On the Fueter–Sce theorem for generalized partial-slice monogenic functions
In a recent paper, we introduced the concept of generalized partial-slice monogenic functions. The class of these functions includes both monogenic functions and slice monogenic functions with values in a Clifford algebra. In this paper, we establish a version of the Fueter–Sce theorem in this new s...
Uloženo v:
| Vydáno v: | Annali di matematica pura ed applicata Ročník 204; číslo 2; s. 835 - 857 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0373-3114, 1618-1891 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In a recent paper, we introduced the concept of generalized partial-slice monogenic functions. The class of these functions includes both monogenic functions and slice monogenic functions with values in a Clifford algebra. In this paper, we establish a version of the Fueter–Sce theorem in this new setting, which allows to construct monogenic functions in higher dimensions starting from generalized partial-slice monogenic functions. We also prove that an alternative construction can be obtained by using the dual Radon transform. It turns out that these two constructions are closely related to the generalized CK-extension. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0373-3114 1618-1891 |
| DOI: | 10.1007/s10231-024-01508-1 |