survophthal.2021.06.001_bib0027 10.1016/j.survophthal.2021.06.001_bib0148 10.1016/j.survophthal.2021.06.001_bib0026 10.1016/j.survophthal.2021.06.001_bib0147 10.1016/j.survophthal.2021.06.001_bib0029 10.1016/j.survophthal.2021.06.001_bib0028 10.1016/j.survophthal.2021.06.001_bib0144 10.1016/j.survophthal.2021.06.001_bib0143 10.1016/j.survophthal.2021.06.001_bib0024 Hell (10.1016/j.survophthal.2021.06.001_bib0064) 2014; 81 Chataway (10.1016/j.survophthal.2021.06.001_bib0020) 2020; 19 Klistorner (10.1016/j.survophthal.2021.06.001_bib0083) 2014; 82 Balk (10.1016/j.survophthal.2021.06.001_bib0009) 2015; 86 10.1016/j.survophthal.2021.06.001_bib0141 You (10.1016/j.survophthal.2021.06.001_bib0150) 2011; 52 Castaldi (10.1016/j.survophthal.2021.06.001_bib0018) 2020; 112 Iseri (10.1016/j.survophthal.2021.06.001_bib0070) 2006; 26 Dai (10.1016/j.survophthal.2021.06.001_bib0156) 2011; 32 Mancino (10.1016/j.survophthal.2021.06.001_bib0096) 2019; 26 Hardy (10.1016/j.survophthal.2021.06.001_bib0060) 2012; 366 10.1016/j.survophthal.2021.06.001_bib0016 10.1016/j.survophthal.2021.06.001_bib0137 10.1016/j.survophthal.2021.06.001_bib0015 10.1016/j.survophthal.2021.06.001_bib0139 10.1016/j.survophthal.2021.06.001_bib0138 10.1016/j.survophthal.2021.06.001_bib0012 10.1016/j.survophthal.2021.06.001_bib0133 10.1016/j.survophthal.2021.06.001_bib0099 10.1016/j.survophthal.2021.06.001_bib0132 10.1016/j.survophthal.2021.06.001_bib0013 10.1016/j.survophthal.2021.06.001_bib0134 McCoskey (10.1016/j.survophthal.2021.06.001_bib0100) 2018; 18 10.1016/j.survophthal.2021.06.001_bib0130 10.1016/j.survophthal.2021.06.001_bib0093 Haykal (10.1016/j.survophthal.2021.06.001_bib0063) 2019; 60 Hosp (10.1016/j.survophthal.2021.06.001_bib0068) 2011; 2011 Lawlor (10.1016/j.survophthal.2021.06.001_bib0090) 2018; 63 Garcia-Martin (10.1016/j.survophthal.2021.06.001_bib0052) 2014; 157 10.1016/j.survophthal.2021.06.001_bib0049 10.1016/j.survophthal.2021.06.001_bib0048 Gupta (10.1016/j.survophthal.2021.06.001_bib0055) 2006; 90 Espinosa (10.1016/j.survophthal.2021.06.001_bib0039) 2012; 75 10.1016/j.survophthal.2021.06.001_bib0045 10.1016/j.survophthal.2021.06.001_bib0044 10.1016/j.survophthal.2021.06.001_bib0041 10.1016/j.survophthal.2021.06.001_bib0040 10.1016/j.survophthal.2021.06.001_bib0043 Sidek (10.1016/j.survophthal.2021.06.001_bib0128) 2014; 83 Eroglu (10.1016/j.survophthal.2021.06.001_bib0037) 2010; 468 Takemura (10.1016/j.survophthal.2021.06.001_bib0135) 2019; 23 Herro (10.1016/j.survophthal.2021.06.001_bib0065) 2015; 9 Chen (10.1016/j.survophthal.2021.06.001_bib0023) 2013; 41 Marks Jr (10.1016/j.survophthal.2021.06.001_bib0097) 2010; 9 10.1016/j.survophthal.2021.06.001_bib0034 Yamashita (10.1016/j.survophthal.2021.06.001_bib0146) 2016; 2016 10.1016/j.survophthal.2021.06.001_bib0033 10.1016/j.survophthal.2021.06.001_bib0154 10.1016/j.survophthal.2021.06.001_bib0036 Shimazawa (10.1016/j.survophthal.2021.06.001_bib0126) 2006; 82 10.1016/j.survophthal.2021.06.001_bib0035 Pawlitzki (10.1016/j.survophthal.2021.06.001_bib0158) 2020; 7 10.1016/j.survophthal.2021.06.001_bib0032 10.1016/j.survophthal.2021.06.001_bib0153 10.1016/j.survophthal.2021.06.001_bib0031 Jindahra (10.1016/j.survophthal.2021.06.001_bib0073) 2009; 132 Beauchamp (10.1016/j.survophthal.2021.06.001_bib0011) 2020; 181 Hains (10.1016/j.survophthal.2021.06.001_bib0058) 2005; 46 Puthenparampil (10.1016/j.survophthal.2021.06.001_bib0159) 2017; 12 Eshtiaghi (10.1016/j.survophthal.2021.06.001_bib0038) 2021; 14 Sotirchos (10.1016/j.survophthal.2021.06.001_bib0131) 2018; 24 Yucel (10.1016/j.survophthal.2021.06.001_bib0152) 2006; 124 Visanji (10.1016/j.survophthal.2021.06.001_bib0140) 2008; 22 10.1016/j.survophthal.2021.06.001_bib0104 10.1016/j.survophthal.2021.06.001_bib0103 Tur (10.1016/j.survophthal.2021.06.001_bib0136) 2016; 139 10.1016/j.survophthal.2021.06.001_bib0106 10.1016/j.survophthal.2021.06.001_bib0105 10.1016/j.survophthal.2021.06.001_bib0067 10.1016/j.survophthal.2021.06.001_bib0069 10.1016/j.survophthal.2021.06.001_bib0102 10.1016/j.survophthal.2021.06.001_bib0101 10.1016/j.survophthal.2021.06.001_bib0062 Kolbe (10.1016/j.survophthal.2021.06.001_bib0086) 2012; 33 Cheung (10.1016/j.survophthal.2021.06.001_bib0025) 2015; 45 Lee (10.1016/j.survophthal.2021.06.001_bib0091) 2014; 29 Patel (10.1016/j.survophthal.2021.06.001_bib0111) 2016; 87 Zikou (10.1016/j.survophthal.2021.06.001_bib0155) 2012; 33 10.1016/j.survophthal.2021.06.001_bib0108 10.1016/j.survophthal.2021.06.001_bib0107 10.1016/j.survophthal.2021.06.001_bib0109 10.1016/j.survophthal.2021.06.001_bib0059 Graham (10.1016/j.survophthal.2021.06.001_bib0053) 2017; 45 10.1016/j.survophthal.2021.06.001_bib0056 10.1016/j.survophthal.2021.06.001_bib0057 Yamagata (10.1016/j.survophthal.2021.06.001_bib0145) 2009; 29 10.1016/j.survophthal.2021.06.001_bib0051 10.1016/j.survophthal.2021.06.001_bib0054 Chan (10.1016/j.survophthal.2021.06.001_bib0019) 2021; 13 WoldeMussie (10.1016/j.survophthal.2021.06.001_bib0142) 2001; 42 Koronyo-Hamaoui (10.1016/j.survophthal.2021.06.001_bib0087) 2020; 143 10.1016/j.survophthal.2021.06.001_bib0050 You (10.1016/j.survophthal.2021.06.001_bib0149) 2019; 142 Cummings (10.1016/j.survophthal.2021.06.001_bib0030) 2016; 8 Frezzotti (10.1016/j.survophthal.2021.06.001_bib0047) 2016; 37 10.1016/j.survophthal.2021.06.001_bib0005 10.1016/j.survophthal.2021.06.001_bib0004 10.1016/j.survophthal.2021.06.001_bib0125 10.1016/j.survophthal.2021.06.001_bib0007 10.1016/j.survophthal.2021.06.001_bib0006 10.1016/j.survophthal.2021.06.001_bib0127 10.1016/j.survophthal.2021.06.001_bib0001 10.1016/j.survophthal.2021.06.001_bib0122 10.1016/j.survophthal.2021.06.001_bib0088 10.1016/j.survophthal.2021.06.001_bib0121 10.1016/j.survophthal.2021.06.001_bib0003 10.1016/j.survophthal.2021.06.001_bib0124 10.1016/j.survophthal.2021.06.001_bib0002 10.1016/j.survophthal.2021.06.001_bib0123 Feke (10.1016/j.survophthal.2021.06.001_bib0042) 2014; 158 10.1016/j.survophthal.2021.06.001_bib0085 10.1016/j.survophthal.2021.06.001_bib0120 Bukalo (10.1016/j.survophthal.2021.06.001_bib0017) 2012 Klistorner (10.1016/j.survophthal.2021.06.001_bib0081) 2013; 80 Fornito (10.1016/j.survophthal.2021.06.001_bib0046) 2015; 16 10.1016/j.survophthal.2021.06.001_bib0080 Lu (10.1016/j.survophthal.2021.06.001_bib0095) 2013; 40 10.1016/j.survophthal.2021.06.001_bib0082 Lim (10.1016/j.survophthal.2021.06.001_bib0094) 2016; 19 Hock (10.1016/j.survophthal.2021.06.001_bib0066) 2003; 10 10.1016/j.survophthal.2021.06.001_bib0008 10.1016/j.survophthal.2021.06.001_bib0129 10.1016/j.survophthal.2021.06.001_bib0115 10.1016/j.survophthal.2021.06.001_bib0114 10.1016/j.survophthal.2021.06.001_bib0117 10.1016/j.survophthal.2021.06.001_bib0116 10.1016/j.survophthal.2021.06.001_bib0078 Chaturvedi (10.1016/j.survophthal.2021.06.001_bib0021) 1993; 116 10.1016/j.survophthal.2021.06.001_bib0077 10.1016/j.survophthal.2021.06.001_bib0110 10.1016/j.survophthal.2021.06.001_bib0113 10.1016/j.survophthal.2021.06.001_bib0079 10.1016/j.survophthal.2021.06.001_bib0074 Bogorodzki (10.1016/j.survophthal.2021.06.001_bib0014) 2014; 9 10.1016/j.survophthal.2021.06.001_bib0075 Lee (10.1016/j.survophthal.2021.06.001_bib0092) 2016; 31 10.1016/j.survophthal.2021.06.001_bib0072 10.1016/j.survophthal.2021.06.001_bib0071 Handley (10.1016/j.survophthal.2021.06.001_bib0157) 2017; 41 Hare (10.1016/j.survophthal.2021.06.001_bib0061) 2004; 45 Yu (10.1016/j.survophthal.2021.06.001_bib0151) 2013; 8 Barcella (10.1016/j.survophthal.2021.06.001_bib0010) 2010; 31 Martin (10.1016/j.survophthal.2021.06.001_bib0098) 2006; 83 10.1016/j.survophthal.2021.06.001_bib0119 Kaushik (10.1016/j.survophthal.2021.06.001_bib0076) 2014; 55 10.1016/j.survophthal.2021.06.001_bib0118 La Morgia (10.1016/j.survophthal.2021.06.001_bib0089) 2017; 8 |
| References_xml | – volume: 139 start-page: 816 year: 2016 end-page: 828 ident: bib0136 article-title: Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis publication-title: Brain – reference: Gabilondo I, Sepúlveda M, Ortiz-Perez S, et al.: Retrograde retinal damage after acute optic tract lesion in MS. 84:824-826, 2013 – start-page: 97 year: 2012 end-page: 128 ident: bib0017 article-title: Synaptic cell adhesion molecules: Synaptic Plasticity – volume: 45 start-page: 62 year: 2017 end-page: 72 ident: bib0053 article-title: Afferent visual pathways in multiple sclerosis: a review publication-title: Clin Exp Ophthalmol – reference: Meier PG, Maeder P, Kardon RH, Borruat F-XJJoN-o: Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. 35:112-116, 2015 – volume: 124 start-page: 217 year: 2006 end-page: 225 ident: bib0152 article-title: Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma publication-title: Arch Ophthalmol – volume: 81 start-page: 249 year: 2014 end-page: 265 ident: bib0064 article-title: CaMKII: claiming center stage in postsynaptic function and organization publication-title: Neuron – volume: 29 start-page: 61 year: 2014 end-page: 67 ident: bib0091 article-title: Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease publication-title: Mov Disord – volume: 2016 year: 2016 ident: bib0146 article-title: Retinal ganglion cell atrophy in homonymous hemianopia due to acquired occipital lesions observed using cirrus high-definition-OCT publication-title: J Ophthalmol – reference: Costello FJISRN: The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. 2013, 2013 – volume: 468 start-page: 223 year: 2010 end-page: 231 ident: bib0037 article-title: Regulation of synaptic connectivity by glia publication-title: Nature – volume: 366 start-page: 2126 year: 2012 end-page: 2128 ident: bib0060 article-title: The spread of neurodegenerative disease publication-title: N Engl J Med – volume: 41 start-page: 43 year: 2013 end-page: 49 ident: bib0023 article-title: Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma publication-title: Clin Exp Ophthalmol – volume: 29 start-page: 7607 year: 2009 end-page: 7618 ident: bib0145 article-title: Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning publication-title: J Neurosci – reference: Jindahra P, Petrie A, Plant GTJB: The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. 135:534-541, 2012 – reference: Ji K, Miyauchi J, Tsirka SEJNp: Microglia: an active player in the regulation of synaptic activity. 2013, 2013 – reference: Xicota Vila L, Rodríguez-Morató J, Dierssen M, Torre Fornell Rdl: Potential Role of (-)-Epigallocatechin-3-Gallate (EGCG) in the secondary prevention of Alzheimer disease. 2017 – reference: Bemben MA, Shipman SL, Nicoll RA, Roche KWJTin: The cellular and molecular landscape of neuroligins. 38:496-505, 2015 – reference: Espinosa JS, Stryker MPJN: Development and plasticity of the primary visual cortex. 75:230-249, 2012 – reference: Fisher JB, Jacobs DA, Markowitz CE, et al.: Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. 113:324-332, 2006 – volume: 33 start-page: 2047 year: 2012 end-page: 2061 ident: bib0086 article-title: Diffusion tensor imaging of the optic radiations after optic neuritis publication-title: Hum Brain Mapp – reference: Mehta JS, Plant GTJAjoo: Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia. 140:727-729, 2005 – reference: Bsteh G, Hegen H, Teuchner B, et al.: Peripapillary retinal nerve fibre layer thinning rate as a biomarker discriminating stable and progressing relapsing–remitting multiple sclerosis. 26:865-871, 2019 – reference: DeSimone CV, Graff-Radford J, El-Harasis MA, et al.: Cerebral amyloid angiopathy: diagnosis, clinical implications, and management strategies in atrial fibrillation. 70:1173-1182, 2017 – reference: Frost B, Jacks RL, Diamond MIJJoBC: Propagation of tau misfolding from the outside to the inside of a cell. 284:12845-12852, 2009 – volume: 19 start-page: 214 year: 2020 end-page: 225 ident: bib0020 article-title: Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial publication-title: Lancet Neurol – volume: 86 start-page: 419 year: 2015 end-page: 424 ident: bib0009 article-title: Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis publication-title: J Neurol Neurosurg Psychiatry – volume: 82 start-page: 427 year: 2006 end-page: 440 ident: bib0126 article-title: Morphometric evaluation of changes with time in optic disc structure and thickness of retinal nerve fibre layer in chronic ocular hypertensive monkeys publication-title: Exp Eye Res – reference: Kaiser PKJTotAOS: Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis). 107:311, 2009 – reference: Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al.: Exogenous induction of cerebral ß-amyloidogenesis is governed by agent and host. 313:1781-1784, 2006 – volume: 26 start-page: 18 year: 2006 end-page: 24 ident: bib0070 article-title: Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease publication-title: J Neuroophthalmol – reference: Chen Z, Wang J, Lin F, et al.: Correlation between lateral geniculate nucleus atrophy and damage to the optic disc in glaucoma. 40:281-287, 2013 – volume: 142 start-page: 426 year: 2019 end-page: 442 ident: bib0149 article-title: Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease publication-title: Brain – reference: La Morgia C, Rizzo G, Tozer KR, et al.: Secondary Post-geniculate Involvement In Leber's Hereditary Optic Neuropathy. 53:4883-4883, 2012 – reference: Klistorner A, Graham E, Yiannikas C, et al.: Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. 24:1392-1398, 2017 – volume: 23 year: 2019 ident: bib0135 article-title: Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage publication-title: Neuroimage Clin – reference: Yamada M, Hashimoto T, Hayashi N, et al.: Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization. 1165:5-14, 2007 – volume: 83 start-page: 1437 year: 2014 end-page: 1441 ident: bib0128 article-title: Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation publication-title: Eur J Radiol – reference: Varoqueaux F, Aramuni G, Rawson RL, et al.: Neuroligins determine synapse maturation and function. 51:741-754, 2006 – volume: 158 start-page: 105 year: 2014 end-page: 112 ident: bib0042 article-title: Effect of brimonidine on retinal vascular autoregulation and short-term visual function in normal tension glaucoma publication-title: American journal of ophthalmology – reference: Onofrj M, Ghilardi M, Basciani M, et al.: Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. 49:1150-1159, 1986 – volume: 45 start-page: 2625 year: 2004 end-page: 2639 ident: bib0061 article-title: Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures publication-title: Invest Ophthalmol Vis Sci – volume: 83 start-page: 255 year: 2006 end-page: 262 ident: bib0098 article-title: Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma publication-title: Exp Eye Res – reference: Osterhout JA, El-Danaf RN, Nguyen PL, Huberman ADJCr: Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. 8:1006-1017, 2014 – reference: Hasegawa M, Nonaka T, Masuda-Suzukake MJP, therapeutics: Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. 172:22-33, 2017 – reference: Schön C, Hoffmann NA, Ochs SM, et al.: Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. 7:e53547, 2012 – reference: Kolasinski J, Stagg CJ, Chance SA, et al.: A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. 135:2938-2951, 2012 – reference: Rizzo G, Tozer KR, Tonon C, et al.: Secondary post-geniculate involvement in Leber's hereditary optic neuropathy. 7:e50230, 2012 – reference: Reich DS, Smith SA, Gordon-Lipkin EM, et al.: Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. 66:998-1006, 2009 – volume: 116 start-page: 182 year: 1993 end-page: 188 ident: bib0021 article-title: Lateral geniculate nucleus in glaucoma publication-title: Am J Ophthalmol – reference: Inzelberg R, Ramirez JA, Nisipeanu P, Ophir AJVr: Retinal nerve fiber layer thinning in Parkinson disease. 44:2793-2797, 2004 – reference: Pueyo V, Martin J, Fernandez J, et al.: Axonal loss in the retinal nerve fiber layer in patients with multiple sclerosis. 14:609-614, 2008 – volume: 18 start-page: 315 year: 2018 end-page: 322 ident: bib0100 article-title: Association between primary open-angle glaucoma and cognitive impairment as measured by the montreal cognitive assessment publication-title: Neurodegener Dis – volume: 87 start-page: 198 year: 2016 end-page: 205 ident: bib0111 article-title: Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system publication-title: Neurology – reference: Petracca M, Cordano C, Cellerino M, et al.: Retinal degeneration in primary-progressive multiple sclerosis: a role for cortical lesions? 23:43-50, 2017 – volume: 32 start-page: 1347 year: 2011 end-page: 1353 ident: bib0156 article-title: Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma publication-title: AJNR Am J Neuroradiol – reference: Stasi K, Nagel D, Yang X, et al.: Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. 47:1024-1029, 2006 – reference: Osterhout JA, Josten N, Yamada J, et al.: Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. 71:632-639, 2011 – reference: den Haan J, Csinscik L, Parker T, et al.: Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease. 11:62, 2019 – volume: 8 start-page: e73208 year: 2013 ident: bib0151 article-title: Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness publication-title: PLoS One – volume: 9 start-page: e93682 year: 2014 ident: bib0014 article-title: Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps publication-title: PLoS One – reference: Hokazono K, Monteiro MLRJAjoocr: Homonymous quadrantic macular ganglion cell complex loss as a sign of trans-synaptic degeneration from occipital lobe lesion. 13:76-79, 2019 – reference: Saidha S, Syc SB, Ibrahim MA, et al.: Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. 134:518-533, 2011 – reference: Gupta N, Ly T, Zhang Q, et al.: Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. 84:176-184, 2007 – reference: Zhang X, Kedar S, Lynn MJ, et al.: Homonymous hemianopia in stroke. 26:180-183, 2006 – reference: Serbecic N, Aboul-Enein F, Beutelspacher SC, et al.: Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations. 5:e13877, 2010 – reference: Ferris III FL, Kassoff A, Bresnick GH, Bailey IJAjoo: New visual acuity charts for clinical research. 94:91-96, 1982 – reference: Sriram P, Wang C, Yiannikas C, et al.: Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients. 9:e102546, 2014 – reference: Abalo-Lojo J, Treus A, Arias M, et al.: Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: a long term 5 year follow-up. 19:124-128, 2018 – reference: Lieven CJ, Hoegger MJ, Schlieve CR, et al.: Retinal ganglion cell axotomy induces an increase in intracellular superoxide anion. 47:1477-1485, 2006 – reference: Moschos MM, Tagaris G, Markopoulos L, et al.: Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. 21:24-29, 2011 – reference: Klistorner A, Arvind H, Garrick R, et al.: Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis. 51:2770-2777, 2010 – volume: 19 start-page: 1073 year: 2016 end-page: 1084 ident: bib0094 article-title: Neural activity promotes long-distance, target-specific regeneration of adult retinal axons publication-title: Nat Neurosci – reference: Weber AJ, Chen H, Hubbard WC, et al.: Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. 41:1370-1379, 2000 – reference: Aubert-Broche B, Fonov V, Ghassemi R, et al.: Regional brain atrophy in children with multiple sclerosis. 58:409-415, 2011 – reference: Debanne D, Inglebert Y, Russier MJCoin: Plasticity of intrinsic neuronal excitability. 54:73-82, 2019 – reference: El-Boustani S, Ip JP, Breton-Provencher V, et al.: Locally coordinated synaptic plasticity of visual cortex neurons in vivo. 360:1349-1354, 2018 – volume: 9 start-page: 1164 year: 2010 end-page: 1172 ident: bib0097 article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial publication-title: Lancet Neurol – volume: 63 start-page: 296 year: 2018 end-page: 306 ident: bib0090 article-title: Glaucoma and the brain: Trans-synaptic degeneration, structural change, and implications for neuroprotection publication-title: Surv Ophthalmol – reference: Habiba U, Merlin S, Lim JK, et al.: Age-specific retinal and cerebral immunodetection of Amyloid-β plaques and oligomers in a rodent model of Alzheimer's disease.1-6, 2020 – volume: 55 start-page: 5770 year: 2014 end-page: 5775 ident: bib0076 article-title: A topographical relationship between visual field defects and optic radiation changes in glaucoma publication-title: Invest Ophthalmol Vis Sci – reference: Raz N, Dotan S, Chokron S, et al.: Demyelination affects temporal aspects of perception: an optic neuritis study. 71:531-538, 2012 – volume: 42 start-page: 2849 year: 2001 end-page: 2855 ident: bib0142 article-title: Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension publication-title: Invest Ophthalmol Vis Sci – volume: 75 start-page: 230 year: 2012 end-page: 249 ident: bib0039 article-title: Development and plasticity of the primary visual cortex publication-title: Neuron – volume: 31 start-page: 1900 year: 2010 end-page: 1906 ident: bib0010 article-title: Evidence for retrochiasmatic tissue loss in Leber's hereditary optic neuropathy publication-title: Hum Brain Mapp – volume: 14 year: 2021 ident: bib0038 article-title: Rapid homonymous hemi-macular atrophy of the optical coherence tomography ganglion cell complex after stroke publication-title: BMJ Case Rep – volume: 7 year: 2020 ident: bib0158 article-title: MS optic neuritis-induced long-term structural changes within the visual pathway publication-title: Neurol Neuroimmunol Neuroinflamm – reference: Archibald NK, Clarke MP, Mosimann UP, Burn DJJB: The retina in Parkinson's disease. 132:1128-1145, 2009 – volume: 8 start-page: 1 year: 2016 end-page: 9 ident: bib0030 article-title: Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer's disease publication-title: Alzheimers Res Ther – reference: Rocca MA, Mesaros S, Preziosa P, et al.: Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. 19:1610-1617, 2013 – reference: Yücel YH, Zhang Q, Weinreb RN, et al.: Atrophy of relay neurons in magno-and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. 42:3216-3222, 2001 – reference: Park H-YL, Park YG, Cho A-H, Park CKJO: Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. 120:1292-1299, 2013 – volume: 90 start-page: 674 year: 2006 end-page: 678 ident: bib0055 article-title: Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex publication-title: Br J Ophthalmol – reference: Ngoo QZ, Wan Hitam WH, Ab Razak AJJoO: Evaluation of retinal nerve fiber layer thickness, electroretinogram and visual evoked potential in patients with Alzheimer's disease. 2019, 2019 – reference: Pellegrini F, Interlandi E, Pichi F, Lee AGJN-O: Retrogeniculate lesion of the visual pathways: retinal optical coherence tomography angiography shows evidence of transsynaptic retrograde degeneration. 44:114-117, 2020 – reference: Grimaldi A, Brighi C, Peruzzi G, et al.: Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse model. 9:1-10, 2018 – volume: 24 start-page: 701 year: 2018 end-page: 703 ident: bib0131 article-title: OCT is an alternative to MRI for monitoring MS - YES publication-title: Mult Scler – volume: 26 start-page: 3754 year: 2019 end-page: 3763 ident: bib0096 article-title: Neurodegenerative process linking the eye and the brain publication-title: Curr Med Chem – reference: Silva J-P, Lelianova VG, Ermolyuk YS, et al.: Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. 108:12113-12118, 2011 – volume: 82 start-page: 2165 year: 2014 end-page: 2172 ident: bib0083 article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions publication-title: Neurology – reference: Crawford ML, Harwerth RS, Smith EL, et al.: Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. 42:358-364, 2001 – reference: Asanad S, Ross-Cisneros FN, Nassisi M, et al.: The retina in Alzheimer's disease: histomorphometric analysis of an ophthalmologic biomarker. 60:1491-1500, 2019 – reference: Audoin B, Fernando KT, Swanton JK, et al.: Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. 129:1031-1039, 2006 – volume: 31 start-page: 547 year: 2016 end-page: 554 ident: bib0092 article-title: Lateral geniculate atrophy in Parkinson's with visual hallucination: a trans-synaptic degeneration? publication-title: Mov Disord – reference: Balk L, Twisk J, Steenwijk M, et al.: A dam for retrograde axonal degeneration in multiple sclerosis? 85:782-789, 2014 – volume: 45 start-page: 45 year: 2015 end-page: 56 ident: bib0025 article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease publication-title: J Alzheimers Dis – volume: 37 start-page: 4581 year: 2016 end-page: 4596 ident: bib0047 article-title: Early changes of brain connectivity in primary open angle glaucoma publication-title: Hum Brain Mapp – reference: Dean C, Scholl FG, Choih J, et al.: Neurexin mediates the assembly of presynaptic terminals. 6:708-716, 2003 – volume: 40 start-page: 89 year: 2013 end-page: 93 ident: bib0095 article-title: Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics publication-title: J Neuroradiol – volume: 33 start-page: 128 year: 2012 end-page: 134 ident: bib0155 article-title: Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study publication-title: AJNR Am J Neuroradiol – volume: 41 start-page: 103 year: 2017 end-page: 107 ident: bib0157 article-title: Trans-synaptic retrograde degeneration following hemispherectomy in childhood publication-title: Neuroophthalmology – volume: 9 start-page: 1057 year: 2015 end-page: 1064 ident: bib0065 article-title: Retrograde degeneration of retinal ganglion cells in homonymous hemianopsia publication-title: Clin Ophthalmol – reference: Benson DL, Huntley GWJCoin: Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. 22:397-404, 2012 – reference: Brandt AU, Martinez-Lapiscina EH, Nolan R, Saidha SJCtoin: Monitoring the course of MS with optical coherence tomography. 19:15, 2017 – volume: 16 start-page: 159 year: 2015 end-page: 172 ident: bib0046 article-title: The connectomics of brain disorders publication-title: Nat Rev Neurosci – reference: Venugopalan P, Wang Y, Nguyen T, et al.: Transplanted neurons integrate into adult retinas and respond to light. 7:1-9, 2016 – reference: You Y, Graham EC, Shen T, et al.: Progressive inner nuclear layer dysfunction in non-optic neuritis eyes in MS. 5, 2018 – reference: Petzold A, Balcer LJ, Calabresi PA, et al.: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. 16:797-812, 2017 – volume: 52 start-page: 6911 year: 2011 end-page: 6918 ident: bib0150 article-title: Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis publication-title: Invest Ophthalmol Vis Sci – reference: Kihira S, Arnold AC, Pawha PS, et al.: Trans-synaptic degeneration of the optic radiation from optic nerve atrophy. 16:855-857, 2021 – volume: 143 start-page: 336 year: 2020 end-page: 358 ident: bib0087 article-title: Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease publication-title: Brain – reference: Vickers J, Hof P, Schumer R, et al.: Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma. 25:239-243, 1997 – volume: 132 start-page: 628 year: 2009 end-page: 634 ident: bib0073 article-title: Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography publication-title: Brain – reference: Rajanala AP, Shariati MA, Liao YJ: Long distance retrograde degeneration of the retino-geniculo-cortical pathway in homonymous hemianopia. 2019 – volume: 22 start-page: 2488 year: 2008 end-page: 2497 ident: bib0140 article-title: PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease publication-title: The FASEB Journal – reference: Altintaş Ö, Işeri P, Özkan B, Çağlar YJDO: Correlation between retinal morphological and functional findings and clinical severity in Parkinson's disease. 116:137-146, 2008 – volume: 157 start-page: 470 year: 2014 end-page: 478 ident: bib0052 article-title: Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration publication-title: Am J Ophthalmol – reference: You Y, Graham SLJO: Bilateral optic atrophy from a silent occipital lesion. 126:979, 2019 – reference: Al-Louzi O, Button J, Newsome SD, et al.: Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: a case series. 23:1035-1039, 2017 – volume: 10 start-page: 1 year: 2003 end-page: 6 ident: bib0066 article-title: Treatment with the selective muscarinic ml agonist talsaclidine decreases cerebrospinal fluid levels of Aβ42 in patients with Alzheimer's disease publication-title: Amyloid – volume: 181 year: 2020 ident: bib0011 article-title: Dynamic stimulation of visual cortex produces form vision in sighted and blind humans publication-title: Cell – reference: Fernando Maya-Vetencourt J, Origlia NJNp: Visual cortex plasticity: a complex interplay of genetic and environmental influences. 2012 – reference: Micieli JA, Blanch RJ, Narayana KJN: Teaching NeuroImages: evolving trans-synaptic degeneration of retinal ganglion cells after occipital lobe stroke. 90:e2179-e2180, 2018 – reference: Keller J, Sánchez-Dalmau BF, Villoslada PJPO: Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. 9:e97444, 2014 – reference: Hajee ME, March WF, Lazzaro DR, et al.: Inner retinal layer thinning in Parkinson disease. 127:737-741, 2009 – volume: 60 start-page: 3803 year: 2019 end-page: 3812 ident: bib0063 article-title: Fixel-based analysis of visual pathway white matter in primary open-angle glaucoma publication-title: Invest Ophthalmol Vis Sci – reference: Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, et al.: Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. 75:98-107, 2014 – reference: Evangelou N, Konz D, Esiri M, et al.: Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. 124:1813-1820, 2001 – volume: 13 start-page: 21 year: 2021 end-page: 28 ident: bib0019 article-title: Glaucoma as neurodegeneration in the brain publication-title: Eye Brain – reference: Kirbas S, Turkyilmaz K, Anlar O, et al.: Retinal nerve fiber layer thickness in patients with Alzheimer disease. 33:58-61, 2013 – volume: 8 start-page: 162 year: 2017 ident: bib0089 article-title: Retinal ganglion cells and circadian rhythms in Alzheimer's disease, Parkinson's disease, and beyond publication-title: Front Neurol – reference: Jenkins T, Ciccarelli O, Atzori M, et al.: Early pericalcarine atrophy in acute optic neuritis is associated with conversion to multiple sclerosis. 82:1017-1021, 2011 – reference: Matsushita T, Madireddy L, Sprenger T, et al.: Genetic associations with brain cortical thickness in multiple sclerosis. 14:217-227, 2015 – reference: Dejanovic B, Huntley MA, De Mazière A, et al.: Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. 100:1322-1336. e1327, 2018 – reference: Gallo V, Deneen BJN: Glial development: the crossroads of regeneration and repair in the CNS. 83:283-308, 2014 – reference: Sriram P, Graham SL, Wang C, et al.: Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. 53:1271-1275, 2012 – volume: 2011 year: 2011 ident: bib0068 article-title: Cortical plasticity during motor learning and recovery after ischemic stroke publication-title: Neural Plast – volume: 80 start-page: 242 year: 2013 end-page: 245 ident: bib0081 article-title: Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential publication-title: Neurology – reference: Schneider CL, Prentiss EK, Busza A, et al.: Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. 286:20182733, 2019 – reference: Crawford ML, Harwerth RS, Smith EL, et al.: Glaucoma in primates: cytochrome oxidase reactivity in parvo-and magnocellular pathways. 41:1791-1802, 2000 – reference: Sinnecker T, Oberwahrenbrock T, Metz I, et al.: Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning–an ultrahigh-field MR pilot study. 25:122-131, 2015 – reference: Siddiqui TJ, Craig AMJCoin: Synaptic organizing complexes. 21:132-143, 2011 – volume: 12 year: 2017 ident: bib0159 article-title: Trans-synaptic degeneration in the optic pathway. A study in clinically isolated syndrome and early relapsing-remitting multiple sclerosis with or without optic neuritis publication-title: PLoS One – reference: Crair MC, Mason CAJJoN: Reconnecting eye to brain. 36:10707-10722, 2016 – volume: 112 start-page: 542 year: 2020 end-page: 552 ident: bib0018 article-title: Neuroplasticity in adult human visual cortex publication-title: Neurosci Biobehav Rev. – volume: 46 start-page: 4164 year: 2005 end-page: 4169 ident: bib0058 article-title: Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 10 start-page: 1 year: 2003 ident: 10.1016/j.survophthal.2021.06.001_bib0066 article-title: Treatment with the selective muscarinic ml agonist talsaclidine decreases cerebrospinal fluid levels of Aβ42 in patients with Alzheimer's disease publication-title: Amyloid doi: 10.3109/13506120308995249 – ident: 10.1016/j.survophthal.2021.06.001_bib0108 doi: 10.1016/j.celrep.2014.06.063 – ident: 10.1016/j.survophthal.2021.06.001_bib0043 doi: 10.1155/2012/631965 – ident: 10.1016/j.survophthal.2021.06.001_bib0040 doi: 10.1016/j.neuron.2012.06.009 – volume: 9 start-page: 1164 year: 2010 ident: 10.1016/j.survophthal.2021.06.001_bib0097 article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70254-4 – volume: 86 start-page: 419 year: 2015 ident: 10.1016/j.survophthal.2021.06.001_bib0009 article-title: Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2014-308189 – volume: 31 start-page: 547 year: 2016 ident: 10.1016/j.survophthal.2021.06.001_bib0092 article-title: Lateral geniculate atrophy in Parkinson's with visual hallucination: a trans-synaptic degeneration? publication-title: Mov Disord doi: 10.1002/mds.26533 – volume: 40 start-page: 89 year: 2013 ident: 10.1016/j.survophthal.2021.06.001_bib0095 article-title: Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics publication-title: J Neuroradiol doi: 10.1016/j.neurad.2012.04.001 – volume: 82 start-page: 2165 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0083 article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions publication-title: Neurology doi: 10.1212/WNL.0000000000000522 – ident: 10.1016/j.survophthal.2021.06.001_bib0107 doi: 10.1136/jnnp.49.10.1150 – ident: 10.1016/j.survophthal.2021.06.001_bib0132 doi: 10.1167/iovs.11-8732 – ident: 10.1016/j.survophthal.2021.06.001_bib0117 doi: 10.1101/750208 – ident: 10.1016/j.survophthal.2021.06.001_bib0071 doi: 10.1136/jnnp.2010.239715 – volume: 18 start-page: 315 year: 2018 ident: 10.1016/j.survophthal.2021.06.001_bib0100 article-title: Association between primary open-angle glaucoma and cognitive impairment as measured by the montreal cognitive assessment publication-title: Neurodegener Dis doi: 10.1159/000496233 – ident: 10.1016/j.survophthal.2021.06.001_bib0069 doi: 10.1016/j.visres.2004.06.009 – ident: 10.1016/j.survophthal.2021.06.001_bib0080 doi: 10.1167/iovs.09-4577 – volume: 139 start-page: 816 year: 2016 ident: 10.1016/j.survophthal.2021.06.001_bib0136 article-title: Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis publication-title: Brain doi: 10.1093/brain/awv396 – volume: 8 start-page: e73208 year: 2013 ident: 10.1016/j.survophthal.2021.06.001_bib0151 article-title: Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness publication-title: PLoS One doi: 10.1371/journal.pone.0073208 – ident: 10.1016/j.survophthal.2021.06.001_bib0027 doi: 10.1523/JNEUROSCI.1711-16.2016 – volume: 158 start-page: 105 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0042 article-title: Effect of brimonidine on retinal vascular autoregulation and short-term visual function in normal tension glaucoma publication-title: American journal of ophthalmology doi: 10.1016/j.ajo.2014.03.015 – ident: 10.1016/j.survophthal.2021.06.001_bib0088 – ident: 10.1016/j.survophthal.2021.06.001_bib0116 doi: 10.1177/1352458507087326 – volume: 45 start-page: 2625 year: 2004 ident: 10.1016/j.survophthal.2021.06.001_bib0061 article-title: Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.03-0566 – ident: 10.1016/j.survophthal.2021.06.001_bib0032 doi: 10.1016/j.conb.2018.09.001 – volume: 33 start-page: 2047 year: 2012 ident: 10.1016/j.survophthal.2021.06.001_bib0086 article-title: Diffusion tensor imaging of the optic radiations after optic neuritis publication-title: Hum Brain Mapp doi: 10.1002/hbm.21343 – volume: 12 year: 2017 ident: 10.1016/j.survophthal.2021.06.001_bib0159 article-title: Trans-synaptic degeneration in the optic pathway. A study in clinically isolated syndrome and early relapsing-remitting multiple sclerosis with or without optic neuritis publication-title: PLoS One doi: 10.1371/journal.pone.0183957 – ident: 10.1016/j.survophthal.2021.06.001_bib0045 doi: 10.1016/j.ophtha.2005.10.040 – ident: 10.1016/j.survophthal.2021.06.001_bib0137 doi: 10.1016/j.neuron.2006.09.003 – volume: 116 start-page: 182 year: 1993 ident: 10.1016/j.survophthal.2021.06.001_bib0021 article-title: Lateral geniculate nucleus in glaucoma publication-title: Am J Ophthalmol doi: 10.1016/S0002-9394(14)71283-8 – volume: 60 start-page: 3803 year: 2019 ident: 10.1016/j.survophthal.2021.06.001_bib0063 article-title: Fixel-based analysis of visual pathway white matter in primary open-angle glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.19-27447 – ident: 10.1016/j.survophthal.2021.06.001_bib0134 doi: 10.1167/iovs.05-0830 – volume: 41 start-page: 103 year: 2017 ident: 10.1016/j.survophthal.2021.06.001_bib0157 article-title: Trans-synaptic retrograde degeneration following hemispherectomy in childhood publication-title: Neuroophthalmology doi: 10.1080/01658107.2016.1276935 – volume: 468 start-page: 223 year: 2010 ident: 10.1016/j.survophthal.2021.06.001_bib0037 article-title: Regulation of synaptic connectivity by glia publication-title: Nature doi: 10.1038/nature09612 – ident: 10.1016/j.survophthal.2021.06.001_bib0056 doi: 10.1016/j.exer.2006.09.013 – ident: 10.1016/j.survophthal.2021.06.001_bib0122 doi: 10.1093/brain/awq346 – ident: 10.1016/j.survophthal.2021.06.001_bib0077 doi: 10.1371/journal.pone.0097444 – ident: 10.1016/j.survophthal.2021.06.001_bib0133 doi: 10.1371/journal.pone.0102546 – volume: 19 start-page: 214 year: 2020 ident: 10.1016/j.survophthal.2021.06.001_bib0020 article-title: Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial publication-title: Lancet Neurol doi: 10.1016/S1474-4422(19)30485-5 – volume: 52 start-page: 6911 year: 2011 ident: 10.1016/j.survophthal.2021.06.001_bib0150 article-title: Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-7434 – ident: 10.1016/j.survophthal.2021.06.001_bib0016 doi: 10.1111/ene.13897 – ident: 10.1016/j.survophthal.2021.06.001_bib0049 doi: 10.1002/ana.24030 – ident: 10.1016/j.survophthal.2021.06.001_bib0085 doi: 10.1093/brain/aws242 – volume: 112 start-page: 542 year: 2020 ident: 10.1016/j.survophthal.2021.06.001_bib0018 article-title: Neuroplasticity in adult human visual cortex publication-title: Neurosci Biobehav Rev. doi: 10.1016/j.neubiorev.2020.02.028 – ident: 10.1016/j.survophthal.2021.06.001_bib0015 doi: 10.1007/s11940-017-0452-7 – ident: 10.1016/j.survophthal.2021.06.001_bib0035 doi: 10.1016/j.jacc.2017.07.724 – volume: 9 start-page: e93682 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0014 article-title: Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps publication-title: PLoS One doi: 10.1371/journal.pone.0093682 – ident: 10.1016/j.survophthal.2021.06.001_bib0036 doi: 10.1126/science.aao0862 – volume: 46 start-page: 4164 year: 2005 ident: 10.1016/j.survophthal.2021.06.001_bib0058 article-title: Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.05-0618 – volume: 2011 year: 2011 ident: 10.1016/j.survophthal.2021.06.001_bib0068 article-title: Cortical plasticity during motor learning and recovery after ischemic stroke publication-title: Neural Plast doi: 10.1155/2011/871296 – volume: 90 start-page: 674 year: 2006 ident: 10.1016/j.survophthal.2021.06.001_bib0055 article-title: Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex publication-title: Br J Ophthalmol doi: 10.1136/bjo.2005.086769 – ident: 10.1016/j.survophthal.2021.06.001_bib0105 doi: 10.5301/EJO.2010.1318 – ident: 10.1016/j.survophthal.2021.06.001_bib0099 doi: 10.1111/gbb.12190 – ident: 10.1016/j.survophthal.2021.06.001_bib0026 doi: 10.1155/2013/134858 – ident: 10.1016/j.survophthal.2021.06.001_bib0057 doi: 10.3233/JAD-191346 – ident: 10.1016/j.survophthal.2021.06.001_bib0144 doi: 10.1016/j.brainres.2007.04.062 – ident: 10.1016/j.survophthal.2021.06.001_bib0003 doi: 10.1007/s10633-007-9091-8 – volume: 55 start-page: 5770 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0076 article-title: A topographical relationship between visual field defects and optic radiation changes in glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.14-14733 – ident: 10.1016/j.survophthal.2021.06.001_bib0115 – ident: 10.1016/j.survophthal.2021.06.001_bib0002 doi: 10.1177/1352458516679035 – ident: 10.1016/j.survophthal.2021.06.001_bib0075 – ident: 10.1016/j.survophthal.2021.06.001_bib0048 doi: 10.1074/jbc.M808759200 – volume: 45 start-page: 45 year: 2015 ident: 10.1016/j.survophthal.2021.06.001_bib0025 article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-141659 – ident: 10.1016/j.survophthal.2021.06.001_bib0062 doi: 10.1016/j.pharmthera.2016.11.010 – ident: 10.1016/j.survophthal.2021.06.001_bib0024 doi: 10.1016/j.neurad.2012.10.004 – volume: 83 start-page: 255 year: 2006 ident: 10.1016/j.survophthal.2021.06.001_bib0098 article-title: Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma publication-title: Exp Eye Res doi: 10.1016/j.exer.2005.11.025 – volume: 63 start-page: 296 year: 2018 ident: 10.1016/j.survophthal.2021.06.001_bib0090 article-title: Glaucoma and the brain: Trans-synaptic degeneration, structural change, and implications for neuroprotection publication-title: Surv Ophthalmol doi: 10.1016/j.survophthal.2017.09.010 – ident: 10.1016/j.survophthal.2021.06.001_bib0013 doi: 10.1016/j.conb.2011.09.011 – ident: 10.1016/j.survophthal.2021.06.001_bib0034 doi: 10.1186/s13195-019-0516-x – ident: 10.1016/j.survophthal.2021.06.001_bib0104 doi: 10.1212/WNL.0000000000005686 – volume: 7 year: 2020 ident: 10.1016/j.survophthal.2021.06.001_bib0158 article-title: MS optic neuritis-induced long-term structural changes within the visual pathway publication-title: Neurol Neuroimmunol Neuroinflamm doi: 10.1212/NXI.0000000000000665 – ident: 10.1016/j.survophthal.2021.06.001_bib0093 doi: 10.1167/iovs.05-0921 – volume: 26 start-page: 3754 year: 2019 ident: 10.1016/j.survophthal.2021.06.001_bib0096 article-title: Neurodegenerative process linking the eye and the brain publication-title: Curr Med Chem doi: 10.2174/0929867325666180307114332 – volume: 87 start-page: 198 year: 2016 ident: 10.1016/j.survophthal.2021.06.001_bib0111 article-title: Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system publication-title: Neurology doi: 10.1212/WNL.0000000000002841 – ident: 10.1016/j.survophthal.2021.06.001_bib0141 – volume: 19 start-page: 1073 year: 2016 ident: 10.1016/j.survophthal.2021.06.001_bib0094 article-title: Neural activity promotes long-distance, target-specific regeneration of adult retinal axons publication-title: Nat Neurosci doi: 10.1038/nn.4340 – volume: 24 start-page: 701 year: 2018 ident: 10.1016/j.survophthal.2021.06.001_bib0131 article-title: OCT is an alternative to MRI for monitoring MS - YES publication-title: Mult Scler doi: 10.1177/1352458517753722 – ident: 10.1016/j.survophthal.2021.06.001_bib0110 doi: 10.1016/j.ophtha.2012.11.021 – ident: 10.1016/j.survophthal.2021.06.001_bib0148 doi: 10.1016/j.ophtha.2019.04.002 – volume: 42 start-page: 2849 year: 2001 ident: 10.1016/j.survophthal.2021.06.001_bib0142 article-title: Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension publication-title: Invest Ophthalmol Vis Sci – volume: 29 start-page: 61 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0091 article-title: Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease publication-title: Mov Disord doi: 10.1002/mds.25543 – ident: 10.1016/j.survophthal.2021.06.001_bib0138 doi: 10.1038/ncomms10472 – volume: 82 start-page: 427 year: 2006 ident: 10.1016/j.survophthal.2021.06.001_bib0126 article-title: Morphometric evaluation of changes with time in optic disc structure and thickness of retinal nerve fibre layer in chronic ocular hypertensive monkeys publication-title: Exp Eye Res doi: 10.1016/j.exer.2005.08.001 – ident: 10.1016/j.survophthal.2021.06.001_bib0005 doi: 10.1167/iovs.18-25966 – ident: 10.1016/j.survophthal.2021.06.001_bib0033 doi: 10.1016/j.neuron.2018.10.014 – ident: 10.1016/j.survophthal.2021.06.001_bib0147 doi: 10.1212/NXI.0000000000000427 – ident: 10.1016/j.survophthal.2021.06.001_bib0031 doi: 10.1038/nn1074 – volume: 143 start-page: 336 year: 2020 ident: 10.1016/j.survophthal.2021.06.001_bib0087 article-title: Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease publication-title: Brain doi: 10.1093/brain/awz364 – ident: 10.1016/j.survophthal.2021.06.001_bib0054 doi: 10.1038/s41419-018-0740-5 – ident: 10.1016/j.survophthal.2021.06.001_bib0082 doi: 10.1111/ene.13404 – volume: 142 start-page: 426 year: 2019 ident: 10.1016/j.survophthal.2021.06.001_bib0149 article-title: Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease publication-title: Brain doi: 10.1093/brain/awy338 – volume: 23 year: 2019 ident: 10.1016/j.survophthal.2021.06.001_bib0135 article-title: Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2019.101826 – volume: 45 start-page: 62 year: 2017 ident: 10.1016/j.survophthal.2021.06.001_bib0053 article-title: Afferent visual pathways in multiple sclerosis: a review publication-title: Clin Exp Ophthalmol doi: 10.1111/ceo.12751 – ident: 10.1016/j.survophthal.2021.06.001_bib0106 doi: 10.1155/2019/6248185 – ident: 10.1016/j.survophthal.2021.06.001_bib0120 doi: 10.1371/journal.pone.0050230 – ident: 10.1016/j.survophthal.2021.06.001_bib0074 doi: 10.1093/brain/awr324 – volume: 366 start-page: 2126 year: 2012 ident: 10.1016/j.survophthal.2021.06.001_bib0060 article-title: The spread of neurodegenerative disease publication-title: N Engl J Med doi: 10.1056/NEJMcibr1202401 – ident: 10.1016/j.survophthal.2021.06.001_bib0109 doi: 10.1016/j.neuron.2011.07.006 – ident: 10.1016/j.survophthal.2021.06.001_bib0012 doi: 10.1016/j.tins.2015.06.004 – ident: 10.1016/j.survophthal.2021.06.001_bib0130 doi: 10.1007/s00330-014-3358-8 – ident: 10.1016/j.survophthal.2021.06.001_bib0067 doi: 10.1016/j.ajoc.2018.09.011 – volume: 124 start-page: 217 year: 2006 ident: 10.1016/j.survophthal.2021.06.001_bib0152 article-title: Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archopht.124.2.217 – volume: 9 start-page: 1057 year: 2015 ident: 10.1016/j.survophthal.2021.06.001_bib0065 article-title: Retrograde degeneration of retinal ganglion cells in homonymous hemianopsia publication-title: Clin Ophthalmol doi: 10.2147/OPTH.S81749 – ident: 10.1016/j.survophthal.2021.06.001_bib0004 doi: 10.1093/brain/awp068 – ident: 10.1016/j.survophthal.2021.06.001_bib0129 doi: 10.1073/pnas.1019434108 – ident: 10.1016/j.survophthal.2021.06.001_bib0123 doi: 10.1098/rspb.2018.2733 – ident: 10.1016/j.survophthal.2021.06.001_bib0143 doi: 10.2174/1389450116666150825113655 – ident: 10.1016/j.survophthal.2021.06.001_bib0050 doi: 10.1136/jnnp-2012-304854 – ident: 10.1016/j.survophthal.2021.06.001_bib0028 – volume: 16 start-page: 159 year: 2015 ident: 10.1016/j.survophthal.2021.06.001_bib0046 article-title: The connectomics of brain disorders publication-title: Nat Rev Neurosci doi: 10.1038/nrn3901 – ident: 10.1016/j.survophthal.2021.06.001_bib0154 doi: 10.1097/01.wno.0000235587.41040.39 – volume: 8 start-page: 1 year: 2016 ident: 10.1016/j.survophthal.2021.06.001_bib0030 article-title: Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer's disease publication-title: Alzheimers Res Ther doi: 10.1186/s13195-016-0173-2 – ident: 10.1016/j.survophthal.2021.06.001_bib0139 doi: 10.1111/j.1442-9071.1997.tb01400.x – volume: 32 start-page: 1347 year: 2011 ident: 10.1016/j.survophthal.2021.06.001_bib0156 article-title: Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2486 – volume: 26 start-page: 18 year: 2006 ident: 10.1016/j.survophthal.2021.06.001_bib0070 article-title: Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease publication-title: J Neuroophthalmol doi: 10.1097/01.wno.0000204645.56873.26 – volume: 33 start-page: 128 year: 2012 ident: 10.1016/j.survophthal.2021.06.001_bib0155 article-title: Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2714 – ident: 10.1016/j.survophthal.2021.06.001_bib0102 doi: 10.1097/WNO.0000000000000182 – ident: 10.1016/j.survophthal.2021.06.001_bib0103 doi: 10.1126/science.1131864 – ident: 10.1016/j.survophthal.2021.06.001_bib0125 doi: 10.1371/journal.pone.0013877 – ident: 10.1016/j.survophthal.2021.06.001_bib0044 doi: 10.1016/0002-9394(82)90197-0 – ident: 10.1016/j.survophthal.2021.06.001_bib0008 doi: 10.1136/jnnp-2013-306902 – start-page: 97 year: 2012 ident: 10.1016/j.survophthal.2021.06.001_bib0017 – ident: 10.1016/j.survophthal.2021.06.001_bib0072 doi: 10.1155/2013/627325 – ident: 10.1016/j.survophthal.2021.06.001_bib0119 doi: 10.1001/archneurol.2009.107 – ident: 10.1016/j.survophthal.2021.06.001_bib0114 doi: 10.1177/1352458516637679 – ident: 10.1016/j.survophthal.2021.06.001_bib0127 doi: 10.1016/j.conb.2010.08.016 – volume: 41 start-page: 43 year: 2013 ident: 10.1016/j.survophthal.2021.06.001_bib0023 article-title: Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma publication-title: Clin Exp Ophthalmol doi: 10.1111/j.1442-9071.2012.02832.x – volume: 132 start-page: 628 year: 2009 ident: 10.1016/j.survophthal.2021.06.001_bib0073 article-title: Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography publication-title: Brain doi: 10.1093/brain/awp001 – volume: 83 start-page: 1437 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0128 article-title: Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2014.05.014 – ident: 10.1016/j.survophthal.2021.06.001_bib0001 doi: 10.1016/j.msard.2017.11.017 – ident: 10.1016/j.survophthal.2021.06.001_bib0079 doi: 10.1097/WNO.0b013e318267fd5f – ident: 10.1016/j.survophthal.2021.06.001_bib0153 – ident: 10.1016/j.survophthal.2021.06.001_bib0118 doi: 10.1002/ana.22692 – volume: 29 start-page: 7607 year: 2009 ident: 10.1016/j.survophthal.2021.06.001_bib0145 article-title: Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0707-09.2009 – ident: 10.1016/j.survophthal.2021.06.001_bib0029 – volume: 81 start-page: 249 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0064 article-title: CaMKII: claiming center stage in postsynaptic function and organization publication-title: Neuron doi: 10.1016/j.neuron.2013.12.024 – ident: 10.1016/j.survophthal.2021.06.001_bib0078 doi: 10.1016/j.radcr.2021.01.017 – volume: 8 start-page: 162 year: 2017 ident: 10.1016/j.survophthal.2021.06.001_bib0089 article-title: Retinal ganglion cells and circadian rhythms in Alzheimer's disease, Parkinson's disease, and beyond publication-title: Front Neurol doi: 10.3389/fneur.2017.00162 – volume: 14 year: 2021 ident: 10.1016/j.survophthal.2021.06.001_bib0038 article-title: Rapid homonymous hemi-macular atrophy of the optical coherence tomography ganglion cell complex after stroke publication-title: BMJ Case Rep doi: 10.1136/bcr-2021-241967 – ident: 10.1016/j.survophthal.2021.06.001_bib0007 doi: 10.1093/brain/awl039 – ident: 10.1016/j.survophthal.2021.06.001_bib0121 doi: 10.1177/1352458513485146 – volume: 181 year: 2020 ident: 10.1016/j.survophthal.2021.06.001_bib0011 article-title: Dynamic stimulation of visual cortex produces form vision in sighted and blind humans publication-title: Cell doi: 10.1016/j.cell.2020.04.033 – ident: 10.1016/j.survophthal.2021.06.001_bib0101 doi: 10.1016/j.ajo.2005.03.059 – volume: 75 start-page: 230 year: 2012 ident: 10.1016/j.survophthal.2021.06.001_bib0039 article-title: Development and plasticity of the primary visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2012.06.009 – volume: 80 start-page: 242 year: 2013 ident: 10.1016/j.survophthal.2021.06.001_bib0081 article-title: Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential publication-title: Neurology doi: 10.1212/WNL.0b013e31827deb39 – volume: 13 start-page: 21 year: 2021 ident: 10.1016/j.survophthal.2021.06.001_bib0019 article-title: Glaucoma as neurodegeneration in the brain publication-title: Eye Brain doi: 10.2147/EB.S293765 – ident: 10.1016/j.survophthal.2021.06.001_bib0051 doi: 10.1016/j.neuron.2014.06.010 – volume: 31 start-page: 1900 year: 2010 ident: 10.1016/j.survophthal.2021.06.001_bib0010 article-title: Evidence for retrochiasmatic tissue loss in Leber's hereditary optic neuropathy publication-title: Hum Brain Mapp doi: 10.1002/hbm.20985 – ident: 10.1016/j.survophthal.2021.06.001_bib0041 doi: 10.1093/brain/124.9.1813 – ident: 10.1016/j.survophthal.2021.06.001_bib0113 doi: 10.1080/01658107.2019.1617748 – volume: 22 start-page: 2488 year: 2008 ident: 10.1016/j.survophthal.2021.06.001_bib0140 article-title: PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease publication-title: The FASEB Journal doi: 10.1096/fj.07-095398 – volume: 37 start-page: 4581 year: 2016 ident: 10.1016/j.survophthal.2021.06.001_bib0047 article-title: Early changes of brain connectivity in primary open angle glaucoma publication-title: Hum Brain Mapp doi: 10.1002/hbm.23330 – volume: 157 start-page: 470 year: 2014 ident: 10.1016/j.survophthal.2021.06.001_bib0052 article-title: Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2013.09.028 – ident: 10.1016/j.survophthal.2021.06.001_bib0124 doi: 10.1371/journal.pone.0053547 – ident: 10.1016/j.survophthal.2021.06.001_bib0006 doi: 10.1016/j.neuroimage.2011.03.025 – ident: 10.1016/j.survophthal.2021.06.001_bib0059 doi: 10.1001/archophthalmol.2009.106 – volume: 2016 year: 2016 ident: 10.1016/j.survophthal.2021.06.001_bib0146 article-title: Retinal ganglion cell atrophy in homonymous hemianopia due to acquired occipital lesions observed using cirrus high-definition-OCT publication-title: J Ophthalmol doi: 10.1155/2016/2394957 |
| SSID | ssj0004397 |
| Score | 2.5032656 |
| SecondaryResourceType | review_article |
| Snippet | There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 411 |
| SubjectTerms | anterograde axonal loss bidirectional trans-synaptic degeneration Humans Neurodegenerative Diseases - complications Neurodegenerative Diseases - pathology neurodegenerative disorders Retinal Ganglion Cells - pathology retrograde Retrograde Degeneration - pathology synapse dysfunction Synapses - pathology Trans-synaptic degeneration visual pathway Visual Pathways - pathology |
| Title | Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0039625721001387 https://dx.doi.org/10.1016/j.survophthal.2021.06.001 https://www.ncbi.nlm.nih.gov/pubmed/34146577 https://www.proquest.com/docview/2543444019 |
| Volume | 67 |
| WOSCitedRecordID | wos000760878200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3304 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004397 issn: 0039-6257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6lKaq4INYSlmoqIS7UVe1OPOOKS4VSAQoBqSnKzRrbY-IodYydmPIz-Hn8G94sXtoSKRy4WMnI42Xe5_fevBWhV6HLHU-mKHvcJbBB6TOLg15suTwWNhcs7oeqa8mQjkZsMvG-dDq_q1yYck7TlF1dedl_JTWMAbFl6uw_kLu-KAzAbyA6HIHscNyM8FL6WMXPlGeyGGskvqnK0u2gxjIpVAYWaH8_uCr5JGt0qEohwHZD3VBCLr48Y6GMH3VSi8qDq9Ipkxvx6Ko6ZnPHUkgHkKruWbS14PNVXgrl2oeLL6d8fnnNuH-uymlre_VlnkTTpAlCSJby9VQnYkBxVTfceAR0qHgx5Sl_81Wl7TSG2oKXPOcznmXawyXU37bRA_bLddSX4dOMepY0xWgx9pcxw9x1rw8DYqfFqYnm8bckiDZmzEB05aVZg0N4AvtQe60asVmFCow--2cXw6E_HkzGr7PvlmxoJh3_prvLFtp2aN9jXbR9-mEw-dgk7R7rzj_VU--g_Sb4cM3d1ylP6zZHSkka30f3zO4Gn2pUPkAdkT5EO59M_MYj9Os6OHEbnDhJMYATa3BiA84TrKGJ29A8wDeAeYCB2riCJW7DUl72FixxDcvH6OJsMH733jJNQawQNPulFbkC1AsmGIkDHtDYZX3niHu2Q0ngxAGl3IlADFHBmRsSFoJAYm4QAdMRIcie-PgJ6qaLVDxF2AZFILaPosAmglDKZDHGPhdRZLtBDCysh1i12n5oKubLxi1zvwqNnPktQvmSUL4OE-0hp56a6bIxm0w6qUjqVysGktwHaG4y-W092SjPWinedPp-hSEfBIz0GvJULFaFL6tlEEJgK9hDuxpc9SuBCkxcWOxnG8x-ju42X_IL1F3mK_ES3QnLZVLke2iLTtie-Ub-AFNbCsA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trans-synaptic+degeneration+in+the+visual+pathway%3A+Neural+connectivity%2C+pathophysiology%2C+and+clinical+implications+in+neurodegenerative+disorders&rft.jtitle=Survey+of+ophthalmology&rft.au=Sharma%2C+Samridhi&rft.au=Chitranshi%2C+Nitin&rft.au=Wall%2C+Roshana+Vander&rft.au=Basavarajappa%2C+Devaraj&rft.date=2022-03-01&rft.issn=1879-3304&rft.eissn=1879-3304&rft.volume=67&rft.issue=2&rft.spage=411&rft_id=info:doi/10.1016%2Fj.survophthal.2021.06.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-6257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-6257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-6257&client=summon |