SOME PROPERTIES OF HOLOMORPHIC CLIFFORDIAN FUNCTIONS IN COMPLEX CLIFFORD ANALYSIS

In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Acta mathematica scientia Ročník 30; číslo 3; s. 747 - 768
Hlavný autor: 库敏 杜金元 王道顺
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2010
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China%School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Predmet:
ISSN:0252-9602, 1572-9087
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.
Bibliografia:O174.52
Complex Clifford algebra; holomorphic Cliffordian functions; Taylor expansion; Laurent exnansion;invariance
Taylor expansion
invariance
42-1227/O
holomorphic Cliffordian functions
O174.5
Laurent exnansion
Complex Clifford algebra
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(10)60076-8