SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS
In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study p...
Gespeichert in:
| Veröffentlicht in: | Acta mathematica scientia Jg. 30; H. 3; S. 747 - 768 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2010
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| Schlagworte: | |
| ISSN: | 0252-9602, 1572-9087 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them. |
|---|---|
| Bibliographie: | O174.52 Complex Clifford algebra; holomorphic Cliffordian functions; Taylor expansion; Laurent exnansion;invariance Taylor expansion invariance 42-1227/O holomorphic Cliffordian functions O174.5 Laurent exnansion Complex Clifford algebra ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 0252-9602 1572-9087 |
| DOI: | 10.1016/S0252-9602(10)60076-8 |