SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS

In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mathematica scientia Ročník 30; číslo 3; s. 747 - 768
Hlavní autor: 库敏 杜金元 王道顺
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2010
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Témata:
ISSN:0252-9602, 1572-9087
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.
AbstractList O1; In this article,we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of Cn+1,so-called complex holomorphic Cliffordian functions.We define the complex holomorphic Cliffordian functions,study polynomial and singular solutions of the equation D△mf=0,obtain the integral representation formula for the complex holomorphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of Cn+1,deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.
In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C super()n1 so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D Delta super()mf = 0, obtain the integral representation formula for the complex holomorphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C super()n1 deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.
In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C n+1 , so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation DΔ m f = 0, obtain the integral representation formula for the complex holomorphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C n+1 , deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.
In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.
Author 库敏 杜金元 王道顺
AuthorAffiliation Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
AuthorAffiliation_xml – name: Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Author_xml – sequence: 1
  fullname: 库敏 杜金元 王道顺
BookMark eNqFkU9v1DAQxS1UJLYtHwEp4kJ7CPWfjZ2IA1qFhI2UjZfNVoKTZTtOcUmTNs7S8u3xdqseONDLjDTzezPSe8fgqB96A8A7BD8iiOhFDXGEw4RCfIbgOYWQ0TB-BWYoYn4MY3YEZs_IG3Ds3DX0OkznM_Ct5qssWG_4Ottsi6wOeB4seclXfLNeFmmQlkWe882XYlEF-WWVbgte1UFRBSlfrcvs-zMQLKpF-aMu6lPwupWdM2-f-gm4zLNtugxL_rVIF2Wo5ySaQqUUo5QyHbWJaSFjhtJGKsOwSnQsG4hwYlCbwMSQeaRgg0nrd1RpSZCikJyA88Pde9m3sr8S18Nu7P1H4R7uuwclDIYIQuKLZz8c2NtxuNsZN4kb67TpOtmbYecEiwiNcZxgT579l0SUIcLmLEEejQ6oHgfnRtOK29HeyPGPQFDsgxGPwYi96_vRYzAi9rpP_-i0neRkh34ape1eVH8-qI339rc1o3Daml6bxo5GT6IZ7IsX3j_9_zn0V3fWW6ek_tXazghC4jj2vpG_PsuspA
CitedBy_id crossref_primary_10_1080_17476933_2015_1123698
crossref_primary_10_1007_s00006_021_01175_y
crossref_primary_10_1002_mma_1368
crossref_primary_10_1007_s00006_011_0308_2
crossref_primary_10_1080_17476933_2011_649738
crossref_primary_10_1186_s13660_018_1816_6
crossref_primary_10_1007_s00025_012_0274_6
crossref_primary_10_1016_j_jmaa_2010_08_015
crossref_primary_10_1007_s00006_018_0888_1
crossref_primary_10_1007_s11785_012_0277_z
Cites_doi 10.1007/s00006-008-0126-3
10.1080/17476938308814041
10.1016/j.jmaa.2005.06.053
10.1016/0022-1236(87)90112-1
10.1080/17476938208814009
10.4171/ZAA/410
10.1080/02781070290032243
10.1002/mma.387
10.1016/0022-0396(87)90129-X
10.1007/s11859-009-0201-1
10.1007/s00006-008-0067-x
10.1007/s00006-008-0146-z
10.1016/S0764-4442(97)82985-0
10.1080/17476930108815384
ClassificationCodes O1
ContentType Journal Article
Copyright 2010 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2010 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(10)60076-8
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS
EISSN 1572-9087
EndPage 768
ExternalDocumentID sxwlxb_e201003010
10_1016_S0252_9602_10_60076_8
S0252960210600768
33888201
GrantInformation_xml – fundername: NNSF of China
  grantid: 6087349; 10871150
– fundername: RFDP of Higher Education
  grantid: 20060486001
– fundername: 863 Project of China
  grantid: 2008AA01Z419
– fundername: Post-Doctor Foundation of China
  grantid: 20090460316
– fundername: NNSF of China(6087349; 10871150); 863 Project of China; RFDP of Higher Education; Post-Doctor Foundation of China
  funderid: NNSF of China(6087349; 10871150); (2008AA01Z419); (20060486001); (20090460316)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAFGU
AAHNG
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAPBV
AAQFI
AAUYE
AAXUO
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABPIF
ABTEG
ABTMW
ABXDB
ABXPI
ABYKQ
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACRLP
ACTTH
ACVWB
ACWMK
ADALY
ADBBV
ADEZE
ADKNI
ADMDM
ADTIX
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESTI
AEVTX
AFKWA
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CDYEO
CHBEP
CIAHI
CQIGP
CS3
CSCUP
CW9
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IPNFZ
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VFIZW
W94
ZMTXR
~G-
~L9
~WA
AAEDW
AATNV
AAYFA
ABTKH
ACOKC
ACZOJ
ADMUD
ADOXG
ADTPH
AESKC
AFNRJ
AGQEE
AMXSW
DPUIP
EFLBG
FIGPU
IKXTQ
IWAJR
NPVJJ
PT4
SNPRN
SOHCF
VEKWB
9DU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ABWVN
ACAOD
ACDTI
ACLOT
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
EFKBS
HG6
SJYHP
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
4A8
AFXIZ
AGCQF
AGRNS
PSX
SSH
ID FETCH-LOGICAL-c435t-bbb76667c5f9ef077e66dabe72b9c8ad0129e1f909e345b0d23f72b6bca31b603
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278171600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Wed Oct 01 11:09:50 EDT 2025
Sat Sep 27 23:21:07 EDT 2025
Sat Nov 29 03:44:33 EST 2025
Tue Nov 18 21:30:45 EST 2025
Fri Feb 23 02:25:04 EST 2024
Thu Nov 24 20:35:38 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 31C10
32A10
30G35
Taylor expansion
invariance
22E30
Laurent expansion
holomorphic Cliffordian functions
Complex Clifford algebra
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-bbb76667c5f9ef077e66dabe72b9c8ad0129e1f909e345b0d23f72b6bca31b603
Notes O174.52
Complex Clifford algebra; holomorphic Cliffordian functions; Taylor expansion; Laurent exnansion;invariance
Taylor expansion
invariance
42-1227/O
holomorphic Cliffordian functions
O174.5
Laurent exnansion
Complex Clifford algebra
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1671374791
PQPubID 23500
PageCount 22
ParticipantIDs wanfang_journals_sxwlxb_e201003010
proquest_miscellaneous_753682892
proquest_miscellaneous_1671374791
crossref_primary_10_1016_S0252_9602_10_60076_8
crossref_citationtrail_10_1016_S0252_9602_10_60076_8
elsevier_sciencedirect_doi_10_1016_S0252_9602_10_60076_8
chongqing_backfile_33888201
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL ACTA MATHEMATICA SCIENTIA
PublicationYear 2010
Publisher Elsevier Ltd
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Publisher_xml – name: Elsevier Ltd
– name: Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
References John (bib4) 1983; 15
Eric (bib16) 2004; 7
Wells (bib25) 1980
Helmuth, Ren (bib22) 2002; 25
Guy, Ivan (bib15) 1998; 326
Steven (bib26) 1992
Guy, Ivan (bib13) 1998; 2
John (bib8) 1996; 118
John (bib5) 1983; 2
John (bib24) 1991; 64
Brackx, Delanghe, Sommen (bib2) 1982
Gürlebeck, Kippig (bib9) 1995; 5
John (bib6) 1987; 70
Ku, Du (bib20) 2009; 19
John (bib3) 1982; 1
Guy, Ivan (bib18) 2001; 45
Zhang (bib21) 2006; 315
Guy, Ivan (bib14) 2002; 47
John (bib11) 1990; 9
Min, Jinyuan (bib23) 2009; 14
John (bib7) 1983; 13
Guy, Eric (bib17) 2004; 29
Ku (bib19) 2010; 20
John (bib12) 1987; 67
Delanghe, Sommen, Souccêk (bib1) 1992
John (bib10) 1992; 64
John (10.1016/S0252-9602(10)60076-8_bib8) 1996; 118
John (10.1016/S0252-9602(10)60076-8_bib10) 1992; 64
John (10.1016/S0252-9602(10)60076-8_bib11) 1990; 9
Min (10.1016/S0252-9602(10)60076-8_bib23) 2009; 14
Guy (10.1016/S0252-9602(10)60076-8_bib15) 1998; 326
John (10.1016/S0252-9602(10)60076-8_bib24) 1991; 64
Gürlebeck (10.1016/S0252-9602(10)60076-8_bib9) 1995; 5
Guy (10.1016/S0252-9602(10)60076-8_bib18) 2001; 45
John (10.1016/S0252-9602(10)60076-8_bib7) 1983; 13
Guy (10.1016/S0252-9602(10)60076-8_bib17) 2004; 29
Zhang (10.1016/S0252-9602(10)60076-8_bib21) 2006; 315
Wells (10.1016/S0252-9602(10)60076-8_bib25) 1980
Guy (10.1016/S0252-9602(10)60076-8_bib13) 1998; 2
John (10.1016/S0252-9602(10)60076-8_bib6) 1987; 70
Eric (10.1016/S0252-9602(10)60076-8_bib16) 2004; 7
John (10.1016/S0252-9602(10)60076-8_bib4) 1983; 15
John (10.1016/S0252-9602(10)60076-8_bib12) 1987; 67
Ku (10.1016/S0252-9602(10)60076-8_bib20) 2009; 19
John (10.1016/S0252-9602(10)60076-8_bib5) 1983; 2
Guy (10.1016/S0252-9602(10)60076-8_bib14) 2002; 47
Ku (10.1016/S0252-9602(10)60076-8_bib19) 2010; 20
Helmuth (10.1016/S0252-9602(10)60076-8_bib22) 2002; 25
Brackx (10.1016/S0252-9602(10)60076-8_bib2) 1982
Steven (10.1016/S0252-9602(10)60076-8_bib26) 1992
Delanghe (10.1016/S0252-9602(10)60076-8_bib1) 1992
John (10.1016/S0252-9602(10)60076-8_bib3) 1982; 1
References_xml – volume: 14
  start-page: 97
  year: 2009
  end-page: 102
  ident: bib23
  article-title: A Laurent expansion and residue theorems of
  publication-title: Wuhan Univ J Nat Sci
– volume: 118
  start-page: 93
  year: 1996
  end-page: 133
  ident: bib8
  article-title: Intrinsic Dirac operators in
  publication-title: Adv Math
– volume: 326
  start-page: 307
  year: 1998
  end-page: 310
  ident: bib15
  article-title: Founctions holomorphes Cliffordiennes
  publication-title: C R Acad Sci Paris
– volume: 19
  start-page: 83
  year: 2009
  end-page: 100
  ident: bib20
  article-title: On the integral representation of spherical
  publication-title: Adv in Appl Clifford Algerb
– year: 1980
  ident: bib25
  publication-title: Differential analysis on complex manifolds
– volume: 7
  start-page: 151
  year: 2004
  end-page: 198
  ident: bib16
  article-title: Holomorphic Cliffordian function and analytic Cliffordian functions
  publication-title: Clifford Algebr Potential Theory
– volume: 64
  start-page: 70
  year: 1991
  end-page: 94
  ident: bib24
  article-title: Plemelj formulae and transformations associated to plane wave decompositions in complex Clifford analysis
  publication-title: Proc London Math Soc
– volume: 45
  start-page: 297
  year: 2001
  end-page: 318
  ident: bib18
  article-title: Elliptic Cliffordian functions
  publication-title: Complex Var Theory Appl
– volume: 20
  start-page: 57
  year: 2010
  end-page: 70
  ident: bib19
  article-title: Integral formula of isotonic functions over unbounded domain in Clifford analysis
  publication-title: Adv in Appl Clifford Algerb
– volume: 2
  start-page: 177
  year: 1983
  end-page: 198
  ident: bib5
  article-title: Special functions and relations within complex Clifford analysis I
  publication-title: Complex Var Theory Appl
– volume: 29
  start-page: 251
  year: 2004
  end-page: 268
  ident: bib17
  article-title: Analytic Cliffordian function
  publication-title: Ann Acad Sci Fenn Math
– volume: 70
  start-page: 221
  year: 1987
  end-page: 253
  ident: bib6
  article-title: Runge approximation theorem in complex Clifford analysis together with some of their application
  publication-title: J Funct Anal
– volume: 64
  start-page: 70
  year: 1992
  end-page: 94
  ident: bib10
  article-title: Applications of complex Clifford analysis to the study to plane wave decompositions in complex Clifford analysis
  publication-title: Proc London Math Soc
– volume: 9
  start-page: 385
  year: 1990
  end-page: 401
  ident: bib11
  article-title: Iterated Dirac operators in
  publication-title: Z Anal Anwendungen
– volume: 47
  start-page: 787
  year: 2002
  end-page: 802
  ident: bib14
  article-title: Jaccobi elliptic Cliffordian functions
  publication-title: Complex Var Theory Appl
– year: 1992
  ident: bib26
  publication-title: Function theory of several complex variables
– volume: 13
  start-page: 151
  year: 1983
  end-page: 171
  ident: bib7
  article-title: Clifford analysis with generalized elliptic and quasi elliptic functions
  publication-title: Applicable Anal
– volume: 5
  start-page: 51
  year: 1995
  end-page: 62
  ident: bib9
  article-title: Complex Clifford analysis and elliptic boundary value problems
  publication-title: Adv Appl Clifford Algebr
– volume: 67
  start-page: 295
  year: 1987
  end-page: 329
  ident: bib12
  article-title: Applications of complex Clifford analysis to the study of solutions to generalized Dirac and Klein-Gordon equations with holomorphic potentials
  publication-title: J Differential Equations
– year: 1992
  ident: bib1
  publication-title: Clifford algebra and spinor-valued function
– volume: 1
  start-page: 119
  year: 1982
  end-page: 149
  ident: bib3
  article-title: Complexified Clifford analysis
  publication-title: Complex Var Theory Appl
– volume: 25
  start-page: 1541
  year: 2002
  end-page: 1552
  ident: bib22
  article-title: Almansi-type theorems in Clifford analysis
  publication-title: Math Meth Appl Sci
– volume: 15
  start-page: 33
  year: 1983
  end-page: 49
  ident: bib4
  article-title: Singularities and Laurent expansions in complex Clifford analysis
  publication-title: Applicable Anal
– year: 1982
  ident: bib2
  publication-title: Clifford analysis. Research Notes in Mathematics 76
– volume: 315
  start-page: 491
  year: 2006
  end-page: 505
  ident: bib21
  article-title: On k-regular functions with values in a universal Clifford algebra
  publication-title: J Math Anal Appl
– volume: 2
  start-page: 323
  year: 1998
  end-page: 340
  ident: bib13
  article-title: Holomorphic Cliffordian functions
  publication-title: Adv Appl Clifford Algebr
– volume: 5
  start-page: 51
  issue: 1
  year: 1995
  ident: 10.1016/S0252-9602(10)60076-8_bib9
  article-title: Complex Clifford analysis and elliptic boundary value problems
  publication-title: Adv Appl Clifford Algebr
  doi: 10.1007/s00006-008-0126-3
– volume: 29
  start-page: 251
  issue: 2
  year: 2004
  ident: 10.1016/S0252-9602(10)60076-8_bib17
  article-title: Analytic Cliffordian function
  publication-title: Ann Acad Sci Fenn Math
– volume: 2
  start-page: 177
  year: 1983
  ident: 10.1016/S0252-9602(10)60076-8_bib5
  article-title: Special functions and relations within complex Clifford analysis I
  publication-title: Complex Var Theory Appl
  doi: 10.1080/17476938308814041
– volume: 315
  start-page: 491
  issue: 2
  year: 2006
  ident: 10.1016/S0252-9602(10)60076-8_bib21
  article-title: On k-regular functions with values in a universal Clifford algebra
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2005.06.053
– volume: 70
  start-page: 221
  issue: 2
  year: 1987
  ident: 10.1016/S0252-9602(10)60076-8_bib6
  article-title: Runge approximation theorem in complex Clifford analysis together with some of their application
  publication-title: J Funct Anal
  doi: 10.1016/0022-1236(87)90112-1
– year: 1992
  ident: 10.1016/S0252-9602(10)60076-8_bib1
– year: 1980
  ident: 10.1016/S0252-9602(10)60076-8_bib25
– volume: 1
  start-page: 119
  year: 1982
  ident: 10.1016/S0252-9602(10)60076-8_bib3
  article-title: Complexified Clifford analysis
  publication-title: Complex Var Theory Appl
  doi: 10.1080/17476938208814009
– volume: 2
  start-page: 323
  year: 1998
  ident: 10.1016/S0252-9602(10)60076-8_bib13
  article-title: Holomorphic Cliffordian functions
  publication-title: Adv Appl Clifford Algebr
– volume: 9
  start-page: 385
  issue: 5
  year: 1990
  ident: 10.1016/S0252-9602(10)60076-8_bib11
  article-title: Iterated Dirac operators in Cn
  publication-title: Z Anal Anwendungen
  doi: 10.4171/ZAA/410
– volume: 47
  start-page: 787
  issue: 9
  year: 2002
  ident: 10.1016/S0252-9602(10)60076-8_bib14
  article-title: Jaccobi elliptic Cliffordian functions
  publication-title: Complex Var Theory Appl
  doi: 10.1080/02781070290032243
– volume: 64
  start-page: 70
  year: 1991
  ident: 10.1016/S0252-9602(10)60076-8_bib24
  article-title: Plemelj formulae and transformations associated to plane wave decompositions in complex Clifford analysis
  publication-title: Proc London Math Soc
– volume: 25
  start-page: 1541
  year: 2002
  ident: 10.1016/S0252-9602(10)60076-8_bib22
  article-title: Almansi-type theorems in Clifford analysis
  publication-title: Math Meth Appl Sci
  doi: 10.1002/mma.387
– volume: 67
  start-page: 295
  year: 1987
  ident: 10.1016/S0252-9602(10)60076-8_bib12
  article-title: Applications of complex Clifford analysis to the study of solutions to generalized Dirac and Klein-Gordon equations with holomorphic potentials
  publication-title: J Differential Equations
  doi: 10.1016/0022-0396(87)90129-X
– volume: 14
  start-page: 97
  issue: 2
  year: 2009
  ident: 10.1016/S0252-9602(10)60076-8_bib23
  article-title: A Laurent expansion and residue theorems of k-regular functions in Clifford analysis
  publication-title: Wuhan Univ J Nat Sci
  doi: 10.1007/s11859-009-0201-1
– volume: 13
  start-page: 151
  year: 1983
  ident: 10.1016/S0252-9602(10)60076-8_bib7
  article-title: Clifford analysis with generalized elliptic and quasi elliptic functions
  publication-title: Applicable Anal
– volume: 118
  start-page: 93
  year: 1996
  ident: 10.1016/S0252-9602(10)60076-8_bib8
  article-title: Intrinsic Dirac operators in Cn
  publication-title: Adv Math
– volume: 19
  start-page: 83
  issue: 1
  year: 2009
  ident: 10.1016/S0252-9602(10)60076-8_bib20
  article-title: On the integral representation of spherical k-regular functions in clifford analysis
  publication-title: Adv in Appl Clifford Algerb
  doi: 10.1007/s00006-008-0067-x
– volume: 7
  start-page: 151
  year: 2004
  ident: 10.1016/S0252-9602(10)60076-8_bib16
  article-title: Holomorphic Cliffordian function and analytic Cliffordian functions
  publication-title: Clifford Algebr Potential Theory
– volume: 15
  start-page: 33
  year: 1983
  ident: 10.1016/S0252-9602(10)60076-8_bib4
  article-title: Singularities and Laurent expansions in complex Clifford analysis
  publication-title: Applicable Anal
– year: 1992
  ident: 10.1016/S0252-9602(10)60076-8_bib26
– volume: 20
  start-page: 57
  issue: 1
  year: 2010
  ident: 10.1016/S0252-9602(10)60076-8_bib19
  article-title: Integral formula of isotonic functions over unbounded domain in Clifford analysis
  publication-title: Adv in Appl Clifford Algerb
  doi: 10.1007/s00006-008-0146-z
– volume: 326
  start-page: 307
  year: 1998
  ident: 10.1016/S0252-9602(10)60076-8_bib15
  article-title: Founctions holomorphes Cliffordiennes
  publication-title: C R Acad Sci Paris
  doi: 10.1016/S0764-4442(97)82985-0
– volume: 64
  start-page: 70
  issue: 3
  year: 1992
  ident: 10.1016/S0252-9602(10)60076-8_bib10
  article-title: Applications of complex Clifford analysis to the study to plane wave decompositions in complex Clifford analysis
  publication-title: Proc London Math Soc
– volume: 45
  start-page: 297
  year: 2001
  ident: 10.1016/S0252-9602(10)60076-8_bib18
  article-title: Elliptic Cliffordian functions
  publication-title: Complex Var Theory Appl
  doi: 10.1080/17476930108815384
– year: 1982
  ident: 10.1016/S0252-9602(10)60076-8_bib2
SSID ssj0016264
Score 1.8522431
Snippet In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on...
O1; In this article,we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on...
SourceID wanfang
proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 747
SubjectTerms 22E30
30G35
31C10
32A10
Algebra
Complex Clifford algebra
Complex variables
Foundations
holomorphic Cliffordian functions
Integrals
invariance
Laurent expansion
Lie groups
Mathematical analysis
Mathematics
Representations
Taylor expansion
代数函数
全纯函数
复变函数理论
多项式
子代数
定义值
表示公式
Title SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS
URI https://dx.doi.org/10.1016/S0252-9602(10)60076-8
https://www.proquest.com/docview/1671374791
https://www.proquest.com/docview/753682892
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201003010
Volume 30
WOSCitedRecordID wos000278171600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: false
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegYxI88DFAlAEyCBCoCqRxE8eP1dQJxjZA60TfLNt1WESbdEvLyn_POXGcIDRtPPASNY4_VP_O57vz-Q6hl4FgfaYHU49FsfIGEtQdJiSoKiwEVduXcUBUmWyCHh7Gkwn7Yt3GijKdAM2yeL1mi_8KNZQB2Obq7D_A7TqFAvgNoMMTYIfnlYA_yufm8lO-MB7TVUhZw-HmOcxoqno7szQxDu2ldQM2NedLXjqX67Wr0BM2Xklbfh2qpejNXahXYS9Upo65H1QxCT6tGgm5t5dmv1aVobV5a0zkeXGyKj9-E3YbtVaI6gDdWiEqZhWEgHLk_8FZ7YlL2la8SzZJqyibdselVWKdv5h5ZVc4cl2byFX-q4CZkPqRFzc7WH1qf_iZ7x7v7_PxaDJ-vTj1TG4xcwZvE61cRxsBDVncQRvDj6PJnjttAqWuDDNWD9Tc9HrfjP6m77-1I5s4HCd59v0UpIuL5JmWvrJ5LrIEZrAluIzvottW48DDilLuoWs620J3rPaBLW8vttCtAwcrvG2WrsGquI--GoLCDUHhPMEtgsItgsKOoHCaYUtQrgKuCeoBOt4djXc-eDYRh6dAml56UkoKai5VYcJ04lOqo2gqpKaBZCoWU2PM1P2E-UyTQSj9aUAS-BZJJUhfRj55iDpZnulHCMsE-qBEURaSAdOaCSWTgElChQDdPemibTe1IMipHyY8GSckjo2o2kWDerK5sjHsTSqVGW-cFQEvbvAyRSVePO6id67ZogriclmDuEaSW0m0kjA50OZlTZ_XyHPg1Ob4TWQ6XxW8H9E-Acpn8DfwBXVoSCJjAwm66IWlGm55S8GL9flsLbk2689YMvzHVxhrG91s1usT1FmerfRTdEP9XKbF2TO7En4DafrIsg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+properties+of+holomorphic+Cliffordian+functions+in+complex+Clifford+analysis&rft.jtitle=Acta+mathematica+scientia&rft.au=Min%2C+Ku&rft.au=Du+Jinyuan%2C+Du+Jinyuan&rft.au=Daoshun%2C+Wang&rft.date=2010-05-01&rft.issn=0252-9602&rft.volume=30&rft.issue=3&rft.spage=747&rft.epage=768&rft_id=info:doi/10.1016%2FS0252-9602%2810%2960076-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg