SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS
In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study p...
Uloženo v:
| Vydáno v: | Acta mathematica scientia Ročník 30; číslo 3; s. 747 - 768 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2010
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| Témata: | |
| ISSN: | 0252-9602, 1572-9087 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them. |
|---|---|
| AbstractList | O1; In this article,we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of Cn+1,so-called complex holomorphic Cliffordian functions.We define the complex holomorphic Cliffordian functions,study polynomial and singular solutions of the equation D△mf=0,obtain the integral representation formula for the complex holomorphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of Cn+1,deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them. In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C super()n1 so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D Delta super()mf = 0, obtain the integral representation formula for the complex holomorphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C super()n1 deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them. In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C n+1 , so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation DΔ m f = 0, obtain the integral representation formula for the complex holomorphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C n+1 , deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them. In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them. |
| Author | 库敏 杜金元 王道顺 |
| AuthorAffiliation | Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| AuthorAffiliation_xml | – name: Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| Author_xml | – sequence: 1 fullname: 库敏 杜金元 王道顺 |
| BookMark | eNqFkU9v1DAQxS1UJLYtHwEp4kJ7CPWfjZ2IA1qFhI2UjZfNVoKTZTtOcUmTNs7S8u3xdqseONDLjDTzezPSe8fgqB96A8A7BD8iiOhFDXGEw4RCfIbgOYWQ0TB-BWYoYn4MY3YEZs_IG3Ds3DX0OkznM_Ct5qssWG_4Ottsi6wOeB4seclXfLNeFmmQlkWe882XYlEF-WWVbgte1UFRBSlfrcvs-zMQLKpF-aMu6lPwupWdM2-f-gm4zLNtugxL_rVIF2Wo5ySaQqUUo5QyHbWJaSFjhtJGKsOwSnQsG4hwYlCbwMSQeaRgg0nrd1RpSZCikJyA88Pde9m3sr8S18Nu7P1H4R7uuwclDIYIQuKLZz8c2NtxuNsZN4kb67TpOtmbYecEiwiNcZxgT579l0SUIcLmLEEejQ6oHgfnRtOK29HeyPGPQFDsgxGPwYi96_vRYzAi9rpP_-i0neRkh34ape1eVH8-qI339rc1o3Daml6bxo5GT6IZ7IsX3j_9_zn0V3fWW6ek_tXazghC4jj2vpG_PsuspA |
| CitedBy_id | crossref_primary_10_1080_17476933_2015_1123698 crossref_primary_10_1007_s00006_021_01175_y crossref_primary_10_1002_mma_1368 crossref_primary_10_1007_s00006_011_0308_2 crossref_primary_10_1080_17476933_2011_649738 crossref_primary_10_1186_s13660_018_1816_6 crossref_primary_10_1007_s00025_012_0274_6 crossref_primary_10_1016_j_jmaa_2010_08_015 crossref_primary_10_1007_s00006_018_0888_1 crossref_primary_10_1007_s11785_012_0277_z |
| Cites_doi | 10.1007/s00006-008-0126-3 10.1080/17476938308814041 10.1016/j.jmaa.2005.06.053 10.1016/0022-1236(87)90112-1 10.1080/17476938208814009 10.4171/ZAA/410 10.1080/02781070290032243 10.1002/mma.387 10.1016/0022-0396(87)90129-X 10.1007/s11859-009-0201-1 10.1007/s00006-008-0067-x 10.1007/s00006-008-0146-z 10.1016/S0764-4442(97)82985-0 10.1080/17476930108815384 |
| ClassificationCodes | O1 |
| ContentType | Journal Article |
| Copyright | 2010 Wuhan Institute of Physics and Mathematics Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2010 Wuhan Institute of Physics and Mathematics – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1016/S0252-9602(10)60076-8 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| DocumentTitleAlternate | SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS |
| EISSN | 1572-9087 |
| EndPage | 768 |
| ExternalDocumentID | sxwlxb_e201003010 10_1016_S0252_9602_10_60076_8 S0252960210600768 33888201 |
| GrantInformation_xml | – fundername: NNSF of China grantid: 6087349; 10871150 – fundername: RFDP of Higher Education grantid: 20060486001 – fundername: 863 Project of China grantid: 2008AA01Z419 – fundername: Post-Doctor Foundation of China grantid: 20090460316 – fundername: NNSF of China(6087349; 10871150); 863 Project of China; RFDP of Higher Education; Post-Doctor Foundation of China funderid: NNSF of China(6087349; 10871150); (2008AA01Z419); (20060486001); (20090460316) |
| GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 23M 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92E 92I 92L 92M 92Q 93N 9D9 9DA AACTN AAEDT AAFGU AAHNG AAIKJ AAKOC AALMO AALRI AAOAW AAPBV AAQFI AAUYE AAXUO ABAOU ABECU ABFGW ABFNM ABFTV ABKAS ABKCH ABMAC ABMQK ABPIF ABTEG ABTMW ABXDB ABXPI ABYKQ ACAZW ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACRLP ACTTH ACVWB ACWMK ADALY ADBBV ADEZE ADKNI ADMDM ADTIX ADURQ ADYFF AEBSH AEFTE AEJRE AEKER AENEX AESTI AEVTX AFKWA AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AIAKS AIEXJ AIGVJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMYLF ARUGR AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CDYEO CHBEP CIAHI CQIGP CS3 CSCUP CW9 EBLON EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNLPD FNPLU FYGXN GBLVA GJIRD HVGLF HZ~ IPNFZ J1W JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MHUIS MO0 N9A NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A REI RIG ROL RSV RT1 S.. SDC SDF SDG SDH SES SNE SOJ SPC SRMVM SSLCW SSW SSZ T5K T8Q TCJ TGP TSG U1F U1G U5A U5K UOJIU UTJUX VFIZW W94 ZMTXR ~G- ~L9 ~WA AAEDW AATNV AAYFA ABTKH ACOKC ACZOJ ADMUD ADOXG ADTPH AESKC AFNRJ AGQEE AMXSW DPUIP EFLBG FIGPU IKXTQ IWAJR NPVJJ PT4 SNPRN SOHCF VEKWB 9DU AACDK AAJBT AASML AATTM AAXKI AAYWO AAYXX ABAKF ABBRH ABDBE ABFSG ABJNI ABRTQ ABWVN ACAOD ACDTI ACLOT ACPIV ACRPL ACSTC ACVFH ADCNI ADNMO AEFQL AEIPS AEMSY AEUPX AEZWR AFBBN AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIGIU AIIUN AIXLP AKBMS AKRWK AKYEP ANKPU ATHPR AYFIA CITATION EFKBS HG6 SJYHP ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 4A8 AFXIZ AGCQF AGRNS PSX SSH |
| ID | FETCH-LOGICAL-c435t-bbb76667c5f9ef077e66dabe72b9c8ad0129e1f909e345b0d23f72b6bca31b603 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278171600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0252-9602 |
| IngestDate | Thu May 29 04:00:08 EDT 2025 Wed Oct 01 11:09:50 EDT 2025 Sat Sep 27 23:21:07 EDT 2025 Sat Nov 29 03:44:33 EST 2025 Tue Nov 18 21:30:45 EST 2025 Fri Feb 23 02:25:04 EST 2024 Thu Nov 24 20:35:38 EST 2022 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 31C10 32A10 30G35 Taylor expansion invariance 22E30 Laurent expansion holomorphic Cliffordian functions Complex Clifford algebra |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c435t-bbb76667c5f9ef077e66dabe72b9c8ad0129e1f909e345b0d23f72b6bca31b603 |
| Notes | O174.52 Complex Clifford algebra; holomorphic Cliffordian functions; Taylor expansion; Laurent exnansion;invariance Taylor expansion invariance 42-1227/O holomorphic Cliffordian functions O174.5 Laurent exnansion Complex Clifford algebra ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1671374791 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | wanfang_journals_sxwlxb_e201003010 proquest_miscellaneous_753682892 proquest_miscellaneous_1671374791 crossref_primary_10_1016_S0252_9602_10_60076_8 crossref_citationtrail_10_1016_S0252_9602_10_60076_8 elsevier_sciencedirect_doi_10_1016_S0252_9602_10_60076_8 chongqing_backfile_33888201 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-05-01 |
| PublicationDateYYYYMMDD | 2010-05-01 |
| PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Acta mathematica scientia |
| PublicationTitleAlternate | Acta Mathematica Scientia |
| PublicationTitle_FL | ACTA MATHEMATICA SCIENTIA |
| PublicationYear | 2010 |
| Publisher | Elsevier Ltd Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| Publisher_xml | – name: Elsevier Ltd – name: Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
| References | John (bib4) 1983; 15 Eric (bib16) 2004; 7 Wells (bib25) 1980 Helmuth, Ren (bib22) 2002; 25 Guy, Ivan (bib15) 1998; 326 Steven (bib26) 1992 Guy, Ivan (bib13) 1998; 2 John (bib8) 1996; 118 John (bib5) 1983; 2 John (bib24) 1991; 64 Brackx, Delanghe, Sommen (bib2) 1982 Gürlebeck, Kippig (bib9) 1995; 5 John (bib6) 1987; 70 Ku, Du (bib20) 2009; 19 John (bib3) 1982; 1 Guy, Ivan (bib18) 2001; 45 Zhang (bib21) 2006; 315 Guy, Ivan (bib14) 2002; 47 John (bib11) 1990; 9 Min, Jinyuan (bib23) 2009; 14 John (bib7) 1983; 13 Guy, Eric (bib17) 2004; 29 Ku (bib19) 2010; 20 John (bib12) 1987; 67 Delanghe, Sommen, Souccêk (bib1) 1992 John (bib10) 1992; 64 John (10.1016/S0252-9602(10)60076-8_bib8) 1996; 118 John (10.1016/S0252-9602(10)60076-8_bib10) 1992; 64 John (10.1016/S0252-9602(10)60076-8_bib11) 1990; 9 Min (10.1016/S0252-9602(10)60076-8_bib23) 2009; 14 Guy (10.1016/S0252-9602(10)60076-8_bib15) 1998; 326 John (10.1016/S0252-9602(10)60076-8_bib24) 1991; 64 Gürlebeck (10.1016/S0252-9602(10)60076-8_bib9) 1995; 5 Guy (10.1016/S0252-9602(10)60076-8_bib18) 2001; 45 John (10.1016/S0252-9602(10)60076-8_bib7) 1983; 13 Guy (10.1016/S0252-9602(10)60076-8_bib17) 2004; 29 Zhang (10.1016/S0252-9602(10)60076-8_bib21) 2006; 315 Wells (10.1016/S0252-9602(10)60076-8_bib25) 1980 Guy (10.1016/S0252-9602(10)60076-8_bib13) 1998; 2 John (10.1016/S0252-9602(10)60076-8_bib6) 1987; 70 Eric (10.1016/S0252-9602(10)60076-8_bib16) 2004; 7 John (10.1016/S0252-9602(10)60076-8_bib4) 1983; 15 John (10.1016/S0252-9602(10)60076-8_bib12) 1987; 67 Ku (10.1016/S0252-9602(10)60076-8_bib20) 2009; 19 John (10.1016/S0252-9602(10)60076-8_bib5) 1983; 2 Guy (10.1016/S0252-9602(10)60076-8_bib14) 2002; 47 Ku (10.1016/S0252-9602(10)60076-8_bib19) 2010; 20 Helmuth (10.1016/S0252-9602(10)60076-8_bib22) 2002; 25 Brackx (10.1016/S0252-9602(10)60076-8_bib2) 1982 Steven (10.1016/S0252-9602(10)60076-8_bib26) 1992 Delanghe (10.1016/S0252-9602(10)60076-8_bib1) 1992 John (10.1016/S0252-9602(10)60076-8_bib3) 1982; 1 |
| References_xml | – volume: 14 start-page: 97 year: 2009 end-page: 102 ident: bib23 article-title: A Laurent expansion and residue theorems of publication-title: Wuhan Univ J Nat Sci – volume: 118 start-page: 93 year: 1996 end-page: 133 ident: bib8 article-title: Intrinsic Dirac operators in publication-title: Adv Math – volume: 326 start-page: 307 year: 1998 end-page: 310 ident: bib15 article-title: Founctions holomorphes Cliffordiennes publication-title: C R Acad Sci Paris – volume: 19 start-page: 83 year: 2009 end-page: 100 ident: bib20 article-title: On the integral representation of spherical publication-title: Adv in Appl Clifford Algerb – year: 1980 ident: bib25 publication-title: Differential analysis on complex manifolds – volume: 7 start-page: 151 year: 2004 end-page: 198 ident: bib16 article-title: Holomorphic Cliffordian function and analytic Cliffordian functions publication-title: Clifford Algebr Potential Theory – volume: 64 start-page: 70 year: 1991 end-page: 94 ident: bib24 article-title: Plemelj formulae and transformations associated to plane wave decompositions in complex Clifford analysis publication-title: Proc London Math Soc – volume: 45 start-page: 297 year: 2001 end-page: 318 ident: bib18 article-title: Elliptic Cliffordian functions publication-title: Complex Var Theory Appl – volume: 20 start-page: 57 year: 2010 end-page: 70 ident: bib19 article-title: Integral formula of isotonic functions over unbounded domain in Clifford analysis publication-title: Adv in Appl Clifford Algerb – volume: 2 start-page: 177 year: 1983 end-page: 198 ident: bib5 article-title: Special functions and relations within complex Clifford analysis I publication-title: Complex Var Theory Appl – volume: 29 start-page: 251 year: 2004 end-page: 268 ident: bib17 article-title: Analytic Cliffordian function publication-title: Ann Acad Sci Fenn Math – volume: 70 start-page: 221 year: 1987 end-page: 253 ident: bib6 article-title: Runge approximation theorem in complex Clifford analysis together with some of their application publication-title: J Funct Anal – volume: 64 start-page: 70 year: 1992 end-page: 94 ident: bib10 article-title: Applications of complex Clifford analysis to the study to plane wave decompositions in complex Clifford analysis publication-title: Proc London Math Soc – volume: 9 start-page: 385 year: 1990 end-page: 401 ident: bib11 article-title: Iterated Dirac operators in publication-title: Z Anal Anwendungen – volume: 47 start-page: 787 year: 2002 end-page: 802 ident: bib14 article-title: Jaccobi elliptic Cliffordian functions publication-title: Complex Var Theory Appl – year: 1992 ident: bib26 publication-title: Function theory of several complex variables – volume: 13 start-page: 151 year: 1983 end-page: 171 ident: bib7 article-title: Clifford analysis with generalized elliptic and quasi elliptic functions publication-title: Applicable Anal – volume: 5 start-page: 51 year: 1995 end-page: 62 ident: bib9 article-title: Complex Clifford analysis and elliptic boundary value problems publication-title: Adv Appl Clifford Algebr – volume: 67 start-page: 295 year: 1987 end-page: 329 ident: bib12 article-title: Applications of complex Clifford analysis to the study of solutions to generalized Dirac and Klein-Gordon equations with holomorphic potentials publication-title: J Differential Equations – year: 1992 ident: bib1 publication-title: Clifford algebra and spinor-valued function – volume: 1 start-page: 119 year: 1982 end-page: 149 ident: bib3 article-title: Complexified Clifford analysis publication-title: Complex Var Theory Appl – volume: 25 start-page: 1541 year: 2002 end-page: 1552 ident: bib22 article-title: Almansi-type theorems in Clifford analysis publication-title: Math Meth Appl Sci – volume: 15 start-page: 33 year: 1983 end-page: 49 ident: bib4 article-title: Singularities and Laurent expansions in complex Clifford analysis publication-title: Applicable Anal – year: 1982 ident: bib2 publication-title: Clifford analysis. Research Notes in Mathematics 76 – volume: 315 start-page: 491 year: 2006 end-page: 505 ident: bib21 article-title: On k-regular functions with values in a universal Clifford algebra publication-title: J Math Anal Appl – volume: 2 start-page: 323 year: 1998 end-page: 340 ident: bib13 article-title: Holomorphic Cliffordian functions publication-title: Adv Appl Clifford Algebr – volume: 5 start-page: 51 issue: 1 year: 1995 ident: 10.1016/S0252-9602(10)60076-8_bib9 article-title: Complex Clifford analysis and elliptic boundary value problems publication-title: Adv Appl Clifford Algebr doi: 10.1007/s00006-008-0126-3 – volume: 29 start-page: 251 issue: 2 year: 2004 ident: 10.1016/S0252-9602(10)60076-8_bib17 article-title: Analytic Cliffordian function publication-title: Ann Acad Sci Fenn Math – volume: 2 start-page: 177 year: 1983 ident: 10.1016/S0252-9602(10)60076-8_bib5 article-title: Special functions and relations within complex Clifford analysis I publication-title: Complex Var Theory Appl doi: 10.1080/17476938308814041 – volume: 315 start-page: 491 issue: 2 year: 2006 ident: 10.1016/S0252-9602(10)60076-8_bib21 article-title: On k-regular functions with values in a universal Clifford algebra publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2005.06.053 – volume: 70 start-page: 221 issue: 2 year: 1987 ident: 10.1016/S0252-9602(10)60076-8_bib6 article-title: Runge approximation theorem in complex Clifford analysis together with some of their application publication-title: J Funct Anal doi: 10.1016/0022-1236(87)90112-1 – year: 1992 ident: 10.1016/S0252-9602(10)60076-8_bib1 – year: 1980 ident: 10.1016/S0252-9602(10)60076-8_bib25 – volume: 1 start-page: 119 year: 1982 ident: 10.1016/S0252-9602(10)60076-8_bib3 article-title: Complexified Clifford analysis publication-title: Complex Var Theory Appl doi: 10.1080/17476938208814009 – volume: 2 start-page: 323 year: 1998 ident: 10.1016/S0252-9602(10)60076-8_bib13 article-title: Holomorphic Cliffordian functions publication-title: Adv Appl Clifford Algebr – volume: 9 start-page: 385 issue: 5 year: 1990 ident: 10.1016/S0252-9602(10)60076-8_bib11 article-title: Iterated Dirac operators in Cn publication-title: Z Anal Anwendungen doi: 10.4171/ZAA/410 – volume: 47 start-page: 787 issue: 9 year: 2002 ident: 10.1016/S0252-9602(10)60076-8_bib14 article-title: Jaccobi elliptic Cliffordian functions publication-title: Complex Var Theory Appl doi: 10.1080/02781070290032243 – volume: 64 start-page: 70 year: 1991 ident: 10.1016/S0252-9602(10)60076-8_bib24 article-title: Plemelj formulae and transformations associated to plane wave decompositions in complex Clifford analysis publication-title: Proc London Math Soc – volume: 25 start-page: 1541 year: 2002 ident: 10.1016/S0252-9602(10)60076-8_bib22 article-title: Almansi-type theorems in Clifford analysis publication-title: Math Meth Appl Sci doi: 10.1002/mma.387 – volume: 67 start-page: 295 year: 1987 ident: 10.1016/S0252-9602(10)60076-8_bib12 article-title: Applications of complex Clifford analysis to the study of solutions to generalized Dirac and Klein-Gordon equations with holomorphic potentials publication-title: J Differential Equations doi: 10.1016/0022-0396(87)90129-X – volume: 14 start-page: 97 issue: 2 year: 2009 ident: 10.1016/S0252-9602(10)60076-8_bib23 article-title: A Laurent expansion and residue theorems of k-regular functions in Clifford analysis publication-title: Wuhan Univ J Nat Sci doi: 10.1007/s11859-009-0201-1 – volume: 13 start-page: 151 year: 1983 ident: 10.1016/S0252-9602(10)60076-8_bib7 article-title: Clifford analysis with generalized elliptic and quasi elliptic functions publication-title: Applicable Anal – volume: 118 start-page: 93 year: 1996 ident: 10.1016/S0252-9602(10)60076-8_bib8 article-title: Intrinsic Dirac operators in Cn publication-title: Adv Math – volume: 19 start-page: 83 issue: 1 year: 2009 ident: 10.1016/S0252-9602(10)60076-8_bib20 article-title: On the integral representation of spherical k-regular functions in clifford analysis publication-title: Adv in Appl Clifford Algerb doi: 10.1007/s00006-008-0067-x – volume: 7 start-page: 151 year: 2004 ident: 10.1016/S0252-9602(10)60076-8_bib16 article-title: Holomorphic Cliffordian function and analytic Cliffordian functions publication-title: Clifford Algebr Potential Theory – volume: 15 start-page: 33 year: 1983 ident: 10.1016/S0252-9602(10)60076-8_bib4 article-title: Singularities and Laurent expansions in complex Clifford analysis publication-title: Applicable Anal – year: 1992 ident: 10.1016/S0252-9602(10)60076-8_bib26 – volume: 20 start-page: 57 issue: 1 year: 2010 ident: 10.1016/S0252-9602(10)60076-8_bib19 article-title: Integral formula of isotonic functions over unbounded domain in Clifford analysis publication-title: Adv in Appl Clifford Algerb doi: 10.1007/s00006-008-0146-z – volume: 326 start-page: 307 year: 1998 ident: 10.1016/S0252-9602(10)60076-8_bib15 article-title: Founctions holomorphes Cliffordiennes publication-title: C R Acad Sci Paris doi: 10.1016/S0764-4442(97)82985-0 – volume: 64 start-page: 70 issue: 3 year: 1992 ident: 10.1016/S0252-9602(10)60076-8_bib10 article-title: Applications of complex Clifford analysis to the study to plane wave decompositions in complex Clifford analysis publication-title: Proc London Math Soc – volume: 45 start-page: 297 year: 2001 ident: 10.1016/S0252-9602(10)60076-8_bib18 article-title: Elliptic Cliffordian functions publication-title: Complex Var Theory Appl doi: 10.1080/17476930108815384 – year: 1982 ident: 10.1016/S0252-9602(10)60076-8_bib2 |
| SSID | ssj0016264 |
| Score | 1.8522431 |
| Snippet | In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on... O1; In this article,we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on... |
| SourceID | wanfang proquest crossref elsevier chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 747 |
| SubjectTerms | 22E30 30G35 31C10 32A10 Algebra Complex Clifford algebra Complex variables Foundations holomorphic Cliffordian functions Integrals invariance Laurent expansion Lie groups Mathematical analysis Mathematics Representations Taylor expansion 代数函数 全纯函数 复变函数理论 多项式 子代数 定义值 表示公式 |
| Title | SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS |
| URI | https://dx.doi.org/10.1016/S0252-9602(10)60076-8 https://www.proquest.com/docview/1671374791 https://www.proquest.com/docview/753682892 https://d.wanfangdata.com.cn/periodical/sxwlxb-e201003010 |
| Volume | 30 |
| WOSCitedRecordID | wos000278171600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1572-9087 dateEnd: 20181130 omitProxy: false ssIdentifier: ssj0016264 issn: 0252-9602 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegYxI88DFAlAEyCBCoCqRxE8eP1dQJxjZA60TfLNt1WESbdEvLyn_POXGcIDRtPPASNY4_VP_O57vz-Q6hl4FgfaYHU49FsfIGEtQdJiSoKiwEVduXcUBUmWyCHh7Gkwn7Yt3GijKdAM2yeL1mi_8KNZQB2Obq7D_A7TqFAvgNoMMTYIfnlYA_yufm8lO-MB7TVUhZw-HmOcxoqno7szQxDu2ldQM2NedLXjqX67Wr0BM2Xklbfh2qpejNXahXYS9Upo65H1QxCT6tGgm5t5dmv1aVobV5a0zkeXGyKj9-E3YbtVaI6gDdWiEqZhWEgHLk_8FZ7YlL2la8SzZJqyibdselVWKdv5h5ZVc4cl2byFX-q4CZkPqRFzc7WH1qf_iZ7x7v7_PxaDJ-vTj1TG4xcwZvE61cRxsBDVncQRvDj6PJnjttAqWuDDNWD9Tc9HrfjP6m77-1I5s4HCd59v0UpIuL5JmWvrJ5LrIEZrAluIzvottW48DDilLuoWs620J3rPaBLW8vttCtAwcrvG2WrsGquI--GoLCDUHhPMEtgsItgsKOoHCaYUtQrgKuCeoBOt4djXc-eDYRh6dAml56UkoKai5VYcJ04lOqo2gqpKaBZCoWU2PM1P2E-UyTQSj9aUAS-BZJJUhfRj55iDpZnulHCMsE-qBEURaSAdOaCSWTgElChQDdPemibTe1IMipHyY8GSckjo2o2kWDerK5sjHsTSqVGW-cFQEvbvAyRSVePO6id67ZogriclmDuEaSW0m0kjA50OZlTZ_XyHPg1Ob4TWQ6XxW8H9E-Acpn8DfwBXVoSCJjAwm66IWlGm55S8GL9flsLbk2689YMvzHVxhrG91s1usT1FmerfRTdEP9XKbF2TO7En4DafrIsg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+properties+of+holomorphic+Cliffordian+functions+in+complex+Clifford+analysis&rft.jtitle=Acta+mathematica+scientia&rft.au=Min%2C+Ku&rft.au=Du+Jinyuan%2C+Du+Jinyuan&rft.au=Daoshun%2C+Wang&rft.date=2010-05-01&rft.issn=0252-9602&rft.volume=30&rft.issue=3&rft.spage=747&rft.epage=768&rft_id=info:doi/10.1016%2FS0252-9602%2810%2960076-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg |