SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS
In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study p...
Uloženo v:
| Vydáno v: | Acta mathematica scientia Ročník 30; číslo 3; s. 747 - 768 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2010
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| Témata: | |
| ISSN: | 0252-9602, 1572-9087 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them. |
|---|---|
| Bibliografie: | O174.52 Complex Clifford algebra; holomorphic Cliffordian functions; Taylor expansion; Laurent exnansion;invariance Taylor expansion invariance 42-1227/O holomorphic Cliffordian functions O174.5 Laurent exnansion Complex Clifford algebra ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 0252-9602 1572-9087 |
| DOI: | 10.1016/S0252-9602(10)60076-8 |