Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders

There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Survey of ophthalmology Jg. 67; H. 2; S. 411 - 426
Hauptverfasser: Sharma, Samridhi, Chitranshi, Nitin, Wall, Roshana Vander, Basavarajappa, Devaraj, Gupta, Vivek, Mirzaei, Mehdi, Graham, Stuart L, Klistorner, Alexander, You, Yuyi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.03.2022
Schlagworte:
ISSN:0039-6257, 1879-3304, 1879-3304
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target. [Display omitted]
AbstractList There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.
There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.
There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target. [Display omitted]
Author Sharma, Samridhi
Mirzaei, Mehdi
Chitranshi, Nitin
You, Yuyi
Basavarajappa, Devaraj
Wall, Roshana Vander
Klistorner, Alexander
Gupta, Vivek
Graham, Stuart L
Author_xml – sequence: 1
  givenname: Samridhi
  orcidid: 0000-0002-1167-6511
  surname: Sharma
  fullname: Sharma, Samridhi
  email: samridhi.sharma@mq.edu.au
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 2
  givenname: Nitin
  orcidid: 0000-0002-6508-9865
  surname: Chitranshi
  fullname: Chitranshi, Nitin
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 3
  givenname: Roshana Vander
  surname: Wall
  fullname: Wall, Roshana Vander
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 4
  givenname: Devaraj
  surname: Basavarajappa
  fullname: Basavarajappa, Devaraj
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 5
  givenname: Vivek
  surname: Gupta
  fullname: Gupta, Vivek
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 6
  givenname: Mehdi
  surname: Mirzaei
  fullname: Mirzaei, Mehdi
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 7
  givenname: Stuart L
  surname: Graham
  fullname: Graham, Stuart L
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 8
  givenname: Alexander
  surname: Klistorner
  fullname: Klistorner, Alexander
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
– sequence: 9
  givenname: Yuyi
  surname: You
  fullname: You, Yuyi
  email: yuyi.you@mq.edu.au
  organization: Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34146577$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFV0DhxoEEO3HihAuqVrQgVXApZ8uxJ10vXjvYTqo8Bm-Mt9sVqKc9eez55xvP_BfozDoLCL0juCCYNB-3RZj87MZN3AhTlLgkBW4KjMkLtCIt6_KqwvQMrTCuurwpa3aOLkLYYoxp1bFX6LyihDY1Yyv0584LG_KwWDFGLTMF92DBi6idzbTN4gayWYdJmGwUcfMglk_Zd5h8uktnLcioZx2XD4_Z9KMlaGfcfXoQVmXSaKtl0urdaFKwp4Y91iaE-9drhkzp4LwCH16jl4MwAd48nZfo5_WXu_XX_PbHzbf11W0uaVXHXDUAPWmhpUMvejY0bV1i0ZGS0b4cesZEqdLkDETbSNpK1rK26VU71CBZR4fqEr0_cEfvfk8QIt_pIMEYYcFNgZc1rSilmHRJ-vZJOvU7UHz0eif8wo9rTILPB4H0LgQPA5c6Pk4bvdCGE8z3xvEt_884vjeO44Yn4xKhe0Y4Njmldn2ohbSuWYPnQWqwEpT2ySCunD6JcvWMcnTvFywnMv4ClZbW6A
CitedBy_id crossref_primary_10_1186_s12888_024_06100_8
crossref_primary_10_1016_j_ajo_2022_03_019
crossref_primary_10_3390_jcm13216585
crossref_primary_10_1016_j_jocn_2025_111492
crossref_primary_10_1371_journal_pone_0298006
crossref_primary_10_1016_j_neuroscience_2024_08_030
crossref_primary_10_1093_schbul_sbae102
crossref_primary_10_3390_brainsci15090934
crossref_primary_10_1097_WNR_0000000000002178
crossref_primary_10_1089_neu_2023_0574
crossref_primary_10_3389_fneur_2025_1598510
crossref_primary_10_1016_j_seizure_2025_07_010
crossref_primary_10_1136_bmjophth_2024_001902
crossref_primary_10_1080_01658107_2025_2456039
crossref_primary_10_1097_WNR_0000000000002190
crossref_primary_10_1016_j_autrev_2024_103667
crossref_primary_10_1007_s00415_023_11709_y
crossref_primary_10_1186_s40478_023_01575_0
crossref_primary_10_4103_NRR_NRR_D_24_00394
crossref_primary_10_1111_ceo_14341
crossref_primary_10_3390_brainsci14101030
crossref_primary_10_4103_NRR_NRR_D_23_01907
crossref_primary_10_1016_j_preteyeres_2022_101092
crossref_primary_10_3389_fnins_2021_813044
crossref_primary_10_1002_jmri_28352
crossref_primary_10_1111_aos_17461
crossref_primary_10_3390_ijms25084287
crossref_primary_10_1080_00207454_2025_2520029
crossref_primary_10_1016_j_survophthal_2025_01_002
crossref_primary_10_1097_WNO_0000000000002228
Cites_doi 10.3109/13506120308995249
10.1016/j.celrep.2014.06.063
10.1155/2012/631965
10.1016/j.neuron.2012.06.009
10.1016/S1474-4422(10)70254-4
10.1136/jnnp-2014-308189
10.1002/mds.26533
10.1016/j.neurad.2012.04.001
10.1212/WNL.0000000000000522
10.1136/jnnp.49.10.1150
10.1167/iovs.11-8732
10.1101/750208
10.1136/jnnp.2010.239715
10.1159/000496233
10.1016/j.visres.2004.06.009
10.1167/iovs.09-4577
10.1093/brain/awv396
10.1371/journal.pone.0073208
10.1523/JNEUROSCI.1711-16.2016
10.1016/j.ajo.2014.03.015
10.1177/1352458507087326
10.1167/iovs.03-0566
10.1016/j.conb.2018.09.001
10.1002/hbm.21343
10.1371/journal.pone.0183957
10.1016/j.ophtha.2005.10.040
10.1016/j.neuron.2006.09.003
10.1016/S0002-9394(14)71283-8
10.1167/iovs.19-27447
10.1167/iovs.05-0830
10.1080/01658107.2016.1276935
10.1038/nature09612
10.1016/j.exer.2006.09.013
10.1093/brain/awq346
10.1371/journal.pone.0097444
10.1371/journal.pone.0102546
10.1016/S1474-4422(19)30485-5
10.1167/iovs.11-7434
10.1111/ene.13897
10.1002/ana.24030
10.1093/brain/aws242
10.1016/j.neubiorev.2020.02.028
10.1007/s11940-017-0452-7
10.1016/j.jacc.2017.07.724
10.1371/journal.pone.0093682
10.1126/science.aao0862
10.1167/iovs.05-0618
10.1155/2011/871296
10.1136/bjo.2005.086769
10.5301/EJO.2010.1318
10.1111/gbb.12190
10.1155/2013/134858
10.3233/JAD-191346
10.1016/j.brainres.2007.04.062
10.1007/s10633-007-9091-8
10.1167/iovs.14-14733
10.1177/1352458516679035
10.1074/jbc.M808759200
10.3233/JAD-141659
10.1016/j.pharmthera.2016.11.010
10.1016/j.neurad.2012.10.004
10.1016/j.exer.2005.11.025
10.1016/j.survophthal.2017.09.010
10.1016/j.conb.2011.09.011
10.1186/s13195-019-0516-x
10.1212/WNL.0000000000005686
10.1212/NXI.0000000000000665
10.1167/iovs.05-0921
10.2174/0929867325666180307114332
10.1212/WNL.0000000000002841
10.1038/nn.4340
10.1177/1352458517753722
10.1016/j.ophtha.2012.11.021
10.1016/j.ophtha.2019.04.002
10.1002/mds.25543
10.1038/ncomms10472
10.1016/j.exer.2005.08.001
10.1167/iovs.18-25966
10.1016/j.neuron.2018.10.014
10.1212/NXI.0000000000000427
10.1038/nn1074
10.1093/brain/awz364
10.1038/s41419-018-0740-5
10.1111/ene.13404
10.1093/brain/awy338
10.1016/j.nicl.2019.101826
10.1111/ceo.12751
10.1155/2019/6248185
10.1371/journal.pone.0050230
10.1093/brain/awr324
10.1056/NEJMcibr1202401
10.1016/j.neuron.2011.07.006
10.1016/j.tins.2015.06.004
10.1007/s00330-014-3358-8
10.1016/j.ajoc.2018.09.011
10.1001/archopht.124.2.217
10.2147/OPTH.S81749
10.1093/brain/awp068
10.1073/pnas.1019434108
10.1098/rspb.2018.2733
10.2174/1389450116666150825113655
10.1136/jnnp-2012-304854
10.1038/nrn3901
10.1097/01.wno.0000235587.41040.39
10.1186/s13195-016-0173-2
10.1111/j.1442-9071.1997.tb01400.x
10.3174/ajnr.A2486
10.1097/01.wno.0000204645.56873.26
10.3174/ajnr.A2714
10.1097/WNO.0000000000000182
10.1126/science.1131864
10.1371/journal.pone.0013877
10.1016/0002-9394(82)90197-0
10.1136/jnnp-2013-306902
10.1155/2013/627325
10.1001/archneurol.2009.107
10.1177/1352458516637679
10.1016/j.conb.2010.08.016
10.1111/j.1442-9071.2012.02832.x
10.1093/brain/awp001
10.1016/j.ejrad.2014.05.014
10.1016/j.msard.2017.11.017
10.1097/WNO.0b013e318267fd5f
10.1002/ana.22692
10.1523/JNEUROSCI.0707-09.2009
10.1016/j.neuron.2013.12.024
10.1016/j.radcr.2021.01.017
10.3389/fneur.2017.00162
10.1136/bcr-2021-241967
10.1093/brain/awl039
10.1177/1352458513485146
10.1016/j.cell.2020.04.033
10.1016/j.ajo.2005.03.059
10.1212/WNL.0b013e31827deb39
10.2147/EB.S293765
10.1016/j.neuron.2014.06.010
10.1002/hbm.20985
10.1093/brain/124.9.1813
10.1080/01658107.2019.1617748
10.1096/fj.07-095398
10.1002/hbm.23330
10.1016/j.ajo.2013.09.028
10.1371/journal.pone.0053547
10.1016/j.neuroimage.2011.03.025
10.1001/archophthalmol.2009.106
10.1155/2016/2394957
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.survophthal.2021.06.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-3304
EndPage 426
ExternalDocumentID 34146577
10_1016_j_survophthal_2021_06_001
S0039625721001387
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ2
M29
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
T5K
UV1
WH7
WUQ
X7M
XPP
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
RIG
ZA5
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c435t-d6eeb18e84fbab7f68520a91274b2fb77a2d2577ea86c48c78786bd8f5ec794f3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760878200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0039-6257
1879-3304
IngestDate Thu Oct 02 19:20:31 EDT 2025
Wed Feb 19 02:27:11 EST 2025
Sat Nov 29 07:26:39 EST 2025
Tue Nov 18 21:01:45 EST 2025
Fri Feb 23 02:40:31 EST 2024
Tue Oct 14 19:30:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Trans-synaptic degeneration
retrograde
bidirectional trans-synaptic degeneration
neurodegenerative disorders
anterograde
visual pathway
axonal loss
synapse dysfunction
Language English
License Copyright © 2021. Published by Elsevier Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-d6eeb18e84fbab7f68520a91274b2fb77a2d2577ea86c48c78786bd8f5ec794f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1167-6511
0000-0002-6508-9865
PMID 34146577
PQID 2543444019
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2543444019
pubmed_primary_34146577
crossref_citationtrail_10_1016_j_survophthal_2021_06_001
crossref_primary_10_1016_j_survophthal_2021_06_001
elsevier_sciencedirect_doi_10_1016_j_survophthal_2021_06_001
elsevier_clinicalkey_doi_10_1016_j_survophthal_2021_06_001
PublicationCentury 2000
PublicationDate March-April 2022
2022-03-00
2022 Mar-Apr
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March-April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Survey of ophthalmology
PublicationTitleAlternate Surv Ophthalmol
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Balk, Steenwijk, Tewarie (bib0009) 2015; 86
Herro, Lam (bib0065) 2015; 9
Fisher JB, Jacobs DA, Markowitz CE, et al.: Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. 113:324-332, 2006
Hains, Waxman (bib0058) 2005; 46
Patel, Ramsey, Metcalf (bib0111) 2016; 87
Martin, Quigley, Valenta (bib0098) 2006; 83
Petracca M, Cordano C, Cellerino M, et al.: Retinal degeneration in primary-progressive multiple sclerosis: a role for cortical lesions? 23:43-50, 2017
Lim, Stafford, Nguyen (bib0094) 2016; 19
Raz N, Dotan S, Chokron S, et al.: Demyelination affects temporal aspects of perception: an optic neuritis study. 71:531-538, 2012
Bukalo, Dityatev (bib0017) 2012
Debanne D, Inglebert Y, Russier MJCoin: Plasticity of intrinsic neuronal excitability. 54:73-82, 2019
Hasegawa M, Nonaka T, Masuda-Suzukake MJP, therapeutics: Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. 172:22-33, 2017
Pellegrini F, Interlandi E, Pichi F, Lee AGJN-O: Retrogeniculate lesion of the visual pathways: retinal optical coherence tomography angiography shows evidence of transsynaptic retrograde degeneration. 44:114-117, 2020
Audoin B, Fernando KT, Swanton JK, et al.: Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. 129:1031-1039, 2006
Iseri, Altinas, Tokay, Yuksel (bib0070) 2006; 26
Kolbe, Bajraszewski, Chapman (bib0086) 2012; 33
den Haan J, Csinscik L, Parker T, et al.: Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease. 11:62, 2019
Klistorner A, Graham E, Yiannikas C, et al.: Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. 24:1392-1398, 2017
Siddiqui TJ, Craig AMJCoin: Synaptic organizing complexes. 21:132-143, 2011
Dejanovic B, Huntley MA, De Mazière A, et al.: Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. 100:1322-1336. e1327, 2018
Costello FJISRN: The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. 2013, 2013
Garcia-Martin, Larrosa, Polo (bib0052) 2014; 157
Rajanala AP, Shariati MA, Liao YJ: Long distance retrograde degeneration of the retino-geniculo-cortical pathway in homonymous hemianopia. 2019
Balk L, Twisk J, Steenwijk M, et al.: A dam for retrograde axonal degeneration in multiple sclerosis? 85:782-789, 2014
Xicota Vila L, Rodríguez-Morató J, Dierssen M, Torre Fornell Rdl: Potential Role of (-)-Epigallocatechin-3-Gallate (EGCG) in the secondary prevention of Alzheimer disease. 2017
Ferris III FL, Kassoff A, Bresnick GH, Bailey IJAjoo: New visual acuity charts for clinical research. 94:91-96, 1982
Frezzotti, Giorgio, Toto (bib0047) 2016; 37
Rocca MA, Mesaros S, Preziosa P, et al.: Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. 19:1610-1617, 2013
Shimazawa, Tomita, Taniguchi (bib0126) 2006; 82
Beauchamp, Oswalt, Sun (bib0011) 2020; 181
Rizzo G, Tozer KR, Tonon C, et al.: Secondary post-geniculate involvement in Leber's hereditary optic neuropathy. 7:e50230, 2012
Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, et al.: Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. 75:98-107, 2014
Hokazono K, Monteiro MLRJAjoocr: Homonymous quadrantic macular ganglion cell complex loss as a sign of trans-synaptic degeneration from occipital lobe lesion. 13:76-79, 2019
Jenkins T, Ciccarelli O, Atzori M, et al.: Early pericalcarine atrophy in acute optic neuritis is associated with conversion to multiple sclerosis. 82:1017-1021, 2011
Gupta N, Ly T, Zhang Q, et al.: Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. 84:176-184, 2007
Bogorodzki, Piatkowska-Janko, Szaflik (bib0014) 2014; 9
Grimaldi A, Brighi C, Peruzzi G, et al.: Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse model. 9:1-10, 2018
You, Klistorner, Thie, Graham (bib0150) 2011; 52
Stasi K, Nagel D, Yang X, et al.: Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. 47:1024-1029, 2006
Park H-YL, Park YG, Cho A-H, Park CKJO: Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. 120:1292-1299, 2013
Chataway, De Angelis, Connick (bib0020) 2020; 19
Yamashita, Miki, Goto (bib0146) 2016; 2016
Crawford ML, Harwerth RS, Smith EL, et al.: Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. 42:358-364, 2001
Moschos MM, Tagaris G, Markopoulos L, et al.: Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. 21:24-29, 2011
Brandt AU, Martinez-Lapiscina EH, Nolan R, Saidha SJCtoin: Monitoring the course of MS with optical coherence tomography. 19:15, 2017
La Morgia C, Rizzo G, Tozer KR, et al.: Secondary Post-geniculate Involvement In Leber's Hereditary Optic Neuropathy. 53:4883-4883, 2012
Inzelberg R, Ramirez JA, Nisipeanu P, Ophir AJVr: Retinal nerve fiber layer thinning in Parkinson disease. 44:2793-2797, 2004
Mehta JS, Plant GTJAjoo: Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia. 140:727-729, 2005
Yamagata, Kobayashi, Umeda (bib0145) 2009; 29
Kaiser PKJTotAOS: Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis). 107:311, 2009
DeSimone CV, Graff-Radford J, El-Harasis MA, et al.: Cerebral amyloid angiopathy: diagnosis, clinical implications, and management strategies in atrial fibrillation. 70:1173-1182, 2017
Graham, Klistorner (bib0053) 2017; 45
Espinosa, Stryker (bib0039) 2012; 75
Frost B, Jacks RL, Diamond MIJJoBC: Propagation of tau misfolding from the outside to the inside of a cell. 284:12845-12852, 2009
Klistorner, Sriram, Vootakuru (bib0083) 2014; 82
Chen, Lin, Wang (bib0023) 2013; 41
Al-Louzi O, Button J, Newsome SD, et al.: Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: a case series. 23:1035-1039, 2017
Onofrj M, Ghilardi M, Basciani M, et al.: Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. 49:1150-1159, 1986
Evangelou N, Konz D, Esiri M, et al.: Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. 124:1813-1820, 2001
You, Joseph, Wang (bib0149) 2019; 142
Lee, Yoon, Lee (bib0092) 2016; 31
Eshtiaghi, Micieli (bib0038) 2021; 14
Yucel, Gupta, Zhang (bib0152) 2006; 124
Bemben MA, Shipman SL, Nicoll RA, Roche KWJTin: The cellular and molecular landscape of neuroligins. 38:496-505, 2015
Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al.: Exogenous induction of cerebral ß-amyloidogenesis is governed by agent and host. 313:1781-1784, 2006
Tur, Goodkin, Altmann (bib0136) 2016; 139
Kaushik, Graham, Wang, Klistorner (bib0076) 2014; 55
Visanji, Orsi, Johnston (bib0140) 2008; 22
Keller J, Sánchez-Dalmau BF, Villoslada PJPO: Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. 9:e97444, 2014
Lawlor, Danesh-Meyer, Levin (bib0090) 2018; 63
Yu, Xie, Yin (bib0151) 2013; 8
Matsushita T, Madireddy L, Sprenger T, et al.: Genetic associations with brain cortical thickness in multiple sclerosis. 14:217-227, 2015
Osterhout JA, El-Danaf RN, Nguyen PL, Huberman ADJCr: Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. 8:1006-1017, 2014
Schneider CL, Prentiss EK, Busza A, et al.: Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. 286:20182733, 2019
Hosp, Luft (bib0068) 2011; 2011
McCoskey, Addis, Goodyear (bib0100) 2018; 18
Crawford ML, Harwerth RS, Smith EL, et al.: Glaucoma in primates: cytochrome oxidase reactivity in parvo-and magnocellular pathways. 41:1791-1802, 2000
Fornito, Zalesky, Breakspear (bib0046) 2015; 16
Hardy, Revesz (bib0060) 2012; 366
Yücel YH, Zhang Q, Weinreb RN, et al.: Atrophy of relay neurons in magno-and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. 42:3216-3222, 2001
Hell (bib0064) 2014; 81
Abalo-Lojo J, Treus A, Arias M, et al.: Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: a long term 5 year follow-up. 19:124-128, 2018
Sidek, Ramli, Rahmat (bib0128) 2014; 83
Chaturvedi, Hedley-Whyte, Dreyer (bib0021) 1993; 116
Mancino, Cesareo, Martucci (bib0096) 2019; 26
Yamada M, Hashimoto T, Hayashi N, et al.: Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization. 1165:5-14, 2007
Sotirchos, Saidha (bib0131) 2018; 24
Zhang X, Kedar S, Lynn MJ, et al.: Homonymous hemianopia in stroke. 26:180-183, 2006
Asanad S, Ross-Cisneros FN, Nassisi M, et al.: The retina in Alzheimer's disease: histomorphometric analysis of an ophthalmologic biomarker. 60:1491-1500, 2019
Ji K, Miyauchi J, Tsirka SEJNp: Microglia: an active player in the regulation of synaptic activity. 2013, 2013
El-Boustani S, Ip JP, Breton-Provencher V, et al.: Locally coordinated synaptic plasticity of visual cortex neurons in vivo. 360:1349-1354, 2018
Gabilondo I, Sepúlveda M, Ortiz-Perez S, et al.: Retrograde retinal damage after acute optic tract lesion in MS. 84:824-826, 2013
Chen Z, Wang J, Lin F, et al.: Correlation between lateral geniculate nucleus atrophy and damage to the optic disc in glaucoma. 40:281-287, 2013
Meier PG, Maeder P, Kardon RH, Borruat F-XJJoN-o: Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. 35:112-116, 2015
Reich DS, Smith SA, Gordon-Lipkin EM, et al.: Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual di
10.1016/j.survophthal.2021.06.001_bib0027
10.1016/j.survophthal.2021.06.001_bib0148
10.1016/j.survophthal.2021.06.001_bib0026
10.1016/j.survophthal.2021.06.001_bib0147
10.1016/j.survophthal.2021.06.001_bib0029
10.1016/j.survophthal.2021.06.001_bib0028
10.1016/j.survophthal.2021.06.001_bib0144
10.1016/j.survophthal.2021.06.001_bib0143
10.1016/j.survophthal.2021.06.001_bib0024
Hell (10.1016/j.survophthal.2021.06.001_bib0064) 2014; 81
Chataway (10.1016/j.survophthal.2021.06.001_bib0020) 2020; 19
Klistorner (10.1016/j.survophthal.2021.06.001_bib0083) 2014; 82
Balk (10.1016/j.survophthal.2021.06.001_bib0009) 2015; 86
10.1016/j.survophthal.2021.06.001_bib0141
You (10.1016/j.survophthal.2021.06.001_bib0150) 2011; 52
Castaldi (10.1016/j.survophthal.2021.06.001_bib0018) 2020; 112
Iseri (10.1016/j.survophthal.2021.06.001_bib0070) 2006; 26
Dai (10.1016/j.survophthal.2021.06.001_bib0156) 2011; 32
Mancino (10.1016/j.survophthal.2021.06.001_bib0096) 2019; 26
Hardy (10.1016/j.survophthal.2021.06.001_bib0060) 2012; 366
10.1016/j.survophthal.2021.06.001_bib0016
10.1016/j.survophthal.2021.06.001_bib0137
10.1016/j.survophthal.2021.06.001_bib0015
10.1016/j.survophthal.2021.06.001_bib0139
10.1016/j.survophthal.2021.06.001_bib0138
10.1016/j.survophthal.2021.06.001_bib0012
10.1016/j.survophthal.2021.06.001_bib0133
10.1016/j.survophthal.2021.06.001_bib0099
10.1016/j.survophthal.2021.06.001_bib0132
10.1016/j.survophthal.2021.06.001_bib0013
10.1016/j.survophthal.2021.06.001_bib0134
McCoskey (10.1016/j.survophthal.2021.06.001_bib0100) 2018; 18
10.1016/j.survophthal.2021.06.001_bib0130
10.1016/j.survophthal.2021.06.001_bib0093
Haykal (10.1016/j.survophthal.2021.06.001_bib0063) 2019; 60
Hosp (10.1016/j.survophthal.2021.06.001_bib0068) 2011; 2011
Lawlor (10.1016/j.survophthal.2021.06.001_bib0090) 2018; 63
Garcia-Martin (10.1016/j.survophthal.2021.06.001_bib0052) 2014; 157
10.1016/j.survophthal.2021.06.001_bib0049
10.1016/j.survophthal.2021.06.001_bib0048
Gupta (10.1016/j.survophthal.2021.06.001_bib0055) 2006; 90
Espinosa (10.1016/j.survophthal.2021.06.001_bib0039) 2012; 75
10.1016/j.survophthal.2021.06.001_bib0045
10.1016/j.survophthal.2021.06.001_bib0044
10.1016/j.survophthal.2021.06.001_bib0041
10.1016/j.survophthal.2021.06.001_bib0040
10.1016/j.survophthal.2021.06.001_bib0043
Sidek (10.1016/j.survophthal.2021.06.001_bib0128) 2014; 83
Eroglu (10.1016/j.survophthal.2021.06.001_bib0037) 2010; 468
Takemura (10.1016/j.survophthal.2021.06.001_bib0135) 2019; 23
Herro (10.1016/j.survophthal.2021.06.001_bib0065) 2015; 9
Chen (10.1016/j.survophthal.2021.06.001_bib0023) 2013; 41
Marks Jr (10.1016/j.survophthal.2021.06.001_bib0097) 2010; 9
10.1016/j.survophthal.2021.06.001_bib0034
Yamashita (10.1016/j.survophthal.2021.06.001_bib0146) 2016; 2016
10.1016/j.survophthal.2021.06.001_bib0033
10.1016/j.survophthal.2021.06.001_bib0154
10.1016/j.survophthal.2021.06.001_bib0036
Shimazawa (10.1016/j.survophthal.2021.06.001_bib0126) 2006; 82
10.1016/j.survophthal.2021.06.001_bib0035
Pawlitzki (10.1016/j.survophthal.2021.06.001_bib0158) 2020; 7
10.1016/j.survophthal.2021.06.001_bib0032
10.1016/j.survophthal.2021.06.001_bib0153
10.1016/j.survophthal.2021.06.001_bib0031
Jindahra (10.1016/j.survophthal.2021.06.001_bib0073) 2009; 132
Beauchamp (10.1016/j.survophthal.2021.06.001_bib0011) 2020; 181
Hains (10.1016/j.survophthal.2021.06.001_bib0058) 2005; 46
Puthenparampil (10.1016/j.survophthal.2021.06.001_bib0159) 2017; 12
Eshtiaghi (10.1016/j.survophthal.2021.06.001_bib0038) 2021; 14
Sotirchos (10.1016/j.survophthal.2021.06.001_bib0131) 2018; 24
Yucel (10.1016/j.survophthal.2021.06.001_bib0152) 2006; 124
Visanji (10.1016/j.survophthal.2021.06.001_bib0140) 2008; 22
10.1016/j.survophthal.2021.06.001_bib0104
10.1016/j.survophthal.2021.06.001_bib0103
Tur (10.1016/j.survophthal.2021.06.001_bib0136) 2016; 139
10.1016/j.survophthal.2021.06.001_bib0106
10.1016/j.survophthal.2021.06.001_bib0105
10.1016/j.survophthal.2021.06.001_bib0067
10.1016/j.survophthal.2021.06.001_bib0069
10.1016/j.survophthal.2021.06.001_bib0102
10.1016/j.survophthal.2021.06.001_bib0101
10.1016/j.survophthal.2021.06.001_bib0062
Kolbe (10.1016/j.survophthal.2021.06.001_bib0086) 2012; 33
Cheung (10.1016/j.survophthal.2021.06.001_bib0025) 2015; 45
Lee (10.1016/j.survophthal.2021.06.001_bib0091) 2014; 29
Patel (10.1016/j.survophthal.2021.06.001_bib0111) 2016; 87
Zikou (10.1016/j.survophthal.2021.06.001_bib0155) 2012; 33
10.1016/j.survophthal.2021.06.001_bib0108
10.1016/j.survophthal.2021.06.001_bib0107
10.1016/j.survophthal.2021.06.001_bib0109
10.1016/j.survophthal.2021.06.001_bib0059
Graham (10.1016/j.survophthal.2021.06.001_bib0053) 2017; 45
10.1016/j.survophthal.2021.06.001_bib0056
10.1016/j.survophthal.2021.06.001_bib0057
Yamagata (10.1016/j.survophthal.2021.06.001_bib0145) 2009; 29
10.1016/j.survophthal.2021.06.001_bib0051
10.1016/j.survophthal.2021.06.001_bib0054
Chan (10.1016/j.survophthal.2021.06.001_bib0019) 2021; 13
WoldeMussie (10.1016/j.survophthal.2021.06.001_bib0142) 2001; 42
Koronyo-Hamaoui (10.1016/j.survophthal.2021.06.001_bib0087) 2020; 143
10.1016/j.survophthal.2021.06.001_bib0050
You (10.1016/j.survophthal.2021.06.001_bib0149) 2019; 142
Cummings (10.1016/j.survophthal.2021.06.001_bib0030) 2016; 8
Frezzotti (10.1016/j.survophthal.2021.06.001_bib0047) 2016; 37
10.1016/j.survophthal.2021.06.001_bib0005
10.1016/j.survophthal.2021.06.001_bib0004
10.1016/j.survophthal.2021.06.001_bib0125
10.1016/j.survophthal.2021.06.001_bib0007
10.1016/j.survophthal.2021.06.001_bib0006
10.1016/j.survophthal.2021.06.001_bib0127
10.1016/j.survophthal.2021.06.001_bib0001
10.1016/j.survophthal.2021.06.001_bib0122
10.1016/j.survophthal.2021.06.001_bib0088
10.1016/j.survophthal.2021.06.001_bib0121
10.1016/j.survophthal.2021.06.001_bib0003
10.1016/j.survophthal.2021.06.001_bib0124
10.1016/j.survophthal.2021.06.001_bib0002
10.1016/j.survophthal.2021.06.001_bib0123
Feke (10.1016/j.survophthal.2021.06.001_bib0042) 2014; 158
10.1016/j.survophthal.2021.06.001_bib0085
10.1016/j.survophthal.2021.06.001_bib0120
Bukalo (10.1016/j.survophthal.2021.06.001_bib0017) 2012
Klistorner (10.1016/j.survophthal.2021.06.001_bib0081) 2013; 80
Fornito (10.1016/j.survophthal.2021.06.001_bib0046) 2015; 16
10.1016/j.survophthal.2021.06.001_bib0080
Lu (10.1016/j.survophthal.2021.06.001_bib0095) 2013; 40
10.1016/j.survophthal.2021.06.001_bib0082
Lim (10.1016/j.survophthal.2021.06.001_bib0094) 2016; 19
Hock (10.1016/j.survophthal.2021.06.001_bib0066) 2003; 10
10.1016/j.survophthal.2021.06.001_bib0008
10.1016/j.survophthal.2021.06.001_bib0129
10.1016/j.survophthal.2021.06.001_bib0115
10.1016/j.survophthal.2021.06.001_bib0114
10.1016/j.survophthal.2021.06.001_bib0117
10.1016/j.survophthal.2021.06.001_bib0116
10.1016/j.survophthal.2021.06.001_bib0078
Chaturvedi (10.1016/j.survophthal.2021.06.001_bib0021) 1993; 116
10.1016/j.survophthal.2021.06.001_bib0077
10.1016/j.survophthal.2021.06.001_bib0110
10.1016/j.survophthal.2021.06.001_bib0113
10.1016/j.survophthal.2021.06.001_bib0079
10.1016/j.survophthal.2021.06.001_bib0074
Bogorodzki (10.1016/j.survophthal.2021.06.001_bib0014) 2014; 9
10.1016/j.survophthal.2021.06.001_bib0075
Lee (10.1016/j.survophthal.2021.06.001_bib0092) 2016; 31
10.1016/j.survophthal.2021.06.001_bib0072
10.1016/j.survophthal.2021.06.001_bib0071
Handley (10.1016/j.survophthal.2021.06.001_bib0157) 2017; 41
Hare (10.1016/j.survophthal.2021.06.001_bib0061) 2004; 45
Yu (10.1016/j.survophthal.2021.06.001_bib0151) 2013; 8
Barcella (10.1016/j.survophthal.2021.06.001_bib0010) 2010; 31
Martin (10.1016/j.survophthal.2021.06.001_bib0098) 2006; 83
10.1016/j.survophthal.2021.06.001_bib0119
Kaushik (10.1016/j.survophthal.2021.06.001_bib0076) 2014; 55
10.1016/j.survophthal.2021.06.001_bib0118
La Morgia (10.1016/j.survophthal.2021.06.001_bib0089) 2017; 8
References_xml – volume: 139
  start-page: 816
  year: 2016
  end-page: 828
  ident: bib0136
  article-title: Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis
  publication-title: Brain
– reference: Gabilondo I, Sepúlveda M, Ortiz-Perez S, et al.: Retrograde retinal damage after acute optic tract lesion in MS. 84:824-826, 2013
– start-page: 97
  year: 2012
  end-page: 128
  ident: bib0017
  article-title: Synaptic cell adhesion molecules: Synaptic Plasticity
– volume: 45
  start-page: 62
  year: 2017
  end-page: 72
  ident: bib0053
  article-title: Afferent visual pathways in multiple sclerosis: a review
  publication-title: Clin Exp Ophthalmol
– reference: Meier PG, Maeder P, Kardon RH, Borruat F-XJJoN-o: Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. 35:112-116, 2015
– volume: 124
  start-page: 217
  year: 2006
  end-page: 225
  ident: bib0152
  article-title: Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma
  publication-title: Arch Ophthalmol
– volume: 81
  start-page: 249
  year: 2014
  end-page: 265
  ident: bib0064
  article-title: CaMKII: claiming center stage in postsynaptic function and organization
  publication-title: Neuron
– volume: 29
  start-page: 61
  year: 2014
  end-page: 67
  ident: bib0091
  article-title: Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease
  publication-title: Mov Disord
– volume: 2016
  year: 2016
  ident: bib0146
  article-title: Retinal ganglion cell atrophy in homonymous hemianopia due to acquired occipital lesions observed using cirrus high-definition-OCT
  publication-title: J Ophthalmol
– reference: Costello FJISRN: The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. 2013, 2013
– volume: 468
  start-page: 223
  year: 2010
  end-page: 231
  ident: bib0037
  article-title: Regulation of synaptic connectivity by glia
  publication-title: Nature
– volume: 366
  start-page: 2126
  year: 2012
  end-page: 2128
  ident: bib0060
  article-title: The spread of neurodegenerative disease
  publication-title: N Engl J Med
– volume: 41
  start-page: 43
  year: 2013
  end-page: 49
  ident: bib0023
  article-title: Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma
  publication-title: Clin Exp Ophthalmol
– volume: 29
  start-page: 7607
  year: 2009
  end-page: 7618
  ident: bib0145
  article-title: Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning
  publication-title: J Neurosci
– reference: Jindahra P, Petrie A, Plant GTJB: The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. 135:534-541, 2012
– reference: Ji K, Miyauchi J, Tsirka SEJNp: Microglia: an active player in the regulation of synaptic activity. 2013, 2013
– reference: Xicota Vila L, Rodríguez-Morató J, Dierssen M, Torre Fornell Rdl: Potential Role of (-)-Epigallocatechin-3-Gallate (EGCG) in the secondary prevention of Alzheimer disease. 2017
– reference: Bemben MA, Shipman SL, Nicoll RA, Roche KWJTin: The cellular and molecular landscape of neuroligins. 38:496-505, 2015
– reference: Espinosa JS, Stryker MPJN: Development and plasticity of the primary visual cortex. 75:230-249, 2012
– reference: Fisher JB, Jacobs DA, Markowitz CE, et al.: Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. 113:324-332, 2006
– volume: 33
  start-page: 2047
  year: 2012
  end-page: 2061
  ident: bib0086
  article-title: Diffusion tensor imaging of the optic radiations after optic neuritis
  publication-title: Hum Brain Mapp
– reference: Mehta JS, Plant GTJAjoo: Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia. 140:727-729, 2005
– reference: Bsteh G, Hegen H, Teuchner B, et al.: Peripapillary retinal nerve fibre layer thinning rate as a biomarker discriminating stable and progressing relapsing–remitting multiple sclerosis. 26:865-871, 2019
– reference: DeSimone CV, Graff-Radford J, El-Harasis MA, et al.: Cerebral amyloid angiopathy: diagnosis, clinical implications, and management strategies in atrial fibrillation. 70:1173-1182, 2017
– reference: Frost B, Jacks RL, Diamond MIJJoBC: Propagation of tau misfolding from the outside to the inside of a cell. 284:12845-12852, 2009
– volume: 19
  start-page: 214
  year: 2020
  end-page: 225
  ident: bib0020
  article-title: Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial
  publication-title: Lancet Neurol
– volume: 86
  start-page: 419
  year: 2015
  end-page: 424
  ident: bib0009
  article-title: Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 82
  start-page: 427
  year: 2006
  end-page: 440
  ident: bib0126
  article-title: Morphometric evaluation of changes with time in optic disc structure and thickness of retinal nerve fibre layer in chronic ocular hypertensive monkeys
  publication-title: Exp Eye Res
– reference: Kaiser PKJTotAOS: Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis). 107:311, 2009
– reference: Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al.: Exogenous induction of cerebral ß-amyloidogenesis is governed by agent and host. 313:1781-1784, 2006
– volume: 26
  start-page: 18
  year: 2006
  end-page: 24
  ident: bib0070
  article-title: Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease
  publication-title: J Neuroophthalmol
– reference: Chen Z, Wang J, Lin F, et al.: Correlation between lateral geniculate nucleus atrophy and damage to the optic disc in glaucoma. 40:281-287, 2013
– volume: 142
  start-page: 426
  year: 2019
  end-page: 442
  ident: bib0149
  article-title: Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease
  publication-title: Brain
– reference: La Morgia C, Rizzo G, Tozer KR, et al.: Secondary Post-geniculate Involvement In Leber's Hereditary Optic Neuropathy. 53:4883-4883, 2012
– reference: Klistorner A, Graham E, Yiannikas C, et al.: Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. 24:1392-1398, 2017
– volume: 23
  year: 2019
  ident: bib0135
  article-title: Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage
  publication-title: Neuroimage Clin
– reference: Yamada M, Hashimoto T, Hayashi N, et al.: Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization. 1165:5-14, 2007
– volume: 83
  start-page: 1437
  year: 2014
  end-page: 1441
  ident: bib0128
  article-title: Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation
  publication-title: Eur J Radiol
– reference: Varoqueaux F, Aramuni G, Rawson RL, et al.: Neuroligins determine synapse maturation and function. 51:741-754, 2006
– volume: 158
  start-page: 105
  year: 2014
  end-page: 112
  ident: bib0042
  article-title: Effect of brimonidine on retinal vascular autoregulation and short-term visual function in normal tension glaucoma
  publication-title: American journal of ophthalmology
– reference: Onofrj M, Ghilardi M, Basciani M, et al.: Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. 49:1150-1159, 1986
– volume: 45
  start-page: 2625
  year: 2004
  end-page: 2639
  ident: bib0061
  article-title: Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures
  publication-title: Invest Ophthalmol Vis Sci
– volume: 83
  start-page: 255
  year: 2006
  end-page: 262
  ident: bib0098
  article-title: Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma
  publication-title: Exp Eye Res
– reference: Osterhout JA, El-Danaf RN, Nguyen PL, Huberman ADJCr: Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. 8:1006-1017, 2014
– reference: Hasegawa M, Nonaka T, Masuda-Suzukake MJP, therapeutics: Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. 172:22-33, 2017
– reference: Schön C, Hoffmann NA, Ochs SM, et al.: Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. 7:e53547, 2012
– reference: Kolasinski J, Stagg CJ, Chance SA, et al.: A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. 135:2938-2951, 2012
– reference: Rizzo G, Tozer KR, Tonon C, et al.: Secondary post-geniculate involvement in Leber's hereditary optic neuropathy. 7:e50230, 2012
– reference: Reich DS, Smith SA, Gordon-Lipkin EM, et al.: Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. 66:998-1006, 2009
– volume: 116
  start-page: 182
  year: 1993
  end-page: 188
  ident: bib0021
  article-title: Lateral geniculate nucleus in glaucoma
  publication-title: Am J Ophthalmol
– reference: Inzelberg R, Ramirez JA, Nisipeanu P, Ophir AJVr: Retinal nerve fiber layer thinning in Parkinson disease. 44:2793-2797, 2004
– reference: Pueyo V, Martin J, Fernandez J, et al.: Axonal loss in the retinal nerve fiber layer in patients with multiple sclerosis. 14:609-614, 2008
– volume: 18
  start-page: 315
  year: 2018
  end-page: 322
  ident: bib0100
  article-title: Association between primary open-angle glaucoma and cognitive impairment as measured by the montreal cognitive assessment
  publication-title: Neurodegener Dis
– volume: 87
  start-page: 198
  year: 2016
  end-page: 205
  ident: bib0111
  article-title: Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system
  publication-title: Neurology
– reference: Petracca M, Cordano C, Cellerino M, et al.: Retinal degeneration in primary-progressive multiple sclerosis: a role for cortical lesions? 23:43-50, 2017
– volume: 32
  start-page: 1347
  year: 2011
  end-page: 1353
  ident: bib0156
  article-title: Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma
  publication-title: AJNR Am J Neuroradiol
– reference: Stasi K, Nagel D, Yang X, et al.: Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. 47:1024-1029, 2006
– reference: Osterhout JA, Josten N, Yamada J, et al.: Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. 71:632-639, 2011
– reference: den Haan J, Csinscik L, Parker T, et al.: Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease. 11:62, 2019
– volume: 8
  start-page: e73208
  year: 2013
  ident: bib0151
  article-title: Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness
  publication-title: PLoS One
– volume: 9
  start-page: e93682
  year: 2014
  ident: bib0014
  article-title: Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps
  publication-title: PLoS One
– reference: Hokazono K, Monteiro MLRJAjoocr: Homonymous quadrantic macular ganglion cell complex loss as a sign of trans-synaptic degeneration from occipital lobe lesion. 13:76-79, 2019
– reference: Saidha S, Syc SB, Ibrahim MA, et al.: Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. 134:518-533, 2011
– reference: Gupta N, Ly T, Zhang Q, et al.: Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. 84:176-184, 2007
– reference: Zhang X, Kedar S, Lynn MJ, et al.: Homonymous hemianopia in stroke. 26:180-183, 2006
– reference: Serbecic N, Aboul-Enein F, Beutelspacher SC, et al.: Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations. 5:e13877, 2010
– reference: Ferris III FL, Kassoff A, Bresnick GH, Bailey IJAjoo: New visual acuity charts for clinical research. 94:91-96, 1982
– reference: Sriram P, Wang C, Yiannikas C, et al.: Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients. 9:e102546, 2014
– reference: Abalo-Lojo J, Treus A, Arias M, et al.: Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: a long term 5 year follow-up. 19:124-128, 2018
– reference: Lieven CJ, Hoegger MJ, Schlieve CR, et al.: Retinal ganglion cell axotomy induces an increase in intracellular superoxide anion. 47:1477-1485, 2006
– reference: Moschos MM, Tagaris G, Markopoulos L, et al.: Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. 21:24-29, 2011
– reference: Klistorner A, Arvind H, Garrick R, et al.: Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis. 51:2770-2777, 2010
– volume: 19
  start-page: 1073
  year: 2016
  end-page: 1084
  ident: bib0094
  article-title: Neural activity promotes long-distance, target-specific regeneration of adult retinal axons
  publication-title: Nat Neurosci
– reference: Weber AJ, Chen H, Hubbard WC, et al.: Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. 41:1370-1379, 2000
– reference: Aubert-Broche B, Fonov V, Ghassemi R, et al.: Regional brain atrophy in children with multiple sclerosis. 58:409-415, 2011
– reference: Debanne D, Inglebert Y, Russier MJCoin: Plasticity of intrinsic neuronal excitability. 54:73-82, 2019
– reference: El-Boustani S, Ip JP, Breton-Provencher V, et al.: Locally coordinated synaptic plasticity of visual cortex neurons in vivo. 360:1349-1354, 2018
– volume: 9
  start-page: 1164
  year: 2010
  end-page: 1172
  ident: bib0097
  article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial
  publication-title: Lancet Neurol
– volume: 63
  start-page: 296
  year: 2018
  end-page: 306
  ident: bib0090
  article-title: Glaucoma and the brain: Trans-synaptic degeneration, structural change, and implications for neuroprotection
  publication-title: Surv Ophthalmol
– reference: Habiba U, Merlin S, Lim JK, et al.: Age-specific retinal and cerebral immunodetection of Amyloid-β plaques and oligomers in a rodent model of Alzheimer's disease.1-6, 2020
– volume: 55
  start-page: 5770
  year: 2014
  end-page: 5775
  ident: bib0076
  article-title: A topographical relationship between visual field defects and optic radiation changes in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– reference: Raz N, Dotan S, Chokron S, et al.: Demyelination affects temporal aspects of perception: an optic neuritis study. 71:531-538, 2012
– volume: 42
  start-page: 2849
  year: 2001
  end-page: 2855
  ident: bib0142
  article-title: Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension
  publication-title: Invest Ophthalmol Vis Sci
– volume: 75
  start-page: 230
  year: 2012
  end-page: 249
  ident: bib0039
  article-title: Development and plasticity of the primary visual cortex
  publication-title: Neuron
– volume: 31
  start-page: 1900
  year: 2010
  end-page: 1906
  ident: bib0010
  article-title: Evidence for retrochiasmatic tissue loss in Leber's hereditary optic neuropathy
  publication-title: Hum Brain Mapp
– volume: 14
  year: 2021
  ident: bib0038
  article-title: Rapid homonymous hemi-macular atrophy of the optical coherence tomography ganglion cell complex after stroke
  publication-title: BMJ Case Rep
– volume: 7
  year: 2020
  ident: bib0158
  article-title: MS optic neuritis-induced long-term structural changes within the visual pathway
  publication-title: Neurol Neuroimmunol Neuroinflamm
– reference: Archibald NK, Clarke MP, Mosimann UP, Burn DJJB: The retina in Parkinson's disease. 132:1128-1145, 2009
– volume: 8
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0030
  article-title: Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer's disease
  publication-title: Alzheimers Res Ther
– reference: Rocca MA, Mesaros S, Preziosa P, et al.: Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. 19:1610-1617, 2013
– reference: Yücel YH, Zhang Q, Weinreb RN, et al.: Atrophy of relay neurons in magno-and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. 42:3216-3222, 2001
– reference: Park H-YL, Park YG, Cho A-H, Park CKJO: Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. 120:1292-1299, 2013
– volume: 90
  start-page: 674
  year: 2006
  end-page: 678
  ident: bib0055
  article-title: Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex
  publication-title: Br J Ophthalmol
– reference: Ngoo QZ, Wan Hitam WH, Ab Razak AJJoO: Evaluation of retinal nerve fiber layer thickness, electroretinogram and visual evoked potential in patients with Alzheimer's disease. 2019, 2019
– reference: Pellegrini F, Interlandi E, Pichi F, Lee AGJN-O: Retrogeniculate lesion of the visual pathways: retinal optical coherence tomography angiography shows evidence of transsynaptic retrograde degeneration. 44:114-117, 2020
– reference: Grimaldi A, Brighi C, Peruzzi G, et al.: Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer's disease in the 3xTg-AD mouse model. 9:1-10, 2018
– volume: 24
  start-page: 701
  year: 2018
  end-page: 703
  ident: bib0131
  article-title: OCT is an alternative to MRI for monitoring MS - YES
  publication-title: Mult Scler
– volume: 26
  start-page: 3754
  year: 2019
  end-page: 3763
  ident: bib0096
  article-title: Neurodegenerative process linking the eye and the brain
  publication-title: Curr Med Chem
– reference: Silva J-P, Lelianova VG, Ermolyuk YS, et al.: Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. 108:12113-12118, 2011
– volume: 82
  start-page: 2165
  year: 2014
  end-page: 2172
  ident: bib0083
  article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions
  publication-title: Neurology
– reference: Crawford ML, Harwerth RS, Smith EL, et al.: Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. 42:358-364, 2001
– reference: Asanad S, Ross-Cisneros FN, Nassisi M, et al.: The retina in Alzheimer's disease: histomorphometric analysis of an ophthalmologic biomarker. 60:1491-1500, 2019
– reference: Audoin B, Fernando KT, Swanton JK, et al.: Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. 129:1031-1039, 2006
– volume: 31
  start-page: 547
  year: 2016
  end-page: 554
  ident: bib0092
  article-title: Lateral geniculate atrophy in Parkinson's with visual hallucination: a trans-synaptic degeneration?
  publication-title: Mov Disord
– reference: Balk L, Twisk J, Steenwijk M, et al.: A dam for retrograde axonal degeneration in multiple sclerosis? 85:782-789, 2014
– volume: 45
  start-page: 45
  year: 2015
  end-page: 56
  ident: bib0025
  article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease
  publication-title: J Alzheimers Dis
– volume: 37
  start-page: 4581
  year: 2016
  end-page: 4596
  ident: bib0047
  article-title: Early changes of brain connectivity in primary open angle glaucoma
  publication-title: Hum Brain Mapp
– reference: Dean C, Scholl FG, Choih J, et al.: Neurexin mediates the assembly of presynaptic terminals. 6:708-716, 2003
– volume: 40
  start-page: 89
  year: 2013
  end-page: 93
  ident: bib0095
  article-title: Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics
  publication-title: J Neuroradiol
– volume: 33
  start-page: 128
  year: 2012
  end-page: 134
  ident: bib0155
  article-title: Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study
  publication-title: AJNR Am J Neuroradiol
– volume: 41
  start-page: 103
  year: 2017
  end-page: 107
  ident: bib0157
  article-title: Trans-synaptic retrograde degeneration following hemispherectomy in childhood
  publication-title: Neuroophthalmology
– volume: 9
  start-page: 1057
  year: 2015
  end-page: 1064
  ident: bib0065
  article-title: Retrograde degeneration of retinal ganglion cells in homonymous hemianopsia
  publication-title: Clin Ophthalmol
– reference: Benson DL, Huntley GWJCoin: Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. 22:397-404, 2012
– reference: Brandt AU, Martinez-Lapiscina EH, Nolan R, Saidha SJCtoin: Monitoring the course of MS with optical coherence tomography. 19:15, 2017
– volume: 16
  start-page: 159
  year: 2015
  end-page: 172
  ident: bib0046
  article-title: The connectomics of brain disorders
  publication-title: Nat Rev Neurosci
– reference: Venugopalan P, Wang Y, Nguyen T, et al.: Transplanted neurons integrate into adult retinas and respond to light. 7:1-9, 2016
– reference: You Y, Graham EC, Shen T, et al.: Progressive inner nuclear layer dysfunction in non-optic neuritis eyes in MS. 5, 2018
– reference: Petzold A, Balcer LJ, Calabresi PA, et al.: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. 16:797-812, 2017
– volume: 52
  start-page: 6911
  year: 2011
  end-page: 6918
  ident: bib0150
  article-title: Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis
  publication-title: Invest Ophthalmol Vis Sci
– reference: Kihira S, Arnold AC, Pawha PS, et al.: Trans-synaptic degeneration of the optic radiation from optic nerve atrophy. 16:855-857, 2021
– volume: 143
  start-page: 336
  year: 2020
  end-page: 358
  ident: bib0087
  article-title: Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease
  publication-title: Brain
– reference: Vickers J, Hof P, Schumer R, et al.: Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma. 25:239-243, 1997
– volume: 132
  start-page: 628
  year: 2009
  end-page: 634
  ident: bib0073
  article-title: Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography
  publication-title: Brain
– reference: Rajanala AP, Shariati MA, Liao YJ: Long distance retrograde degeneration of the retino-geniculo-cortical pathway in homonymous hemianopia. 2019
– volume: 22
  start-page: 2488
  year: 2008
  end-page: 2497
  ident: bib0140
  article-title: PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease
  publication-title: The FASEB Journal
– reference: Altintaş Ö, Işeri P, Özkan B, Çağlar YJDO: Correlation between retinal morphological and functional findings and clinical severity in Parkinson's disease. 116:137-146, 2008
– volume: 157
  start-page: 470
  year: 2014
  end-page: 478
  ident: bib0052
  article-title: Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration
  publication-title: Am J Ophthalmol
– reference: You Y, Graham SLJO: Bilateral optic atrophy from a silent occipital lesion. 126:979, 2019
– reference: Al-Louzi O, Button J, Newsome SD, et al.: Retrograde trans-synaptic visual pathway degeneration in multiple sclerosis: a case series. 23:1035-1039, 2017
– volume: 10
  start-page: 1
  year: 2003
  end-page: 6
  ident: bib0066
  article-title: Treatment with the selective muscarinic ml agonist talsaclidine decreases cerebrospinal fluid levels of Aβ42 in patients with Alzheimer's disease
  publication-title: Amyloid
– volume: 181
  year: 2020
  ident: bib0011
  article-title: Dynamic stimulation of visual cortex produces form vision in sighted and blind humans
  publication-title: Cell
– reference: Fernando Maya-Vetencourt J, Origlia NJNp: Visual cortex plasticity: a complex interplay of genetic and environmental influences. 2012
– reference: Micieli JA, Blanch RJ, Narayana KJN: Teaching NeuroImages: evolving trans-synaptic degeneration of retinal ganglion cells after occipital lobe stroke. 90:e2179-e2180, 2018
– reference: Keller J, Sánchez-Dalmau BF, Villoslada PJPO: Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. 9:e97444, 2014
– reference: Hajee ME, March WF, Lazzaro DR, et al.: Inner retinal layer thinning in Parkinson disease. 127:737-741, 2009
– volume: 60
  start-page: 3803
  year: 2019
  end-page: 3812
  ident: bib0063
  article-title: Fixel-based analysis of visual pathway white matter in primary open-angle glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– reference: Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, et al.: Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. 75:98-107, 2014
– reference: Evangelou N, Konz D, Esiri M, et al.: Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. 124:1813-1820, 2001
– volume: 13
  start-page: 21
  year: 2021
  end-page: 28
  ident: bib0019
  article-title: Glaucoma as neurodegeneration in the brain
  publication-title: Eye Brain
– reference: Kirbas S, Turkyilmaz K, Anlar O, et al.: Retinal nerve fiber layer thickness in patients with Alzheimer disease. 33:58-61, 2013
– volume: 8
  start-page: 162
  year: 2017
  ident: bib0089
  article-title: Retinal ganglion cells and circadian rhythms in Alzheimer's disease, Parkinson's disease, and beyond
  publication-title: Front Neurol
– reference: Jenkins T, Ciccarelli O, Atzori M, et al.: Early pericalcarine atrophy in acute optic neuritis is associated with conversion to multiple sclerosis. 82:1017-1021, 2011
– reference: Matsushita T, Madireddy L, Sprenger T, et al.: Genetic associations with brain cortical thickness in multiple sclerosis. 14:217-227, 2015
– reference: Dejanovic B, Huntley MA, De Mazière A, et al.: Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. 100:1322-1336. e1327, 2018
– reference: Gallo V, Deneen BJN: Glial development: the crossroads of regeneration and repair in the CNS. 83:283-308, 2014
– reference: Sriram P, Graham SL, Wang C, et al.: Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. 53:1271-1275, 2012
– volume: 2011
  year: 2011
  ident: bib0068
  article-title: Cortical plasticity during motor learning and recovery after ischemic stroke
  publication-title: Neural Plast
– volume: 80
  start-page: 242
  year: 2013
  end-page: 245
  ident: bib0081
  article-title: Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential
  publication-title: Neurology
– reference: Schneider CL, Prentiss EK, Busza A, et al.: Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. 286:20182733, 2019
– reference: Crawford ML, Harwerth RS, Smith EL, et al.: Glaucoma in primates: cytochrome oxidase reactivity in parvo-and magnocellular pathways. 41:1791-1802, 2000
– reference: Sinnecker T, Oberwahrenbrock T, Metz I, et al.: Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning–an ultrahigh-field MR pilot study. 25:122-131, 2015
– reference: Siddiqui TJ, Craig AMJCoin: Synaptic organizing complexes. 21:132-143, 2011
– volume: 12
  year: 2017
  ident: bib0159
  article-title: Trans-synaptic degeneration in the optic pathway. A study in clinically isolated syndrome and early relapsing-remitting multiple sclerosis with or without optic neuritis
  publication-title: PLoS One
– reference: Crair MC, Mason CAJJoN: Reconnecting eye to brain. 36:10707-10722, 2016
– volume: 112
  start-page: 542
  year: 2020
  end-page: 552
  ident: bib0018
  article-title: Neuroplasticity in adult human visual cortex
  publication-title: Neurosci Biobehav Rev.
– volume: 46
  start-page: 4164
  year: 2005
  end-page: 4169
  ident: bib0058
  article-title: Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 10
  start-page: 1
  year: 2003
  ident: 10.1016/j.survophthal.2021.06.001_bib0066
  article-title: Treatment with the selective muscarinic ml agonist talsaclidine decreases cerebrospinal fluid levels of Aβ42 in patients with Alzheimer's disease
  publication-title: Amyloid
  doi: 10.3109/13506120308995249
– ident: 10.1016/j.survophthal.2021.06.001_bib0108
  doi: 10.1016/j.celrep.2014.06.063
– ident: 10.1016/j.survophthal.2021.06.001_bib0043
  doi: 10.1155/2012/631965
– ident: 10.1016/j.survophthal.2021.06.001_bib0040
  doi: 10.1016/j.neuron.2012.06.009
– volume: 9
  start-page: 1164
  year: 2010
  ident: 10.1016/j.survophthal.2021.06.001_bib0097
  article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(10)70254-4
– volume: 86
  start-page: 419
  year: 2015
  ident: 10.1016/j.survophthal.2021.06.001_bib0009
  article-title: Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2014-308189
– volume: 31
  start-page: 547
  year: 2016
  ident: 10.1016/j.survophthal.2021.06.001_bib0092
  article-title: Lateral geniculate atrophy in Parkinson's with visual hallucination: a trans-synaptic degeneration?
  publication-title: Mov Disord
  doi: 10.1002/mds.26533
– volume: 40
  start-page: 89
  year: 2013
  ident: 10.1016/j.survophthal.2021.06.001_bib0095
  article-title: Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics
  publication-title: J Neuroradiol
  doi: 10.1016/j.neurad.2012.04.001
– volume: 82
  start-page: 2165
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0083
  article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000522
– ident: 10.1016/j.survophthal.2021.06.001_bib0107
  doi: 10.1136/jnnp.49.10.1150
– ident: 10.1016/j.survophthal.2021.06.001_bib0132
  doi: 10.1167/iovs.11-8732
– ident: 10.1016/j.survophthal.2021.06.001_bib0117
  doi: 10.1101/750208
– ident: 10.1016/j.survophthal.2021.06.001_bib0071
  doi: 10.1136/jnnp.2010.239715
– volume: 18
  start-page: 315
  year: 2018
  ident: 10.1016/j.survophthal.2021.06.001_bib0100
  article-title: Association between primary open-angle glaucoma and cognitive impairment as measured by the montreal cognitive assessment
  publication-title: Neurodegener Dis
  doi: 10.1159/000496233
– ident: 10.1016/j.survophthal.2021.06.001_bib0069
  doi: 10.1016/j.visres.2004.06.009
– ident: 10.1016/j.survophthal.2021.06.001_bib0080
  doi: 10.1167/iovs.09-4577
– volume: 139
  start-page: 816
  year: 2016
  ident: 10.1016/j.survophthal.2021.06.001_bib0136
  article-title: Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis
  publication-title: Brain
  doi: 10.1093/brain/awv396
– volume: 8
  start-page: e73208
  year: 2013
  ident: 10.1016/j.survophthal.2021.06.001_bib0151
  article-title: Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0073208
– ident: 10.1016/j.survophthal.2021.06.001_bib0027
  doi: 10.1523/JNEUROSCI.1711-16.2016
– volume: 158
  start-page: 105
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0042
  article-title: Effect of brimonidine on retinal vascular autoregulation and short-term visual function in normal tension glaucoma
  publication-title: American journal of ophthalmology
  doi: 10.1016/j.ajo.2014.03.015
– ident: 10.1016/j.survophthal.2021.06.001_bib0088
– ident: 10.1016/j.survophthal.2021.06.001_bib0116
  doi: 10.1177/1352458507087326
– volume: 45
  start-page: 2625
  year: 2004
  ident: 10.1016/j.survophthal.2021.06.001_bib0061
  article-title: Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.03-0566
– ident: 10.1016/j.survophthal.2021.06.001_bib0032
  doi: 10.1016/j.conb.2018.09.001
– volume: 33
  start-page: 2047
  year: 2012
  ident: 10.1016/j.survophthal.2021.06.001_bib0086
  article-title: Diffusion tensor imaging of the optic radiations after optic neuritis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21343
– volume: 12
  year: 2017
  ident: 10.1016/j.survophthal.2021.06.001_bib0159
  article-title: Trans-synaptic degeneration in the optic pathway. A study in clinically isolated syndrome and early relapsing-remitting multiple sclerosis with or without optic neuritis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183957
– ident: 10.1016/j.survophthal.2021.06.001_bib0045
  doi: 10.1016/j.ophtha.2005.10.040
– ident: 10.1016/j.survophthal.2021.06.001_bib0137
  doi: 10.1016/j.neuron.2006.09.003
– volume: 116
  start-page: 182
  year: 1993
  ident: 10.1016/j.survophthal.2021.06.001_bib0021
  article-title: Lateral geniculate nucleus in glaucoma
  publication-title: Am J Ophthalmol
  doi: 10.1016/S0002-9394(14)71283-8
– volume: 60
  start-page: 3803
  year: 2019
  ident: 10.1016/j.survophthal.2021.06.001_bib0063
  article-title: Fixel-based analysis of visual pathway white matter in primary open-angle glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.19-27447
– ident: 10.1016/j.survophthal.2021.06.001_bib0134
  doi: 10.1167/iovs.05-0830
– volume: 41
  start-page: 103
  year: 2017
  ident: 10.1016/j.survophthal.2021.06.001_bib0157
  article-title: Trans-synaptic retrograde degeneration following hemispherectomy in childhood
  publication-title: Neuroophthalmology
  doi: 10.1080/01658107.2016.1276935
– volume: 468
  start-page: 223
  year: 2010
  ident: 10.1016/j.survophthal.2021.06.001_bib0037
  article-title: Regulation of synaptic connectivity by glia
  publication-title: Nature
  doi: 10.1038/nature09612
– ident: 10.1016/j.survophthal.2021.06.001_bib0056
  doi: 10.1016/j.exer.2006.09.013
– ident: 10.1016/j.survophthal.2021.06.001_bib0122
  doi: 10.1093/brain/awq346
– ident: 10.1016/j.survophthal.2021.06.001_bib0077
  doi: 10.1371/journal.pone.0097444
– ident: 10.1016/j.survophthal.2021.06.001_bib0133
  doi: 10.1371/journal.pone.0102546
– volume: 19
  start-page: 214
  year: 2020
  ident: 10.1016/j.survophthal.2021.06.001_bib0020
  article-title: Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(19)30485-5
– volume: 52
  start-page: 6911
  year: 2011
  ident: 10.1016/j.survophthal.2021.06.001_bib0150
  article-title: Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-7434
– ident: 10.1016/j.survophthal.2021.06.001_bib0016
  doi: 10.1111/ene.13897
– ident: 10.1016/j.survophthal.2021.06.001_bib0049
  doi: 10.1002/ana.24030
– ident: 10.1016/j.survophthal.2021.06.001_bib0085
  doi: 10.1093/brain/aws242
– volume: 112
  start-page: 542
  year: 2020
  ident: 10.1016/j.survophthal.2021.06.001_bib0018
  article-title: Neuroplasticity in adult human visual cortex
  publication-title: Neurosci Biobehav Rev.
  doi: 10.1016/j.neubiorev.2020.02.028
– ident: 10.1016/j.survophthal.2021.06.001_bib0015
  doi: 10.1007/s11940-017-0452-7
– ident: 10.1016/j.survophthal.2021.06.001_bib0035
  doi: 10.1016/j.jacc.2017.07.724
– volume: 9
  start-page: e93682
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0014
  article-title: Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093682
– ident: 10.1016/j.survophthal.2021.06.001_bib0036
  doi: 10.1126/science.aao0862
– volume: 46
  start-page: 4164
  year: 2005
  ident: 10.1016/j.survophthal.2021.06.001_bib0058
  article-title: Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.05-0618
– volume: 2011
  year: 2011
  ident: 10.1016/j.survophthal.2021.06.001_bib0068
  article-title: Cortical plasticity during motor learning and recovery after ischemic stroke
  publication-title: Neural Plast
  doi: 10.1155/2011/871296
– volume: 90
  start-page: 674
  year: 2006
  ident: 10.1016/j.survophthal.2021.06.001_bib0055
  article-title: Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2005.086769
– ident: 10.1016/j.survophthal.2021.06.001_bib0105
  doi: 10.5301/EJO.2010.1318
– ident: 10.1016/j.survophthal.2021.06.001_bib0099
  doi: 10.1111/gbb.12190
– ident: 10.1016/j.survophthal.2021.06.001_bib0026
  doi: 10.1155/2013/134858
– ident: 10.1016/j.survophthal.2021.06.001_bib0057
  doi: 10.3233/JAD-191346
– ident: 10.1016/j.survophthal.2021.06.001_bib0144
  doi: 10.1016/j.brainres.2007.04.062
– ident: 10.1016/j.survophthal.2021.06.001_bib0003
  doi: 10.1007/s10633-007-9091-8
– volume: 55
  start-page: 5770
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0076
  article-title: A topographical relationship between visual field defects and optic radiation changes in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.14-14733
– ident: 10.1016/j.survophthal.2021.06.001_bib0115
– ident: 10.1016/j.survophthal.2021.06.001_bib0002
  doi: 10.1177/1352458516679035
– ident: 10.1016/j.survophthal.2021.06.001_bib0075
– ident: 10.1016/j.survophthal.2021.06.001_bib0048
  doi: 10.1074/jbc.M808759200
– volume: 45
  start-page: 45
  year: 2015
  ident: 10.1016/j.survophthal.2021.06.001_bib0025
  article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-141659
– ident: 10.1016/j.survophthal.2021.06.001_bib0062
  doi: 10.1016/j.pharmthera.2016.11.010
– ident: 10.1016/j.survophthal.2021.06.001_bib0024
  doi: 10.1016/j.neurad.2012.10.004
– volume: 83
  start-page: 255
  year: 2006
  ident: 10.1016/j.survophthal.2021.06.001_bib0098
  article-title: Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2005.11.025
– volume: 63
  start-page: 296
  year: 2018
  ident: 10.1016/j.survophthal.2021.06.001_bib0090
  article-title: Glaucoma and the brain: Trans-synaptic degeneration, structural change, and implications for neuroprotection
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2017.09.010
– ident: 10.1016/j.survophthal.2021.06.001_bib0013
  doi: 10.1016/j.conb.2011.09.011
– ident: 10.1016/j.survophthal.2021.06.001_bib0034
  doi: 10.1186/s13195-019-0516-x
– ident: 10.1016/j.survophthal.2021.06.001_bib0104
  doi: 10.1212/WNL.0000000000005686
– volume: 7
  year: 2020
  ident: 10.1016/j.survophthal.2021.06.001_bib0158
  article-title: MS optic neuritis-induced long-term structural changes within the visual pathway
  publication-title: Neurol Neuroimmunol Neuroinflamm
  doi: 10.1212/NXI.0000000000000665
– ident: 10.1016/j.survophthal.2021.06.001_bib0093
  doi: 10.1167/iovs.05-0921
– volume: 26
  start-page: 3754
  year: 2019
  ident: 10.1016/j.survophthal.2021.06.001_bib0096
  article-title: Neurodegenerative process linking the eye and the brain
  publication-title: Curr Med Chem
  doi: 10.2174/0929867325666180307114332
– volume: 87
  start-page: 198
  year: 2016
  ident: 10.1016/j.survophthal.2021.06.001_bib0111
  article-title: Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002841
– ident: 10.1016/j.survophthal.2021.06.001_bib0141
– volume: 19
  start-page: 1073
  year: 2016
  ident: 10.1016/j.survophthal.2021.06.001_bib0094
  article-title: Neural activity promotes long-distance, target-specific regeneration of adult retinal axons
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4340
– volume: 24
  start-page: 701
  year: 2018
  ident: 10.1016/j.survophthal.2021.06.001_bib0131
  article-title: OCT is an alternative to MRI for monitoring MS - YES
  publication-title: Mult Scler
  doi: 10.1177/1352458517753722
– ident: 10.1016/j.survophthal.2021.06.001_bib0110
  doi: 10.1016/j.ophtha.2012.11.021
– ident: 10.1016/j.survophthal.2021.06.001_bib0148
  doi: 10.1016/j.ophtha.2019.04.002
– volume: 42
  start-page: 2849
  year: 2001
  ident: 10.1016/j.survophthal.2021.06.001_bib0142
  article-title: Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension
  publication-title: Invest Ophthalmol Vis Sci
– volume: 29
  start-page: 61
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0091
  article-title: Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease
  publication-title: Mov Disord
  doi: 10.1002/mds.25543
– ident: 10.1016/j.survophthal.2021.06.001_bib0138
  doi: 10.1038/ncomms10472
– volume: 82
  start-page: 427
  year: 2006
  ident: 10.1016/j.survophthal.2021.06.001_bib0126
  article-title: Morphometric evaluation of changes with time in optic disc structure and thickness of retinal nerve fibre layer in chronic ocular hypertensive monkeys
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2005.08.001
– ident: 10.1016/j.survophthal.2021.06.001_bib0005
  doi: 10.1167/iovs.18-25966
– ident: 10.1016/j.survophthal.2021.06.001_bib0033
  doi: 10.1016/j.neuron.2018.10.014
– ident: 10.1016/j.survophthal.2021.06.001_bib0147
  doi: 10.1212/NXI.0000000000000427
– ident: 10.1016/j.survophthal.2021.06.001_bib0031
  doi: 10.1038/nn1074
– volume: 143
  start-page: 336
  year: 2020
  ident: 10.1016/j.survophthal.2021.06.001_bib0087
  article-title: Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease
  publication-title: Brain
  doi: 10.1093/brain/awz364
– ident: 10.1016/j.survophthal.2021.06.001_bib0054
  doi: 10.1038/s41419-018-0740-5
– ident: 10.1016/j.survophthal.2021.06.001_bib0082
  doi: 10.1111/ene.13404
– volume: 142
  start-page: 426
  year: 2019
  ident: 10.1016/j.survophthal.2021.06.001_bib0149
  article-title: Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease
  publication-title: Brain
  doi: 10.1093/brain/awy338
– volume: 23
  year: 2019
  ident: 10.1016/j.survophthal.2021.06.001_bib0135
  article-title: Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2019.101826
– volume: 45
  start-page: 62
  year: 2017
  ident: 10.1016/j.survophthal.2021.06.001_bib0053
  article-title: Afferent visual pathways in multiple sclerosis: a review
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/ceo.12751
– ident: 10.1016/j.survophthal.2021.06.001_bib0106
  doi: 10.1155/2019/6248185
– ident: 10.1016/j.survophthal.2021.06.001_bib0120
  doi: 10.1371/journal.pone.0050230
– ident: 10.1016/j.survophthal.2021.06.001_bib0074
  doi: 10.1093/brain/awr324
– volume: 366
  start-page: 2126
  year: 2012
  ident: 10.1016/j.survophthal.2021.06.001_bib0060
  article-title: The spread of neurodegenerative disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcibr1202401
– ident: 10.1016/j.survophthal.2021.06.001_bib0109
  doi: 10.1016/j.neuron.2011.07.006
– ident: 10.1016/j.survophthal.2021.06.001_bib0012
  doi: 10.1016/j.tins.2015.06.004
– ident: 10.1016/j.survophthal.2021.06.001_bib0130
  doi: 10.1007/s00330-014-3358-8
– ident: 10.1016/j.survophthal.2021.06.001_bib0067
  doi: 10.1016/j.ajoc.2018.09.011
– volume: 124
  start-page: 217
  year: 2006
  ident: 10.1016/j.survophthal.2021.06.001_bib0152
  article-title: Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.124.2.217
– volume: 9
  start-page: 1057
  year: 2015
  ident: 10.1016/j.survophthal.2021.06.001_bib0065
  article-title: Retrograde degeneration of retinal ganglion cells in homonymous hemianopsia
  publication-title: Clin Ophthalmol
  doi: 10.2147/OPTH.S81749
– ident: 10.1016/j.survophthal.2021.06.001_bib0004
  doi: 10.1093/brain/awp068
– ident: 10.1016/j.survophthal.2021.06.001_bib0129
  doi: 10.1073/pnas.1019434108
– ident: 10.1016/j.survophthal.2021.06.001_bib0123
  doi: 10.1098/rspb.2018.2733
– ident: 10.1016/j.survophthal.2021.06.001_bib0143
  doi: 10.2174/1389450116666150825113655
– ident: 10.1016/j.survophthal.2021.06.001_bib0050
  doi: 10.1136/jnnp-2012-304854
– ident: 10.1016/j.survophthal.2021.06.001_bib0028
– volume: 16
  start-page: 159
  year: 2015
  ident: 10.1016/j.survophthal.2021.06.001_bib0046
  article-title: The connectomics of brain disorders
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3901
– ident: 10.1016/j.survophthal.2021.06.001_bib0154
  doi: 10.1097/01.wno.0000235587.41040.39
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.survophthal.2021.06.001_bib0030
  article-title: Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer's disease
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-016-0173-2
– ident: 10.1016/j.survophthal.2021.06.001_bib0139
  doi: 10.1111/j.1442-9071.1997.tb01400.x
– volume: 32
  start-page: 1347
  year: 2011
  ident: 10.1016/j.survophthal.2021.06.001_bib0156
  article-title: Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2486
– volume: 26
  start-page: 18
  year: 2006
  ident: 10.1016/j.survophthal.2021.06.001_bib0070
  article-title: Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease
  publication-title: J Neuroophthalmol
  doi: 10.1097/01.wno.0000204645.56873.26
– volume: 33
  start-page: 128
  year: 2012
  ident: 10.1016/j.survophthal.2021.06.001_bib0155
  article-title: Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2714
– ident: 10.1016/j.survophthal.2021.06.001_bib0102
  doi: 10.1097/WNO.0000000000000182
– ident: 10.1016/j.survophthal.2021.06.001_bib0103
  doi: 10.1126/science.1131864
– ident: 10.1016/j.survophthal.2021.06.001_bib0125
  doi: 10.1371/journal.pone.0013877
– ident: 10.1016/j.survophthal.2021.06.001_bib0044
  doi: 10.1016/0002-9394(82)90197-0
– ident: 10.1016/j.survophthal.2021.06.001_bib0008
  doi: 10.1136/jnnp-2013-306902
– start-page: 97
  year: 2012
  ident: 10.1016/j.survophthal.2021.06.001_bib0017
– ident: 10.1016/j.survophthal.2021.06.001_bib0072
  doi: 10.1155/2013/627325
– ident: 10.1016/j.survophthal.2021.06.001_bib0119
  doi: 10.1001/archneurol.2009.107
– ident: 10.1016/j.survophthal.2021.06.001_bib0114
  doi: 10.1177/1352458516637679
– ident: 10.1016/j.survophthal.2021.06.001_bib0127
  doi: 10.1016/j.conb.2010.08.016
– volume: 41
  start-page: 43
  year: 2013
  ident: 10.1016/j.survophthal.2021.06.001_bib0023
  article-title: Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/j.1442-9071.2012.02832.x
– volume: 132
  start-page: 628
  year: 2009
  ident: 10.1016/j.survophthal.2021.06.001_bib0073
  article-title: Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography
  publication-title: Brain
  doi: 10.1093/brain/awp001
– volume: 83
  start-page: 1437
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0128
  article-title: Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.05.014
– ident: 10.1016/j.survophthal.2021.06.001_bib0001
  doi: 10.1016/j.msard.2017.11.017
– ident: 10.1016/j.survophthal.2021.06.001_bib0079
  doi: 10.1097/WNO.0b013e318267fd5f
– ident: 10.1016/j.survophthal.2021.06.001_bib0153
– ident: 10.1016/j.survophthal.2021.06.001_bib0118
  doi: 10.1002/ana.22692
– volume: 29
  start-page: 7607
  year: 2009
  ident: 10.1016/j.survophthal.2021.06.001_bib0145
  article-title: Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0707-09.2009
– ident: 10.1016/j.survophthal.2021.06.001_bib0029
– volume: 81
  start-page: 249
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0064
  article-title: CaMKII: claiming center stage in postsynaptic function and organization
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.12.024
– ident: 10.1016/j.survophthal.2021.06.001_bib0078
  doi: 10.1016/j.radcr.2021.01.017
– volume: 8
  start-page: 162
  year: 2017
  ident: 10.1016/j.survophthal.2021.06.001_bib0089
  article-title: Retinal ganglion cells and circadian rhythms in Alzheimer's disease, Parkinson's disease, and beyond
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00162
– volume: 14
  year: 2021
  ident: 10.1016/j.survophthal.2021.06.001_bib0038
  article-title: Rapid homonymous hemi-macular atrophy of the optical coherence tomography ganglion cell complex after stroke
  publication-title: BMJ Case Rep
  doi: 10.1136/bcr-2021-241967
– ident: 10.1016/j.survophthal.2021.06.001_bib0007
  doi: 10.1093/brain/awl039
– ident: 10.1016/j.survophthal.2021.06.001_bib0121
  doi: 10.1177/1352458513485146
– volume: 181
  year: 2020
  ident: 10.1016/j.survophthal.2021.06.001_bib0011
  article-title: Dynamic stimulation of visual cortex produces form vision in sighted and blind humans
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.033
– ident: 10.1016/j.survophthal.2021.06.001_bib0101
  doi: 10.1016/j.ajo.2005.03.059
– volume: 75
  start-page: 230
  year: 2012
  ident: 10.1016/j.survophthal.2021.06.001_bib0039
  article-title: Development and plasticity of the primary visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.009
– volume: 80
  start-page: 242
  year: 2013
  ident: 10.1016/j.survophthal.2021.06.001_bib0081
  article-title: Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31827deb39
– volume: 13
  start-page: 21
  year: 2021
  ident: 10.1016/j.survophthal.2021.06.001_bib0019
  article-title: Glaucoma as neurodegeneration in the brain
  publication-title: Eye Brain
  doi: 10.2147/EB.S293765
– ident: 10.1016/j.survophthal.2021.06.001_bib0051
  doi: 10.1016/j.neuron.2014.06.010
– volume: 31
  start-page: 1900
  year: 2010
  ident: 10.1016/j.survophthal.2021.06.001_bib0010
  article-title: Evidence for retrochiasmatic tissue loss in Leber's hereditary optic neuropathy
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20985
– ident: 10.1016/j.survophthal.2021.06.001_bib0041
  doi: 10.1093/brain/124.9.1813
– ident: 10.1016/j.survophthal.2021.06.001_bib0113
  doi: 10.1080/01658107.2019.1617748
– volume: 22
  start-page: 2488
  year: 2008
  ident: 10.1016/j.survophthal.2021.06.001_bib0140
  article-title: PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease
  publication-title: The FASEB Journal
  doi: 10.1096/fj.07-095398
– volume: 37
  start-page: 4581
  year: 2016
  ident: 10.1016/j.survophthal.2021.06.001_bib0047
  article-title: Early changes of brain connectivity in primary open angle glaucoma
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23330
– volume: 157
  start-page: 470
  year: 2014
  ident: 10.1016/j.survophthal.2021.06.001_bib0052
  article-title: Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.09.028
– ident: 10.1016/j.survophthal.2021.06.001_bib0124
  doi: 10.1371/journal.pone.0053547
– ident: 10.1016/j.survophthal.2021.06.001_bib0006
  doi: 10.1016/j.neuroimage.2011.03.025
– ident: 10.1016/j.survophthal.2021.06.001_bib0059
  doi: 10.1001/archophthalmol.2009.106
– volume: 2016
  year: 2016
  ident: 10.1016/j.survophthal.2021.06.001_bib0146
  article-title: Retinal ganglion cell atrophy in homonymous hemianopia due to acquired occipital lesions observed using cirrus high-definition-OCT
  publication-title: J Ophthalmol
  doi: 10.1155/2016/2394957
SSID ssj0004397
Score 2.5032656
SecondaryResourceType review_article
Snippet There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 411
SubjectTerms anterograde
axonal loss
bidirectional trans-synaptic degeneration
Humans
Neurodegenerative Diseases - complications
Neurodegenerative Diseases - pathology
neurodegenerative disorders
Retinal Ganglion Cells - pathology
retrograde
Retrograde Degeneration - pathology
synapse dysfunction
Synapses - pathology
Trans-synaptic degeneration
visual pathway
Visual Pathways - pathology
Title Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0039625721001387
https://dx.doi.org/10.1016/j.survophthal.2021.06.001
https://www.ncbi.nlm.nih.gov/pubmed/34146577
https://www.proquest.com/docview/2543444019
Volume 67
WOSCitedRecordID wos000760878200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3304
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004397
  issn: 0039-6257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6lKaq4INYSlmoqIS7UVe1OPOOKS4VSAQoBqSnKzRrbY-IodYydmPIz-Hn8G94sXtoSKRy4WMnI42Xe5_fevBWhV6HLHU-mKHvcJbBB6TOLg15suTwWNhcs7oeqa8mQjkZsMvG-dDq_q1yYck7TlF1dedl_JTWMAbFl6uw_kLu-KAzAbyA6HIHscNyM8FL6WMXPlGeyGGskvqnK0u2gxjIpVAYWaH8_uCr5JGt0qEohwHZD3VBCLr48Y6GMH3VSi8qDq9Ipkxvx6Ko6ZnPHUkgHkKruWbS14PNVXgrl2oeLL6d8fnnNuH-uymlre_VlnkTTpAlCSJby9VQnYkBxVTfceAR0qHgx5Sl_81Wl7TSG2oKXPOcznmXawyXU37bRA_bLddSX4dOMepY0xWgx9pcxw9x1rw8DYqfFqYnm8bckiDZmzEB05aVZg0N4AvtQe60asVmFCow--2cXw6E_HkzGr7PvlmxoJh3_prvLFtp2aN9jXbR9-mEw-dgk7R7rzj_VU--g_Sb4cM3d1ylP6zZHSkka30f3zO4Gn2pUPkAdkT5EO59M_MYj9Os6OHEbnDhJMYATa3BiA84TrKGJ29A8wDeAeYCB2riCJW7DUl72FixxDcvH6OJsMH733jJNQawQNPulFbkC1AsmGIkDHtDYZX3niHu2Q0ngxAGl3IlADFHBmRsSFoJAYm4QAdMRIcie-PgJ6qaLVDxF2AZFILaPosAmglDKZDHGPhdRZLtBDCysh1i12n5oKubLxi1zvwqNnPktQvmSUL4OE-0hp56a6bIxm0w6qUjqVysGktwHaG4y-W092SjPWinedPp-hSEfBIz0GvJULFaFL6tlEEJgK9hDuxpc9SuBCkxcWOxnG8x-ju42X_IL1F3mK_ES3QnLZVLke2iLTtie-Ub-AFNbCsA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trans-synaptic+degeneration+in+the+visual+pathway%3A+Neural+connectivity%2C+pathophysiology%2C+and+clinical+implications+in+neurodegenerative+disorders&rft.jtitle=Survey+of+ophthalmology&rft.au=Sharma%2C+Samridhi&rft.au=Chitranshi%2C+Nitin&rft.au=Wall%2C+Roshana+Vander&rft.au=Basavarajappa%2C+Devaraj&rft.date=2022-03-01&rft.issn=1879-3304&rft.eissn=1879-3304&rft.volume=67&rft.issue=2&rft.spage=411&rft_id=info:doi/10.1016%2Fj.survophthal.2021.06.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-6257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-6257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-6257&client=summon