Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression

A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release Vol. 308; pp. 71 - 85
Main Authors: Jiang, Cuiping, Qi, Zitong, He, Wanhua, Li, Zhuoting, Tang, Yuqi, Wang, Yunbo, Huang, Yilei, Zang, Haojing, Yang, Hu, Liu, Jianping
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 28.08.2019
Subjects:
ISSN:0168-3659, 1873-4995, 1873-4995
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged. We demonstrated that dual-targeting biomimetic core-shell nanoparticles dynamically enhanced macrophage CD36 targeting in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. Positive feedback-enabled accumulation of the nanoparticles in the atherosclerotic plaques increased by 3.3-fold following 4-week repeated administration. A 3-month dosage regimen of the dual-targeting rHDL-mimicking nanoparticles reduced plaque areas by 65.8%, and decreased macrophages by 57.3%. Collectively, this work shows that dynamically enhancing plaque targeting via a positive feedback loop and dual action of cholesterol deposition inhibition and efflux enhancement accomplished with our novel multifunctional biomimetic nanoparticles provides a new way to regress plaques and alleviate the atherosclerotic burden. [Display omitted] •ApoA-I/PS-NP2S/P/C dynamically enhanced plaque targeting via positive feedback loop.•3-month dosage regimen of apoA-I/PS-NP2S/P/C achieved a plaque reduction of 65.8%.•Catalase triggered ROS elimination, ATP generation, and accelerated siRNA release.
AbstractList A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged. We demonstrated that dual-targeting biomimetic core-shell nanoparticles dynamically enhanced macrophage CD36 targeting in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. Positive feedback-enabled accumulation of the nanoparticles in the atherosclerotic plaques increased by 3.3-fold following 4-week repeated administration. A 3-month dosage regimen of the dual-targeting rHDL-mimicking nanoparticles reduced plaque areas by 65.8%, and decreased macrophages by 57.3%. Collectively, this work shows that dynamically enhancing plaque targeting via a positive feedback loop and dual action of cholesterol deposition inhibition and efflux enhancement accomplished with our novel multifunctional biomimetic nanoparticles provides a new way to regress plaques and alleviate the atherosclerotic burden.
A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged. We demonstrated that dual-targeting biomimetic core-shell nanoparticles dynamically enhanced macrophage CD36 targeting in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. Positive feedback-enabled accumulation of the nanoparticles in the atherosclerotic plaques increased by 3.3-fold following 4-week repeated administration. A 3-month dosage regimen of the dual-targeting rHDL-mimicking nanoparticles reduced plaque areas by 65.8%, and decreased macrophages by 57.3%. Collectively, this work shows that dynamically enhancing plaque targeting via a positive feedback loop and dual action of cholesterol deposition inhibition and efflux enhancement accomplished with our novel multifunctional biomimetic nanoparticles provides a new way to regress plaques and alleviate the atherosclerotic burden. [Display omitted] •ApoA-I/PS-NP2S/P/C dynamically enhanced plaque targeting via positive feedback loop.•3-month dosage regimen of apoA-I/PS-NP2S/P/C achieved a plaque reduction of 65.8%.•Catalase triggered ROS elimination, ATP generation, and accelerated siRNA release.
A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged. We demonstrated that dual-targeting biomimetic core-shell nanoparticles dynamically enhanced macrophage CD36 targeting in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. Positive feedback-enabled accumulation of the nanoparticles in the atherosclerotic plaques increased by 3.3-fold following 4-week repeated administration. A 3-month dosage regimen of the dual-targeting rHDL-mimicking nanoparticles reduced plaque areas by 65.8%, and decreased macrophages by 57.3%. Collectively, this work shows that dynamically enhancing plaque targeting via a positive feedback loop and dual action of cholesterol deposition inhibition and efflux enhancement accomplished with our novel multifunctional biomimetic nanoparticles provides a new way to regress plaques and alleviate the atherosclerotic burden.A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged. We demonstrated that dual-targeting biomimetic core-shell nanoparticles dynamically enhanced macrophage CD36 targeting in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. Positive feedback-enabled accumulation of the nanoparticles in the atherosclerotic plaques increased by 3.3-fold following 4-week repeated administration. A 3-month dosage regimen of the dual-targeting rHDL-mimicking nanoparticles reduced plaque areas by 65.8%, and decreased macrophages by 57.3%. Collectively, this work shows that dynamically enhancing plaque targeting via a positive feedback loop and dual action of cholesterol deposition inhibition and efflux enhancement accomplished with our novel multifunctional biomimetic nanoparticles provides a new way to regress plaques and alleviate the atherosclerotic burden.
Author Jiang, Cuiping
Tang, Yuqi
He, Wanhua
Qi, Zitong
Li, Zhuoting
Zang, Haojing
Yang, Hu
Liu, Jianping
Huang, Yilei
Wang, Yunbo
Author_xml – sequence: 1
  givenname: Cuiping
  surname: Jiang
  fullname: Jiang, Cuiping
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 2
  givenname: Zitong
  surname: Qi
  fullname: Qi, Zitong
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 3
  givenname: Wanhua
  surname: He
  fullname: He, Wanhua
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 4
  givenname: Zhuoting
  surname: Li
  fullname: Li, Zhuoting
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 5
  givenname: Yuqi
  surname: Tang
  fullname: Tang, Yuqi
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 6
  givenname: Yunbo
  surname: Wang
  fullname: Wang, Yunbo
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 7
  givenname: Yilei
  surname: Huang
  fullname: Huang, Yilei
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 8
  givenname: Haojing
  surname: Zang
  fullname: Zang, Haojing
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
– sequence: 9
  givenname: Hu
  surname: Yang
  fullname: Yang, Hu
  email: hyang2@vcu.edu
  organization: Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
– sequence: 10
  givenname: Jianping
  surname: Liu
  fullname: Liu, Jianping
  email: jianpingliu1293@163.com
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31295543$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuO0zAUhi00iOkMPALISzYJvuYiFggNV2kkNrO3XOekuDh2sJ1KfQMeexy13bDpypb1feccn_8O3fjgAaG3lNSU0ObDvt6b4CO4mhHa16StCWlfoA3tWl6Jvpc3aFO4ruKN7G_RXUp7Qojkon2FbjllvZSCb9C_L0evJ2u0c0cM_rf2xvodnp3-uwDOOu4grw8Hq7HGc0g22wPgEWDYavMHuxBmvKQVmRaX7bh4k23w2uGtDZOdim6w1z7MOparg4THEC8NIuwipFSE1-jlqF2CN-fzHj19-_r08KN6_PX958Pnx8oILnNVmjLGoSGjZqITQPtBEEG2UjftyDl0Ywfl10DIwA0nUg5SwMi06Yxh0vB79P5Udo6hDJCymmwy4Jz2EJakWHEYY5J211Em26YXopUFfXdGl-0Eg5qjnXQ8qsueC_DxBJgYUoowKmOzXheVo7ZOUaLWVNVenVNVa6qKtKqkWmz5n31pcM37dPKgLPRgIapkLHgDg41gshqCvVLhGQl7wtw
CitedBy_id crossref_primary_10_1002_mabi_202200537
crossref_primary_10_1002_EXP_20230090
crossref_primary_10_3390_ijms26041743
crossref_primary_10_1093_rb_rbac103
crossref_primary_10_1016_j_ejpb_2022_04_005
crossref_primary_10_2217_nnm_2020_0223
crossref_primary_10_1016_j_ejphar_2021_174308
crossref_primary_10_1016_j_ijpharm_2025_125228
crossref_primary_10_1007_s10557_023_07461_0
crossref_primary_10_1002_VIW_20200137
crossref_primary_10_1021_acsami_5c06637
crossref_primary_10_1111_bph_16412
crossref_primary_10_2217_nnm_2021_0458
crossref_primary_10_3389_fcvm_2022_1037741
crossref_primary_10_1016_j_envres_2023_116637
crossref_primary_10_1016_j_matdes_2023_112005
crossref_primary_10_1016_j_addr_2021_01_005
crossref_primary_10_1039_D0BM01838D
crossref_primary_10_3390_ijms24119568
crossref_primary_10_1016_j_colsurfb_2022_112511
crossref_primary_10_1016_j_actbio_2023_09_011
crossref_primary_10_1039_D0BM00196A
crossref_primary_10_1016_j_mtchem_2022_101062
crossref_primary_10_2147_IJN_S531558
crossref_primary_10_1016_j_ymthe_2022_07_018
crossref_primary_10_1016_j_ijpharm_2025_126122
crossref_primary_10_1038_s41467_023_40413_8
crossref_primary_10_1186_s40580_019_0214_1
crossref_primary_10_3390_molecules26051280
crossref_primary_10_1016_j_apsb_2022_11_014
crossref_primary_10_1016_j_ijbiomac_2024_134632
crossref_primary_10_1016_j_biotechadv_2025_108606
crossref_primary_10_1016_j_nantod_2022_101514
crossref_primary_10_1016_j_ijpharm_2021_120272
crossref_primary_10_1016_j_bioadv_2025_214202
crossref_primary_10_3390_ijms22115718
crossref_primary_10_1016_j_bioactmat_2022_03_041
crossref_primary_10_1002_advs_202308298
crossref_primary_10_1016_j_carbpol_2022_119632
crossref_primary_10_1016_j_jddst_2021_103037
crossref_primary_10_3389_fphar_2022_999404
crossref_primary_10_1016_S1875_5364_25_60861_2
Cites_doi 10.1161/01.CIR.0000112576.40815.13
10.1021/acsbiomaterials.7b00871
10.2147/IJN.S124252
10.1016/j.biomaterials.2014.05.081
10.1016/j.vph.2006.11.002
10.1016/j.yjmcc.2012.07.006
10.1161/01.ATV.20.12.2593
10.5551/jat1994.8.1
10.1016/j.atherosclerosis.2003.12.034
10.1016/S1262-3636(07)70029-0
10.1021/acs.molpharmaceut.9b00445
10.1194/jlr.M800405-JLR200
10.1111/j.1365-2125.2011.04139.x
10.1021/ja511420n
10.1016/j.biomaterials.2010.04.055
10.1002/adma.201102287
10.1016/j.bbrc.2004.07.020
10.1021/acs.biomac.8b00501
10.1021/acs.biomac.8b01395
10.1007/s00125-007-0735-8
10.1002/mabi.201500440
10.1016/j.trsl.2017.10.008
10.1016/j.ics.2007.02.064
10.1016/j.cell.2011.04.005
10.1016/j.jconrel.2011.07.010
10.1039/C5NJ02292D
10.5483/BMBRep.2011.44.8.497
10.1186/s13550-016-0184-9
10.1016/j.biomaterials.2012.09.058
10.1161/ATVBAHA.107.161042
10.5551/jat.17210
10.1074/jbc.M209649200
10.1021/acs.molpharmaceut.7b00923
10.1038/ncomms4065
10.1021/acsnano.7b08219
10.1021/acs.biomac.7b00436
10.1097/00062752-199704010-00007
10.1016/j.amjmed.2008.10.013
10.1016/j.jconrel.2017.11.033
10.1097/MOL.0b013e32836484a4
10.1021/acsami.7b18525
10.1016/j.atherosclerosis.2014.09.001
10.1161/CIRCULATIONAHA.113.002870
10.1159/000075792
10.1002/adhm.201500126
10.1016/j.cca.2013.06.006
10.1021/acsnano.5b02611
10.1016/j.jconrel.2017.07.013
10.1016/j.atherosclerosis.2014.02.016
10.1016/j.addr.2016.04.020
10.1074/jbc.M505685200
10.1016/j.jconrel.2018.05.041
10.1016/j.ebiom.2017.12.021
10.1093/cvr/cvq235
10.1016/0014-4800(87)90052-9
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2019.07.007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 85
ExternalDocumentID 31295543
10_1016_j_jconrel_2019_07_007
S0168365919303943
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SPT
WUQ
~HD
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c435t-bac223e60fa2484e19d4040b5a67f33e8f8e168e00d3c3055d54ef2ac8cc25c3
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482210200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-3659
1873-4995
IngestDate Sun Sep 28 12:15:55 EDT 2025
Sun Nov 09 11:58:32 EST 2025
Thu Apr 03 07:07:01 EDT 2025
Sat Nov 29 07:24:16 EST 2025
Tue Nov 18 22:41:04 EST 2025
Fri Feb 23 02:20:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dual-targeting
Nanocarrier
Plaque regression
Positive feedback loop
Atherosclerosis
Plaque targeting
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-bac223e60fa2484e19d4040b5a67f33e8f8e168e00d3c3055d54ef2ac8cc25c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31295543
PQID 2257694475
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2305222518
proquest_miscellaneous_2257694475
pubmed_primary_31295543
crossref_citationtrail_10_1016_j_jconrel_2019_07_007
crossref_primary_10_1016_j_jconrel_2019_07_007
elsevier_sciencedirect_doi_10_1016_j_jconrel_2019_07_007
PublicationCentury 2000
PublicationDate 2019-08-28
PublicationDateYYYYMMDD 2019-08-28
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-28
  day: 28
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Zhuang, Teng, Li, Chen, Yan, Tang (bb0130) 2010; 31
Zhao, He, Gao, Tang, He, Guo, Zhang, Liu (bb0150) 2018; 19
Fredenrich, Bayer (bb0245) 2003; 29
Yu, Fu, Zhang, Yin, Tang (bb0065) 2013; 424
Katsuki, Matoba, Nakashiro, Sato, Koga, Nakano, Nakano, Egusa, Sunagawa, Egashira (bb0025) 2014; 129
Zhang, He, Jiang, Zhang, Yang, Wang, Liu (bb0030) 2017; 12
Elke, Sluimer, Daemen (bb0165) 2013; 24
Freeman (bb0075) 1997; 4
Vancraeynest, Roelants, Bouzin, Hanin, Walrand, Bol, Bol, Pouleur, Pasquet, Gerber (bb0045) 2016; 6
Westhuyzen, Cai, Beer, Beer (bb0140) 2005; 280
Babaev, Gleaves, Carter, Suzuki, Kodama, Fazio, Linton (bb0095) 2000; 20
Tölle, Pawlak, Schuchardt, Kawamura, Tietge, Lorkowski, Keul, Assmann, Chun, Levkau (bb0200) 2008; 28
Peters (bb0010) 2009
Jiang, Zhao, Yang, He, Zhang, Liu (bb0210) 2018; 15
Paternò, Ruocco, Postiglione, Hubsch, Andresen, Lang (bb0195) 2004; 17
Ouwens, Diamant, Fodor, Habets, Pelsers, El Hasnaoui, Dang, van den Brom, Vlasblom, Rietdijk, Boer, Coort, Glatz, Luiken (bb0145) 2007; 50
Chen, Tian, He, Guo (bb0135) 2015; 137
Heinle (bb0160) 1987; 46
Han, Zhou, Yokoyama, Hajjar, Gotto, Nicholson (bb0220) 2004; 109
Du, Qin, Shi, Zhou, Zhu, Liu, Tan, Cao (bb0155) 2014; 234
Liu, He, Zhang, Zhang, Zhang, Liu (bb0035) 2014; 35
Kunjathoor, Febbraio, Podrez, Moore, Andersson, Koehn, Rhee, Silverstein, Hoff, Freeman (bb0070) 2002; 277
Pei, Hu, Zheng, Liu, Li, Jing, Xie (bb0060) 2018; 12
Rink, Sun, Misener, Wang, Thaxton (bb0285) 2018; 10
Alaarg, Senders, Varela-Moreira, Perez-Medina, Zhao, Tang, Fay, Reiner, Fayad, Hennink, Metselaar, Mulder, Storm (bb0015) 2017; 262
Ilaria, Elda, Sposito, Rothblat, Franco (bb0100) 2004; 321
Zha, Wang, Li, Guo (bb0190) 2017; 32
Guo, Yuan, Yu, Kuai, Hu, Morin, Garcia-Barrio, Zhang, Moon, Schwendeman (bb0290) 2018; 28
Hayashi, Juliet, Fukatsu, Matsui-Hirai, Osawa, Miyazaki, Tsunekawa, Kano-Hayashi, Iguchi, Sumi (bb0105) 2004; 176
He, Yuan, Bie, Wallace, Yannie, Wang, Lancina, Zolotarskaya, Korzun, Yang, Ghosh (bb0225) 2018; 193
Makinen, Lappalainen, Heinonen, Leppanen, Lahteenvuo, Aarnio, Heikkila, Turunen, Yla-Herttuala (bb0085) 2010; 88
Kamada, Kodama, Suzuki (bb0090) 2001; 8
Park, Oh (bb0175) 2011; 44
Miyamoto-Sasaki, Yasuda, Monguchi, Nakajima, Mori, Toh, Ishida, Hirata (bb0205) 2013; 20
Ga Young, Jong-Ho, Goo Taeg, Byung-Heon, Ick Chan, In-San (bb0230) 2011; 155
Moore, Tabas (bb0005) 2011; 145
Wang, Yu, Yang, Zhang, Sun, Yong (bb0250) 2018; 4
Cipollone, Fazia, Mezzetti (bb0170) 2007; 1303
Zhang, He, Liu, Wang, Zhang, Zhang, Wu (bb0275) 2013; 34
Thaxton, Rink, Naha, Cormode (bb0240) 2016; 106
Kim, Sahu, Kim, Nam, Um, Shin, Yong, Kim, Kim, Kwon (bb0040) 2018; 269
Insull (bb0055) 2009; 122
Lu, Zhao, Zhou, He, Yang, Jiang, Qi, Zhang, Liu (bb0125) 2017; 18
Huige Li, Forstermann (bb0180) 2014; 237
Bhattacharyya, Khan, Curran, Robertson, Bhattacharya, Mukherjee (bb0280) 2011; 23
Chung, Tirrell (bb0265) 2016; 4
Jean (bb0110) 2012; 73
He, Yuan, Bie, Wallace, Yannie, Wang, Zolotarskaya, Korzun, Yang (bb0050) 2017; 193
Jiang, Qi, Tang, Jia, Li, Zhang, Liu (bb0260) 2019; 16
Dai, Cai, Mao, Qi, Tang, Xu, Zhu, Xu, Wang (bb0080) 2012; 53
Kaneyuki, Ueda, Yamagishi, Kato, Fujimura, Shibata, Hayashida, Yoshimura, Kojiro, Oshima (bb0185) 2007; 46
Azadeh, Woo, Jai Woong, Sandeep, Ju, Gagnon, Ingham, Ferrara, Hanjoong (bb0235) 2015; 9
Xu, He, Xiao, Chen (bb0120) 2016; 16
Zhao, Gao, He, Jiang, Lu, Zhang, Yang, Liu (bb0270) 2018; 283
Xiangyu Zhang, Wang, Bai, Jiao, Zhanga, Yu (bb0020) 2016; 40
Duivenvoorden, Tang, Cormode, Mieszawska, Izquierdo-Garcia, Ozcan, Otten, Zaidi, Lobatto, Van Rijs (bb0255) 2014; 5
Jiang, Qi, Jia, Huang, Wang, Zhang, Wu, Yang, Liu (bb0115) 2018; 20
Maiseyeu, Mihai, Kampfrath, Simonetti, Sen, Roy, Rajagopalan, Parthasarathy (bb0215) 2009; 50
Kunjathoor (10.1016/j.jconrel.2019.07.007_bb0070) 2002; 277
Jean (10.1016/j.jconrel.2019.07.007_bb0110) 2012; 73
Fredenrich (10.1016/j.jconrel.2019.07.007_bb0245) 2003; 29
Yu (10.1016/j.jconrel.2019.07.007_bb0065) 2013; 424
Paternò (10.1016/j.jconrel.2019.07.007_bb0195) 2004; 17
Han (10.1016/j.jconrel.2019.07.007_bb0220) 2004; 109
Duivenvoorden (10.1016/j.jconrel.2019.07.007_bb0255) 2014; 5
Hayashi (10.1016/j.jconrel.2019.07.007_bb0105) 2004; 176
Lu (10.1016/j.jconrel.2019.07.007_bb0125) 2017; 18
Zhao (10.1016/j.jconrel.2019.07.007_bb0270) 2018; 283
Bhattacharyya (10.1016/j.jconrel.2019.07.007_bb0280) 2011; 23
Chung (10.1016/j.jconrel.2019.07.007_bb0265) 2016; 4
Katsuki (10.1016/j.jconrel.2019.07.007_bb0025) 2014; 129
Ouwens (10.1016/j.jconrel.2019.07.007_bb0145) 2007; 50
He (10.1016/j.jconrel.2019.07.007_bb0050) 2017; 193
Babaev (10.1016/j.jconrel.2019.07.007_bb0095) 2000; 20
Huang (10.1016/j.jconrel.2019.07.007_bb0130) 2010; 31
Huige Li (10.1016/j.jconrel.2019.07.007_bb0180) 2014; 237
Heinle (10.1016/j.jconrel.2019.07.007_bb0160) 1987; 46
Jiang (10.1016/j.jconrel.2019.07.007_bb0210) 2018; 15
Azadeh (10.1016/j.jconrel.2019.07.007_bb0235) 2015; 9
Freeman (10.1016/j.jconrel.2019.07.007_bb0075) 1997; 4
Zhao (10.1016/j.jconrel.2019.07.007_bb0150) 2018; 19
Peters (10.1016/j.jconrel.2019.07.007_bb0010) 2009
Rink (10.1016/j.jconrel.2019.07.007_bb0285) 2018; 10
Alaarg (10.1016/j.jconrel.2019.07.007_bb0015) 2017; 262
Xiangyu Zhang (10.1016/j.jconrel.2019.07.007_bb0020) 2016; 40
Makinen (10.1016/j.jconrel.2019.07.007_bb0085) 2010; 88
Elke (10.1016/j.jconrel.2019.07.007_bb0165) 2013; 24
Chen (10.1016/j.jconrel.2019.07.007_bb0135) 2015; 137
Wang (10.1016/j.jconrel.2019.07.007_bb0250) 2018; 4
Jiang (10.1016/j.jconrel.2019.07.007_bb0260) 2019; 16
Xu (10.1016/j.jconrel.2019.07.007_bb0120) 2016; 16
Jiang (10.1016/j.jconrel.2019.07.007_bb0115) 2018; 20
Tölle (10.1016/j.jconrel.2019.07.007_bb0200) 2008; 28
Insull (10.1016/j.jconrel.2019.07.007_bb0055) 2009; 122
Maiseyeu (10.1016/j.jconrel.2019.07.007_bb0215) 2009; 50
Kim (10.1016/j.jconrel.2019.07.007_bb0040) 2018; 269
Zhang (10.1016/j.jconrel.2019.07.007_bb0030) 2017; 12
Westhuyzen (10.1016/j.jconrel.2019.07.007_bb0140) 2005; 280
Ga Young (10.1016/j.jconrel.2019.07.007_bb0230) 2011; 155
He (10.1016/j.jconrel.2019.07.007_bb0225) 2018; 193
Zhang (10.1016/j.jconrel.2019.07.007_bb0275) 2013; 34
Moore (10.1016/j.jconrel.2019.07.007_bb0005) 2011; 145
Liu (10.1016/j.jconrel.2019.07.007_bb0035) 2014; 35
Dai (10.1016/j.jconrel.2019.07.007_bb0080) 2012; 53
Zha (10.1016/j.jconrel.2019.07.007_bb0190) 2017; 32
Kaneyuki (10.1016/j.jconrel.2019.07.007_bb0185) 2007; 46
Kamada (10.1016/j.jconrel.2019.07.007_bb0090) 2001; 8
Miyamoto-Sasaki (10.1016/j.jconrel.2019.07.007_bb0205) 2013; 20
Du (10.1016/j.jconrel.2019.07.007_bb0155) 2014; 234
Pei (10.1016/j.jconrel.2019.07.007_bb0060) 2018; 12
Ilaria (10.1016/j.jconrel.2019.07.007_bb0100) 2004; 321
Guo (10.1016/j.jconrel.2019.07.007_bb0290) 2018; 28
Park (10.1016/j.jconrel.2019.07.007_bb0175) 2011; 44
Vancraeynest (10.1016/j.jconrel.2019.07.007_bb0045) 2016; 6
Cipollone (10.1016/j.jconrel.2019.07.007_bb0170) 2007; 1303
Thaxton (10.1016/j.jconrel.2019.07.007_bb0240) 2016; 106
References_xml – volume: 28
  start-page: 1542
  year: 2008
  end-page: 1548
  ident: bb0200
  article-title: HDL-associated lysosphingolipids inhibit NAD (P) H oxidase-dependent monocyte chemoattractant protein-1 production
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 12
  start-page: 533
  year: 2017
  end-page: 558
  ident: bb0030
  article-title: Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy
  publication-title: Int. J. Nanomedicine
– volume: 20
  start-page: 478
  year: 2018
  end-page: 489
  ident: bb0115
  article-title: ATP-responsive low-molecular-weight polyethylenimine-based supramolecular assembly via host-guest interaction for gene delivery
  publication-title: Biomacromolecules
– volume: 5
  start-page: 3065
  year: 2014
  ident: bb0255
  article-title: A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation
  publication-title: Nat. Commun.
– volume: 32
  start-page: 281
  year: 2017
  ident: bb0190
  article-title: Pitavastatin attenuates AGEs-induced mitophagy via inhibition of ROS generation in the mitochondria of cardiomyocytes
  publication-title: J. Biomed. Res.
– volume: 50
  start-page: 1938
  year: 2007
  end-page: 1948
  ident: bb0145
  article-title: Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification
  publication-title: Diabetologia
– volume: 20
  start-page: 2593
  year: 2000
  end-page: 2599
  ident: bb0095
  article-title: Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-a
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 176
  start-page: 255
  year: 2004
  end-page: 263
  ident: bb0105
  article-title: A new HMG-CoA reductase inhibitor, pitavastatin remarkably retards the progression of high cholesterol induced atherosclerosis in rabbits
  publication-title: Atherosclerosis
– volume: 137
  start-page: 1539
  year: 2015
  end-page: 1547
  ident: bb0135
  article-title: H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5034
  year: 2011
  end-page: 5038
  ident: bb0280
  article-title: Efficient delivery of gold nanoparticles by dual receptor targeting
  publication-title: Adv. Mater.
– volume: 18
  start-page: 2286
  year: 2017
  end-page: 2295
  ident: bb0125
  article-title: Biofunctional polymer-lipid hybrid high density lipoprotein-mimicking nanoparticles loading anti-miR155 for combined antiatherogenic effects on macrophages
  publication-title: Biomacromolecules
– volume: 122
  start-page: S3
  year: 2009
  end-page: S14
  ident: bb0055
  article-title: The pathology of atherosclerosis: plaque development and plaque responses to medical treatment
  publication-title: Am. J. Med.
– volume: 73
  start-page: 518
  year: 2012
  end-page: 535
  ident: bb0110
  article-title: Pleiotropic effects of pitavastatin
  publication-title: Br. J. Clin. Pharmacol.
– volume: 424
  start-page: 245
  year: 2013
  end-page: 252
  ident: bb0065
  article-title: Foam cells in atherosclerosis
  publication-title: Clin. Chim. Acta
– volume: 262
  start-page: 47
  year: 2017
  end-page: 57
  ident: bb0015
  article-title: A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis
  publication-title: J. Control. Release
– volume: 237
  start-page: 208
  year: 2014
  end-page: 219
  ident: bb0180
  article-title: Vascular oxidative stress, nitric oxide and atherosclerosis
  publication-title: Atherosclerosis
– volume: 53
  start-page: 509
  year: 2012
  end-page: 520
  ident: bb0080
  article-title: Increased stability of phosphatase and tensin homolog by intermedin leading to scavenger receptor a inhibition of macrophages reduces atherosclerosis in apolipoprotein E-deficient mice
  publication-title: J. Mol. Cell. Cardiol.
– volume: 50
  start-page: 2157
  year: 2009
  end-page: 2163
  ident: bb0215
  article-title: Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis
  publication-title: J. Lipid Res.
– volume: 16
  start-page: 3284
  year: 2019
  end-page: 3291
  ident: bb0260
  article-title: Rational Design of Lovastatin-Loaded Spherical Reconstituted High Density Lipoprotein for efficient and safe anti-atherosclerotic therapy
  publication-title: Mol. Pharm.
– volume: 24
  start-page: 393
  year: 2013
  end-page: 400
  ident: bb0165
  article-title: Hypoxia in atherosclerosis and inflammation
  publication-title: Curr. Opin. Lipidol.
– volume: 46
  start-page: 286
  year: 2007
  end-page: 292
  ident: bb0185
  article-title: Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing Rac-1-mediated reactive oxygen species generation
  publication-title: Vasc. Pharmacol.
– volume: 29
  start-page: 201
  year: 2003
  end-page: 205
  ident: bb0245
  article-title: Reverse cholesterol transport, high density lipoproteins and HDL cholesterol: recent data
  publication-title: Diabetes Metab.
– volume: 10
  start-page: 6904
  year: 2018
  end-page: 6916
  ident: bb0285
  article-title: Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic Nanotherapy for vascular disease
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1017
  year: 2018
  end-page: 1027
  ident: bb0210
  article-title: Evaluation of the combined effect of recombinant high-density lipoprotein carrier and the encapsulated lovastatin in RAW264.7 macrophage cells based on the median-effect principle
  publication-title: Mol. Pharm.
– volume: 193
  start-page: 13
  year: 2018
  end-page: 30
  ident: bb0225
  article-title: Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis
  publication-title: Transl. Res.
– volume: 20
  start-page: 708
  year: 2013
  end-page: 716
  ident: bb0205
  article-title: Pitavastatin increases HDL particles functionally preserved with cholesterol efflux capacity and antioxidative actions in dyslipidemic patients
  publication-title: J. Atheroscler. Thromb.
– volume: 44
  start-page: 497
  year: 2011
  end-page: 505
  ident: bb0175
  article-title: The role of peroxidases in the pathogenesis of atherosclerosis
  publication-title: BMB Rep.
– volume: 4
  start-page: 2408
  year: 2016
  end-page: 2422
  ident: bb0265
  article-title: Recent advances in targeted, self-assembling nanoparticles to address vascular damage due to atherosclerosis
  publication-title: Adv. Healthcare Mater.
– volume: 88
  start-page: 530
  year: 2010
  end-page: 538
  ident: bb0085
  article-title: Silencing of either SR-A or CD36 reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors
  publication-title: Cardiovasc. Res.
– volume: 6
  start-page: 29
  year: 2016
  ident: bb0045
  article-title: αVβ3 integrin-targeted microSPECT/CT imaging of inflamed atherosclerotic plaques in mice
  publication-title: EJNMMI Res.
– volume: 19
  start-page: 2944
  year: 2018
  end-page: 2956
  ident: bb0150
  article-title: Fine tuning of Core-Shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in Antiatherosclerotic therapy
  publication-title: Biomacromolecules
– volume: 4
  start-page: 41
  year: 1997
  end-page: 47
  ident: bb0075
  article-title: Scavenger receptors in atherosclerosis
  publication-title: Curr. Opin. Hematol.
– volume: 31
  start-page: 6142
  year: 2010
  end-page: 6153
  ident: bb0130
  article-title: The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species
  publication-title: Biomaterials
– volume: 1303
  start-page: 35
  year: 2007
  end-page: 40
  ident: bb0170
  article-title: Oxidative stress, inflammation and atherosclerotic plaque development
  publication-title: Int. Congr. Ser.
– volume: 145
  start-page: 341
  year: 2011
  end-page: 355
  ident: bb0005
  article-title: Macrophages in the pathogenesis of atherosclerosis
  publication-title: Cell
– volume: 8
  start-page: 1
  year: 2001
  end-page: 6
  ident: bb0090
  article-title: Macrophage scavenger receptor (SR-A I/II) deficiency reduced diet-induced atherosclerosis in C57BL/6J mice
  publication-title: J. Atheroscler. Thromb.
– volume: 34
  start-page: 306
  year: 2013
  end-page: 319
  ident: bb0275
  article-title: Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins
  publication-title: Biomaterials
– year: 2009
  ident: bb0010
  article-title: Targeting Atherosclerosis: Nanoparticle Delivery for Diagnosis and Treatment
– volume: 193
  start-page: 13
  year: 2017
  end-page: 30
  ident: bb0050
  article-title: Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis
  publication-title: Transl. Res.
– volume: 106
  start-page: 116
  year: 2016
  end-page: 131
  ident: bb0240
  article-title: Lipoproteins and lipoprotein mimetics for imaging and drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 9
  start-page: 8885
  year: 2015
  end-page: 8897
  ident: bb0235
  article-title: Multifunctional nanoparticles facilitate molecular targeting and miRNA delivery to inhibit atherosclerosis in ApoE(−/−) mice
  publication-title: ACS Nano
– volume: 109
  start-page: 790
  year: 2004
  end-page: 796
  ident: bb0220
  article-title: Pitavastatin downregulates expression of the macrophage type B scavenger receptor, CD36
  publication-title: Circulation
– volume: 16
  start-page: 635
  year: 2016
  end-page: 646
  ident: bb0120
  article-title: Reactive oxygen species (ROS) responsive polymers for biomedical applications
  publication-title: Macromol. Biosci.
– volume: 12
  start-page: 1630
  year: 2018
  end-page: 1641
  ident: bb0060
  article-title: Light-Activatable red blood cell membrane-camouflaged Dimeric Prodrug nanoparticles for synergistic photodynamic/chemotherapy
  publication-title: ACS Nano
– volume: 28
  start-page: 225
  year: 2018
  end-page: 233
  ident: bb0290
  article-title: Synthetic high-density lipoprotein-mediated targeted delivery of liver X receptors agonist promotes atherosclerosis regression
  publication-title: EBioMedicine
– volume: 4
  start-page: 952
  year: 2018
  end-page: 962
  ident: bb0250
  article-title: Enhanced Antiatherosclerotic efficacy of statin-loaded reconstituted high-density lipoprotein via Ganglioside GM1 modification
  publication-title: ACS Biomater. Sci. Eng.
– volume: 155
  start-page: 211
  year: 2011
  end-page: 217
  ident: bb0230
  article-title: Molecular targeting of atherosclerotic plaques by a stabilin-2-specific peptide ligand
  publication-title: J. Control. Release
– volume: 283
  start-page: 241
  year: 2018
  end-page: 260
  ident: bb0270
  article-title: Co-delivery of LOX-1 siRNA and statin to endothelial cells and macrophages in the atherosclerotic lesions by a dual-targeting core-shell nanoplatform: a dual cell therapy to regress plaques
  publication-title: J. Control. Release
– volume: 269
  start-page: 337
  year: 2018
  end-page: 346
  ident: bb0040
  article-title: Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis
  publication-title: J. Control. Release
– volume: 17
  start-page: 204
  year: 2004
  end-page: 211
  ident: bb0195
  article-title: Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke
  publication-title: Cerebrovasc. Dis.
– volume: 280
  start-page: 35890
  year: 2005
  end-page: 35895
  ident: bb0140
  article-title: Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I
  publication-title: J. Biol. Chem.
– volume: 40
  start-page: 1256
  year: 2016
  end-page: 1262
  ident: bb0020
  article-title: Design of simvastatin-loaded polymeric microbubbles as targeted ultrasound contrast agents for vascular imaging and drug delivery in the identification of atherosclerotic plaque
  publication-title: New J. Chem.
– volume: 129
  start-page: 896
  year: 2014
  end-page: 906
  ident: bb0025
  article-title: Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes
  publication-title: Circulation
– volume: 46
  start-page: 312
  year: 1987
  end-page: 320
  ident: bb0160
  article-title: Metabolite concentration gradients in the arterial wall of experimental atherosclerosis
  publication-title: Exp. Mol. Pathol.
– volume: 234
  start-page: 120
  year: 2014
  end-page: 128
  ident: bb0155
  article-title: Fumigaclavine C activates PPARγ pathway and attenuates atherogenesis in ApoE-deficient mice
  publication-title: Atherosclerosis
– volume: 321
  start-page: 670
  year: 2004
  end-page: 674
  ident: bb0100
  article-title: Pitavastatin increases ABCA1-mediated lipid efflux from Fu5AH rat hepatoma cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 277
  start-page: 49982
  year: 2002
  end-page: 49988
  ident: bb0070
  article-title: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages
  publication-title: J. Biol. Chem.
– volume: 35
  start-page: 8002
  year: 2014
  end-page: 8014
  ident: bb0035
  article-title: Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions
  publication-title: Biomaterials
– volume: 109
  start-page: 790
  year: 2004
  ident: 10.1016/j.jconrel.2019.07.007_bb0220
  article-title: Pitavastatin downregulates expression of the macrophage type B scavenger receptor, CD36
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000112576.40815.13
– volume: 4
  start-page: 952
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0250
  article-title: Enhanced Antiatherosclerotic efficacy of statin-loaded reconstituted high-density lipoprotein via Ganglioside GM1 modification
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00871
– volume: 12
  start-page: 533
  year: 2017
  ident: 10.1016/j.jconrel.2019.07.007_bb0030
  article-title: Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S124252
– volume: 35
  start-page: 8002
  year: 2014
  ident: 10.1016/j.jconrel.2019.07.007_bb0035
  article-title: Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.05.081
– volume: 46
  start-page: 286
  year: 2007
  ident: 10.1016/j.jconrel.2019.07.007_bb0185
  article-title: Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing Rac-1-mediated reactive oxygen species generation
  publication-title: Vasc. Pharmacol.
  doi: 10.1016/j.vph.2006.11.002
– volume: 53
  start-page: 509
  year: 2012
  ident: 10.1016/j.jconrel.2019.07.007_bb0080
  article-title: Increased stability of phosphatase and tensin homolog by intermedin leading to scavenger receptor a inhibition of macrophages reduces atherosclerosis in apolipoprotein E-deficient mice
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2012.07.006
– volume: 20
  start-page: 2593
  year: 2000
  ident: 10.1016/j.jconrel.2019.07.007_bb0095
  article-title: Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-a
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.20.12.2593
– volume: 8
  start-page: 1
  year: 2001
  ident: 10.1016/j.jconrel.2019.07.007_bb0090
  article-title: Macrophage scavenger receptor (SR-A I/II) deficiency reduced diet-induced atherosclerosis in C57BL/6J mice
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat1994.8.1
– volume: 176
  start-page: 255
  year: 2004
  ident: 10.1016/j.jconrel.2019.07.007_bb0105
  article-title: A new HMG-CoA reductase inhibitor, pitavastatin remarkably retards the progression of high cholesterol induced atherosclerosis in rabbits
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2003.12.034
– volume: 29
  start-page: 201
  year: 2003
  ident: 10.1016/j.jconrel.2019.07.007_bb0245
  article-title: Reverse cholesterol transport, high density lipoproteins and HDL cholesterol: recent data
  publication-title: Diabetes Metab.
  doi: 10.1016/S1262-3636(07)70029-0
– volume: 16
  start-page: 3284
  year: 2019
  ident: 10.1016/j.jconrel.2019.07.007_bb0260
  article-title: Rational Design of Lovastatin-Loaded Spherical Reconstituted High Density Lipoprotein for efficient and safe anti-atherosclerotic therapy
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b00445
– volume: 50
  start-page: 2157
  year: 2009
  ident: 10.1016/j.jconrel.2019.07.007_bb0215
  article-title: Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M800405-JLR200
– volume: 73
  start-page: 518
  year: 2012
  ident: 10.1016/j.jconrel.2019.07.007_bb0110
  article-title: Pleiotropic effects of pitavastatin
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/j.1365-2125.2011.04139.x
– year: 2009
  ident: 10.1016/j.jconrel.2019.07.007_bb0010
– volume: 137
  start-page: 1539
  year: 2015
  ident: 10.1016/j.jconrel.2019.07.007_bb0135
  article-title: H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511420n
– volume: 31
  start-page: 6142
  year: 2010
  ident: 10.1016/j.jconrel.2019.07.007_bb0130
  article-title: The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.055
– volume: 23
  start-page: 5034
  year: 2011
  ident: 10.1016/j.jconrel.2019.07.007_bb0280
  article-title: Efficient delivery of gold nanoparticles by dual receptor targeting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102287
– volume: 321
  start-page: 670
  year: 2004
  ident: 10.1016/j.jconrel.2019.07.007_bb0100
  article-title: Pitavastatin increases ABCA1-mediated lipid efflux from Fu5AH rat hepatoma cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.07.020
– volume: 19
  start-page: 2944
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0150
  article-title: Fine tuning of Core-Shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in Antiatherosclerotic therapy
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00501
– volume: 20
  start-page: 478
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0115
  article-title: ATP-responsive low-molecular-weight polyethylenimine-based supramolecular assembly via host-guest interaction for gene delivery
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b01395
– volume: 50
  start-page: 1938
  year: 2007
  ident: 10.1016/j.jconrel.2019.07.007_bb0145
  article-title: Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0735-8
– volume: 16
  start-page: 635
  year: 2016
  ident: 10.1016/j.jconrel.2019.07.007_bb0120
  article-title: Reactive oxygen species (ROS) responsive polymers for biomedical applications
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201500440
– volume: 193
  start-page: 13
  year: 2017
  ident: 10.1016/j.jconrel.2019.07.007_bb0050
  article-title: Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2017.10.008
– volume: 1303
  start-page: 35
  year: 2007
  ident: 10.1016/j.jconrel.2019.07.007_bb0170
  article-title: Oxidative stress, inflammation and atherosclerotic plaque development
  publication-title: Int. Congr. Ser.
  doi: 10.1016/j.ics.2007.02.064
– volume: 145
  start-page: 341
  year: 2011
  ident: 10.1016/j.jconrel.2019.07.007_bb0005
  article-title: Macrophages in the pathogenesis of atherosclerosis
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.005
– volume: 155
  start-page: 211
  year: 2011
  ident: 10.1016/j.jconrel.2019.07.007_bb0230
  article-title: Molecular targeting of atherosclerotic plaques by a stabilin-2-specific peptide ligand
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.07.010
– volume: 40
  start-page: 1256
  year: 2016
  ident: 10.1016/j.jconrel.2019.07.007_bb0020
  article-title: Design of simvastatin-loaded polymeric microbubbles as targeted ultrasound contrast agents for vascular imaging and drug delivery in the identification of atherosclerotic plaque
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ02292D
– volume: 32
  start-page: 281
  year: 2017
  ident: 10.1016/j.jconrel.2019.07.007_bb0190
  article-title: Pitavastatin attenuates AGEs-induced mitophagy via inhibition of ROS generation in the mitochondria of cardiomyocytes
  publication-title: J. Biomed. Res.
– volume: 44
  start-page: 497
  year: 2011
  ident: 10.1016/j.jconrel.2019.07.007_bb0175
  article-title: The role of peroxidases in the pathogenesis of atherosclerosis
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2011.44.8.497
– volume: 6
  start-page: 29
  year: 2016
  ident: 10.1016/j.jconrel.2019.07.007_bb0045
  article-title: αVβ3 integrin-targeted microSPECT/CT imaging of inflamed atherosclerotic plaques in mice
  publication-title: EJNMMI Res.
  doi: 10.1186/s13550-016-0184-9
– volume: 34
  start-page: 306
  year: 2013
  ident: 10.1016/j.jconrel.2019.07.007_bb0275
  article-title: Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.09.058
– volume: 28
  start-page: 1542
  year: 2008
  ident: 10.1016/j.jconrel.2019.07.007_bb0200
  article-title: HDL-associated lysosphingolipids inhibit NAD (P) H oxidase-dependent monocyte chemoattractant protein-1 production
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.107.161042
– volume: 20
  start-page: 708
  year: 2013
  ident: 10.1016/j.jconrel.2019.07.007_bb0205
  article-title: Pitavastatin increases HDL particles functionally preserved with cholesterol efflux capacity and antioxidative actions in dyslipidemic patients
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.17210
– volume: 277
  start-page: 49982
  year: 2002
  ident: 10.1016/j.jconrel.2019.07.007_bb0070
  article-title: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209649200
– volume: 15
  start-page: 1017
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0210
  article-title: Evaluation of the combined effect of recombinant high-density lipoprotein carrier and the encapsulated lovastatin in RAW264.7 macrophage cells based on the median-effect principle
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00923
– volume: 5
  start-page: 3065
  year: 2014
  ident: 10.1016/j.jconrel.2019.07.007_bb0255
  article-title: A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4065
– volume: 12
  start-page: 1630
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0060
  article-title: Light-Activatable red blood cell membrane-camouflaged Dimeric Prodrug nanoparticles for synergistic photodynamic/chemotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08219
– volume: 18
  start-page: 2286
  year: 2017
  ident: 10.1016/j.jconrel.2019.07.007_bb0125
  article-title: Biofunctional polymer-lipid hybrid high density lipoprotein-mimicking nanoparticles loading anti-miR155 for combined antiatherogenic effects on macrophages
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00436
– volume: 4
  start-page: 41
  year: 1997
  ident: 10.1016/j.jconrel.2019.07.007_bb0075
  article-title: Scavenger receptors in atherosclerosis
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/00062752-199704010-00007
– volume: 122
  start-page: S3
  year: 2009
  ident: 10.1016/j.jconrel.2019.07.007_bb0055
  article-title: The pathology of atherosclerosis: plaque development and plaque responses to medical treatment
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2008.10.013
– volume: 269
  start-page: 337
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0040
  article-title: Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.11.033
– volume: 24
  start-page: 393
  year: 2013
  ident: 10.1016/j.jconrel.2019.07.007_bb0165
  article-title: Hypoxia in atherosclerosis and inflammation
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0b013e32836484a4
– volume: 10
  start-page: 6904
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0285
  article-title: Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic Nanotherapy for vascular disease
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18525
– volume: 237
  start-page: 208
  year: 2014
  ident: 10.1016/j.jconrel.2019.07.007_bb0180
  article-title: Vascular oxidative stress, nitric oxide and atherosclerosis
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2014.09.001
– volume: 129
  start-page: 896
  year: 2014
  ident: 10.1016/j.jconrel.2019.07.007_bb0025
  article-title: Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.002870
– volume: 193
  start-page: 13
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0225
  article-title: Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2017.10.008
– volume: 17
  start-page: 204
  year: 2004
  ident: 10.1016/j.jconrel.2019.07.007_bb0195
  article-title: Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000075792
– volume: 4
  start-page: 2408
  year: 2016
  ident: 10.1016/j.jconrel.2019.07.007_bb0265
  article-title: Recent advances in targeted, self-assembling nanoparticles to address vascular damage due to atherosclerosis
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201500126
– volume: 424
  start-page: 245
  year: 2013
  ident: 10.1016/j.jconrel.2019.07.007_bb0065
  article-title: Foam cells in atherosclerosis
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2013.06.006
– volume: 9
  start-page: 8885
  year: 2015
  ident: 10.1016/j.jconrel.2019.07.007_bb0235
  article-title: Multifunctional nanoparticles facilitate molecular targeting and miRNA delivery to inhibit atherosclerosis in ApoE(−/−) mice
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02611
– volume: 262
  start-page: 47
  year: 2017
  ident: 10.1016/j.jconrel.2019.07.007_bb0015
  article-title: A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.07.013
– volume: 234
  start-page: 120
  year: 2014
  ident: 10.1016/j.jconrel.2019.07.007_bb0155
  article-title: Fumigaclavine C activates PPARγ pathway and attenuates atherogenesis in ApoE-deficient mice
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2014.02.016
– volume: 106
  start-page: 116
  year: 2016
  ident: 10.1016/j.jconrel.2019.07.007_bb0240
  article-title: Lipoproteins and lipoprotein mimetics for imaging and drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.04.020
– volume: 280
  start-page: 35890
  year: 2005
  ident: 10.1016/j.jconrel.2019.07.007_bb0140
  article-title: Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505685200
– volume: 283
  start-page: 241
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0270
  article-title: Co-delivery of LOX-1 siRNA and statin to endothelial cells and macrophages in the atherosclerotic lesions by a dual-targeting core-shell nanoplatform: a dual cell therapy to regress plaques
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.05.041
– volume: 28
  start-page: 225
  year: 2018
  ident: 10.1016/j.jconrel.2019.07.007_bb0290
  article-title: Synthetic high-density lipoprotein-mediated targeted delivery of liver X receptors agonist promotes atherosclerosis regression
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.12.021
– volume: 88
  start-page: 530
  year: 2010
  ident: 10.1016/j.jconrel.2019.07.007_bb0085
  article-title: Silencing of either SR-A or CD36 reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvq235
– volume: 46
  start-page: 312
  year: 1987
  ident: 10.1016/j.jconrel.2019.07.007_bb0160
  article-title: Metabolite concentration gradients in the arterial wall of experimental atherosclerosis
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/0014-4800(87)90052-9
SSID ssj0005347
Score 2.5172436
Snippet A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Atherosclerosis
biomimetics
catalase
cholesterol
Dual-targeting
high density lipoprotein
macrophages
Nanocarrier
nanoparticles
Plaque regression
Plaque targeting
Positive feedback loop
risk
small interfering RNA
therapeutics
Title Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression
URI https://dx.doi.org/10.1016/j.jconrel.2019.07.007
https://www.ncbi.nlm.nih.gov/pubmed/31295543
https://www.proquest.com/docview/2257694475
https://www.proquest.com/docview/2305222518
Volume 308
WOSCitedRecordID wos000482210200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLYonaa-TLuPXSpPmvpC04XYIc5j1XXqqqriAW1oL5FjnAJLDQKCyj_YT9jP3XFsJ-zCuj3sJUJOHJN8X845OTkXhN4ImTEZZL4X0yH3aBQILwWt7YWg7EjaTUNatun8eBFdXrLBIO41Gt9cLswqj5RiNzfx7L9CDWMAtk6d_Qe4q5PCAPwG0GELsMP2r4B_Z3rM8zxft6Ua6XoaOuE857pQqwn81gMrnY3VNjFbuvI3aLGUiy_tfDqdtYvSg1AGG2rFZ_2FOlV_fK2zHtuKK3jbtkF1ZaiiXWAur0xkrdpi9trY-FwOy34tGx-HzsfWd31S6IbaV5VPtgw4-Ayipx47K_2wn7gaFZVeuTDHjYrp0s227gydQcVcerg0IphFxIP3sHBTRhOfbUhZ07TlF-Fv_BCTowlcCVyBjtuLy8qspq_uBvaz6xJ8AsYOmFOk1oVVhKLbtYN2gyiMWRPtHn84HZzX4UOERnVG2NvfrrqH7rrzbDN7tr3WlOZN_z66ZwHCxwbSB6gh1UN00DOFzdeHuF_n6S0O8QHu1SXP14_Q1w3S4Yp02HACV6TDQDrMsSMddqTDmnS4JB3-iXS4Jh3-gXQYSOcWqEn3GPXfn_ZPzjzb48MTYKgvPVgEDFTZ9TMeUEZlJx5S0CtpyLtRRohkIEo6XSZ9f0iErk43DKnMAi6YEEEoyBPUVFMlnyHsSxHwjPIsDCSV3Q7cdg4nTiWhVERhp4WoQyARtv69bsOSJy7QcZJYDBONYeLryIyohY6qaTNTAOa2CczBm1gr1linCfD0tqmvHR0SkPL60x1XcloskkD7BWJdnPMPx8Dt0d6bDmuhp4ZL1T92NHy-dc8LtFc_ji9Rczkv5Ct0R6yW48V8H-1EA7Zvn4HvtZnkSg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamically+enhancing+plaque+targeting+via+a+positive+feedback+loop+using+multifunctional+biomimetic+nanoparticles+for+plaque+regression&rft.jtitle=Journal+of+controlled+release&rft.au=Jiang%2C+Cuiping&rft.au=Qi%2C+Zitong&rft.au=He%2C+Wanhua&rft.au=Li%2C+Zhuoting&rft.date=2019-08-28&rft.eissn=1873-4995&rft.volume=308&rft.spage=71&rft_id=info:doi/10.1016%2Fj.jconrel.2019.07.007&rft_id=info%3Apmid%2F31295543&rft.externalDocID=31295543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon