YOLOv5-tassel: Detecting Tassels in RGB UAV Imagery with Improved YOLOv5 Based on Transfer Learning

Unmanned Aerial Vehicles (UAVs) equipped with lightweight sensors such as RGB cameras and LiDAR have significant potential in precision agriculture, including object detection. Tassel detection in maize is an essential trait given its relevance as the beginning of the reproductive stage of growth an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 15; s. 1 - 10
Hlavní autoři: Liu, Wei, Quijano, Karoll, Crawford, Melba
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Unmanned Aerial Vehicles (UAVs) equipped with lightweight sensors such as RGB cameras and LiDAR have significant potential in precision agriculture, including object detection. Tassel detection in maize is an essential trait given its relevance as the beginning of the reproductive stage of growth and development of the plants. However, compared with general object detection, tassel detection based on RGB imagery acquired by UAVs is more challenging due to the small size, time-dependent variable shape, and complexity of the objects of interest. A novel algorithm referred to as YOLOv5-tassel is proposed to detect tassels in UAV-based RGB imagery. A bi-directional feature pyramid network (BiFPN) is adopted for the path-aggregation neck to effectively fuse cross-scale features. The robust attention module of SimAM is introduced to extract the features of interest before each detection head. An additional detection head is also introduced to improve small-size tassel detection based on the original YOLOv5. Annotation is performed with guidance from center points derived from CenterNet to improve selection of the bounding boxes for tassels. Finally, to address the issue of limited reference data, transfer learning based on the VisDrone dataset is adopted. Testing results for our proposed YOLOv5-tassel method achieved the <inline-formula><tex-math notation="LaTeX">mAP</tex-math></inline-formula> value of 44.7%, which is better than well-known object detection approaches such as FCOS, RetinaNet, and YOLOv5.
AbstractList Unmanned aerial vehicles (UAVs) equipped with lightweight sensors, such as RGB cameras and LiDAR, have significant potential in precision agriculture, including object detection. Tassel detection in maize is an essential trait given its relevance as the beginning of the reproductive stage of growth and development of the plants. However, compared with general object detection, tassel detection based on RGB imagery acquired by UAVs is more challenging due to the small size, time-dependent variable shape, and complexity of the objects of interest. A novel algorithm referred to as YOLOv5-tassel is proposed to detect tassels in UAV-based RGB imagery. A bidirectional feature pyramid network is adopted for the path-aggregation neck to effectively fuse cross-scale features. The robust attention module of SimAM is introduced to extract the features of interest before each detection head. An additional detection head is also introduced to improve small-size tassel detection based on the original YOLOv5. Annotation is performed with guidance from center points derived from CenterNet to improve the selection of the bounding boxes for tassels. Finally, to address the issue of limited reference data, transfer learning based on the VisDrone dataset is adopted. Testing results for our proposed YOLOv5-tassel method achieved the mAP value of 44.7%, which is better than well-known object detection approaches, such as FCOS, RetinaNet, and YOLOv5.
Unmanned Aerial Vehicles (UAVs) equipped with lightweight sensors such as RGB cameras and LiDAR have significant potential in precision agriculture, including object detection. Tassel detection in maize is an essential trait given its relevance as the beginning of the reproductive stage of growth and development of the plants. However, compared with general object detection, tassel detection based on RGB imagery acquired by UAVs is more challenging due to the small size, time-dependent variable shape, and complexity of the objects of interest. A novel algorithm referred to as YOLOv5-tassel is proposed to detect tassels in UAV-based RGB imagery. A bi-directional feature pyramid network (BiFPN) is adopted for the path-aggregation neck to effectively fuse cross-scale features. The robust attention module of SimAM is introduced to extract the features of interest before each detection head. An additional detection head is also introduced to improve small-size tassel detection based on the original YOLOv5. Annotation is performed with guidance from center points derived from CenterNet to improve selection of the bounding boxes for tassels. Finally, to address the issue of limited reference data, transfer learning based on the VisDrone dataset is adopted. Testing results for our proposed YOLOv5-tassel method achieved the <inline-formula><tex-math notation="LaTeX">mAP</tex-math></inline-formula> value of 44.7%, which is better than well-known object detection approaches such as FCOS, RetinaNet, and YOLOv5.
Author Liu, Wei
Crawford, Melba
Quijano, Karoll
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-2468-8842
  surname: Liu
  fullname: Liu, Wei
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Karoll
  surname: Quijano
  fullname: Quijano, Karoll
  organization: Department of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: Melba
  orcidid: 0000-0003-3459-2094
  surname: Crawford
  fullname: Crawford, Melba
  organization: School of Civil Engineering and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
BackLink https://www.osti.gov/biblio/1889504$$D View this record in Osti.gov
BookMark eNp9kc1OWzEQha2KSg20T8DGatc3-De2uwvQQqpIkSBU6spyfOcGR8GmtqHi7Wu4tIsuurJmdM7nmTmH6CCmCAgdUzKllJiTb9fr-dX1lBHGppyRGTfmDZowKmlHJZcHaEINNx0VRLxDh6XsCJkxZfgE-R-r5epRdtWVAvvP-Bwq-BriFq9fOgWHiK8uTvHN_Dte3Lkt5Cf8K9TbVtzn9Ag9Hgn41JVWpIjX2cUyQMZLcDk21Hv0dnD7Ah9e3yN08_XL-uyyW64uFmfzZecFl7Vz3vSmF5IZ78VMglYwiI1zVPWzAQTzIIWhWsumJkxzPwjDCPTM9057AfwILUZun9zO3udw5_KTTS7Yl0bKW-tyDX4PlnNFCCi9IV4JrolWVPP2D-8120hFGuvjyEqlBlt8aGe59SnGdh3bhjCSiCb6NIraJX4-QKl2lx5ybDta1oDKCKl4U5lR5XMqJcNgG83VkGLNLuwtJfY5RDuGaJ9DtK8hNi__x_tnrf-7jkdXAIC_DtOmpprx35iEp3U
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_isci_2024_109147
crossref_primary_10_1109_JIOT_2024_3438459
crossref_primary_10_3390_s23125457
crossref_primary_10_1109_JSTSP_2023_3312914
crossref_primary_10_3390_su15139859
crossref_primary_10_1016_j_eswa_2024_126206
crossref_primary_10_1016_j_jag_2024_103922
crossref_primary_10_1007_s11227_023_05872_2
crossref_primary_10_1007_s00371_024_03355_w
crossref_primary_10_1080_01431161_2023_2244642
crossref_primary_10_1109_JIOT_2023_3307002
crossref_primary_10_1007_s13042_024_02324_y
crossref_primary_10_3390_app13031746
crossref_primary_10_3390_rs15133383
crossref_primary_10_1111_jfpe_14753
crossref_primary_10_3390_su151410751
crossref_primary_10_1007_s11517_024_03161_5
crossref_primary_10_1016_j_atech_2025_101397
crossref_primary_10_1007_s00371_025_03828_6
crossref_primary_10_1109_ACCESS_2023_3325747
crossref_primary_10_32604_cmc_2024_056183
crossref_primary_10_1016_j_compag_2023_107875
crossref_primary_10_1038_s41598_023_36781_2
crossref_primary_10_3390_rs15164040
crossref_primary_10_1109_TGRS_2023_3325848
crossref_primary_10_1109_TIV_2023_3244948
crossref_primary_10_3390_app142411636
crossref_primary_10_3390_electronics12081829
crossref_primary_10_3390_drones7120694
crossref_primary_10_3390_app13116465
crossref_primary_10_3390_rs15123047
crossref_primary_10_1109_TIV_2023_3257169
crossref_primary_10_1109_JSTARS_2023_3315544
crossref_primary_10_3390_electronics12143022
crossref_primary_10_1109_TGRS_2023_3313878
crossref_primary_10_3390_s23146427
crossref_primary_10_1016_j_jvcir_2023_103936
crossref_primary_10_3390_electronics12163423
crossref_primary_10_1007_s12204_024_2749_5
crossref_primary_10_1109_JSTARS_2025_3576780
crossref_primary_10_3233_JIFS_237793
crossref_primary_10_3390_rs15123160
crossref_primary_10_3390_rs16112024
crossref_primary_10_3390_ani14142022
crossref_primary_10_3390_electronics12143055
crossref_primary_10_3390_oral3020016
crossref_primary_10_3390_electronics12183787
crossref_primary_10_1007_s11119_024_10135_y
crossref_primary_10_3390_su151813553
crossref_primary_10_3390_app13158932
crossref_primary_10_1016_j_eswa_2023_120845
crossref_primary_10_3390_s23062934
crossref_primary_10_3390_rs15163970
crossref_primary_10_1109_ACCESS_2023_3241005
crossref_primary_10_3390_en16134897
crossref_primary_10_1109_ACCESS_2025_3526180
crossref_primary_10_1109_ACCESS_2024_3419587
crossref_primary_10_1038_s41598_025_05665_y
crossref_primary_10_1007_s11761_024_00388_w
crossref_primary_10_1038_s41598_024_64934_4
crossref_primary_10_1109_TIV_2023_3317933
crossref_primary_10_3390_app132011524
crossref_primary_10_1109_JSTARS_2024_3450714
crossref_primary_10_3390_rs15092439
crossref_primary_10_1109_TIV_2023_3282567
crossref_primary_10_3390_rs15174292
crossref_primary_10_1007_s11760_025_04123_6
crossref_primary_10_1109_JSTARS_2023_3339235
crossref_primary_10_1007_s12239_024_00112_9
crossref_primary_10_3390_rs15164016
crossref_primary_10_1109_TCCN_2024_3452053
crossref_primary_10_1016_j_geits_2023_100125
crossref_primary_10_1109_JSTARS_2025_3541249
crossref_primary_10_3390_s23156887
crossref_primary_10_3390_drones8050198
crossref_primary_10_1016_j_apenergy_2023_121526
crossref_primary_10_3390_s23135845
crossref_primary_10_3390_s23187883
crossref_primary_10_1109_ACCESS_2024_3432532
crossref_primary_10_3390_app13116400
crossref_primary_10_1109_JSTARS_2023_3270302
crossref_primary_10_3390_rs15123011
crossref_primary_10_4018_JGIM_336485
crossref_primary_10_3390_act12080334
crossref_primary_10_1109_JSTARS_2024_3356520
crossref_primary_10_3390_ai4020025
crossref_primary_10_1109_LGRS_2025_3582085
crossref_primary_10_3390_drones9030224
crossref_primary_10_1016_j_aei_2025_103257
crossref_primary_10_1109_JSTARS_2024_3419903
crossref_primary_10_3390_agriengineering7020024
crossref_primary_10_1177_09544070231195233
crossref_primary_10_3390_drones7020117
crossref_primary_10_3390_drones7090585
crossref_primary_10_1002_gch2_202500083
crossref_primary_10_3389_fnbot_2023_1243174
crossref_primary_10_1007_s11227_024_06569_w
crossref_primary_10_3390_s23218844
crossref_primary_10_1109_JSTARS_2025_3529293
crossref_primary_10_3390_app14125004
crossref_primary_10_3390_rs16132465
crossref_primary_10_3390_s24051587
crossref_primary_10_1016_j_engappai_2025_111351
crossref_primary_10_1109_JSTARS_2025_3557092
crossref_primary_10_1109_ACCESS_2025_3559657
crossref_primary_10_3390_electronics12092072
crossref_primary_10_24003_emitter_v12i2_882
crossref_primary_10_1007_s10661_024_13221_w
crossref_primary_10_3390_rs15092430
crossref_primary_10_3390_app13095650
crossref_primary_10_1109_JSTARS_2023_3296505
crossref_primary_10_1109_JSTARS_2023_3279863
crossref_primary_10_3390_agronomy13081982
crossref_primary_10_3390_s23156708
crossref_primary_10_3390_s24196437
crossref_primary_10_1016_j_isprsjprs_2024_09_012
crossref_primary_10_3390_s23084176
crossref_primary_10_3390_s23094537
crossref_primary_10_1007_s11554_025_01750_7
crossref_primary_10_3390_electronics12132905
crossref_primary_10_1049_ipr2_13231
crossref_primary_10_3390_s23146345
crossref_primary_10_1016_j_jvcir_2024_104289
crossref_primary_10_1109_TIV_2023_3282623
crossref_primary_10_1109_ACCESS_2023_3312217
crossref_primary_10_1109_ACCESS_2023_3299316
crossref_primary_10_1080_01431161_2024_2329528
crossref_primary_10_1109_JSTARS_2023_3273081
crossref_primary_10_1109_JSTARS_2024_3380902
crossref_primary_10_3390_sym16081003
crossref_primary_10_3390_rs17111956
crossref_primary_10_3390_rs15164112
crossref_primary_10_3390_su15118660
crossref_primary_10_1016_j_atech_2025_100893
crossref_primary_10_1109_TIM_2024_3500043
crossref_primary_10_26599_TST_2024_9010029
crossref_primary_10_1016_j_ijepes_2023_108982
crossref_primary_10_1016_j_compag_2023_108412
crossref_primary_10_3390_drones7080492
crossref_primary_10_1016_j_atech_2025_101181
crossref_primary_10_3390_en16134845
crossref_primary_10_3390_s23156828
crossref_primary_10_3390_su151813628
crossref_primary_10_1109_LGRS_2025_3550349
crossref_primary_10_3390_s24206697
crossref_primary_10_1109_JSTARS_2024_3505964
crossref_primary_10_3390_drones7040268
crossref_primary_10_3390_electronics12173542
crossref_primary_10_1088_1361_6501_ad9e1c
crossref_primary_10_3390_app13126931
crossref_primary_10_3390_s25010196
crossref_primary_10_1109_JSTARS_2023_3280947
crossref_primary_10_3390_rs15051218
crossref_primary_10_1109_TITS_2023_3347034
crossref_primary_10_1007_s10499_024_01426_2
crossref_primary_10_3390_math11081964
crossref_primary_10_1016_j_ymssp_2023_110862
crossref_primary_10_3390_drones7030189
crossref_primary_10_1007_s11554_024_01483_z
crossref_primary_10_1109_TGRS_2024_3369666
crossref_primary_10_1177_09544070241239992
crossref_primary_10_1016_j_trc_2023_104120
crossref_primary_10_3390_electronics12102178
crossref_primary_10_3390_rs17121967
crossref_primary_10_3390_drones9030159
crossref_primary_10_3390_rs16010092
crossref_primary_10_1155_adce_9521952
crossref_primary_10_1177_00472875241310818
crossref_primary_10_3390_electronics12163525
crossref_primary_10_1016_j_compag_2025_110352
crossref_primary_10_1109_TGRS_2023_3314550
crossref_primary_10_1109_TGRS_2023_3292518
crossref_primary_10_3390_electronics12112372
crossref_primary_10_3390_drones7050329
crossref_primary_10_3390_s23167212
crossref_primary_10_1109_JSTARS_2023_3328301
crossref_primary_10_34133_plantphenomics_0188
crossref_primary_10_1109_TIV_2023_3298892
crossref_primary_10_3390_rs15153725
Cites_doi 10.1007/978-3-031-19842-7_7
10.1109/ICCV.2017.322
10.1109/ICCVW54120.2021.00160
10.1007/978-3-030-01234-2_1
10.1109/JIOT.2021.3130000
10.1109/JSEN.2021.3059050
10.1109/TSMC.2020.3005231
10.3390/rs13152881
10.1109/TVT.2020.2983738
10.1007/s41095-022-0271-y
10.3390/s21010191
10.1109/CVPR42600.2020.01104
10.1109/TIP.2018.2878958
10.1109/LGRS.2019.2932385
10.1109/JSEN.2021.3115016
10.1534/genetics.111.136903
10.1007/s11263-013-0620-5
10.3390/s19081815
10.1109/ICRA48506.2021.9560830
10.1109/CVPR.2018.00644
10.1109/ICCV.2017.324
10.1109/TPAMI.2021.3119563
10.1109/ICCVW54120.2021.00312
10.1109/ICASSP39728.2021.9414568
10.1016/j.neucom.2021.03.016
10.1109/MSP.2020.2985815
10.1109/IGARSS47720.2021.9554291
10.1049/iet-its.2019.0826
10.1109/TGRS.2019.2897139
10.1109/ICCV48922.2021.01571
10.1007/978-3-030-01264-9_45
10.1109/CVPR.2019.00094
10.1109/ICCV.2019.00972
10.3390/rs13050860
10.1109/ICCV.2015.169
10.1109/CVPR.2018.00745
10.3390/rs12182981
10.1016/j.neucom.2021.10.024
10.1109/ICCV48922.2021.00986
10.1109/TNNLS.2021.3093429
10.1109/JSTARS.2020.3025790
10.1007/s11263-007-0090-8
10.1109/CVPR46437.2021.01284
10.1016/j.compag.2020.105665
10.1109/CVPR.2017.106
10.1109/CVPR42600.2020.00978
10.1109/TPAMI.2016.2577031
10.1609/aaai.v34i07.6999
10.1109/ICCV.2019.00667
10.1007/s11263-019-01247-4
10.1109/ICCV.2017.203
10.1016/j.neucom.2021.03.128
10.1007/978-3-030-65414-6_31
10.1109/MGRS.2021.3115137
10.1109/ICCVW54120.2021.00314
10.1109/CVPR42600.2020.01079
10.1109/ICCV.2017.89
10.1109/CVPR.2018.00913
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
OTOTI
DOA
DOI 10.1109/JSTARS.2022.3206399
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
OSTI.GOV
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Agriculture
EISSN 2151-1535
EndPage 10
ExternalDocumentID oai_doaj_org_article_33700e78b0c74380871837d63d82b570
1889504
10_1109_JSTARS_2022_3206399
9889182
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ATWAV
OTOTI
ID FETCH-LOGICAL-c435t-ac9d9d4529cc465e87ef4baa17d6fe42ce54918854350283cf4920ed2cda8c4e3
IEDL.DBID DOA
ISICitedReferencesCount 220
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861443200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:44:55 EDT 2025
Mon Oct 03 02:37:19 EDT 2022
Sat Sep 06 22:12:02 EDT 2025
Tue Nov 18 22:12:13 EST 2025
Sat Nov 29 04:51:14 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-ac9d9d4529cc465e87ef4baa17d6fe42ce54918854350283cf4920ed2cda8c4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AR0000593
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
ORCID 0000-0003-2468-8842
0000-0003-3459-2094
0000-0003-4968-7053
0000000334592094
0000000349687053
0000000324688842
OpenAccessLink https://doaj.org/article/33700e78b0c74380871837d63d82b570
PQID 2718794573
PQPubID 75722
PageCount 10
ParticipantIDs crossref_primary_10_1109_JSTARS_2022_3206399
proquest_journals_2718794573
doaj_primary_oai_doaj_org_article_33700e78b0c74380871837d63d82b570
osti_scitechconnect_1889504
ieee_primary_9889182
crossref_citationtrail_10_1109_JSTARS_2022_3206399
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
– name: United States
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ge (ref21) 2021
ref50
Chen (ref65) 2019
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Redmon (ref22) 2018
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Jocher (ref25) 2020
ref35
ref34
Dosovitskiy (ref51) 2021
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Bochkovskiy (ref23) 2020
ref24
ref26
ref20
ref64
ref63
ref66
Xu (ref52) 2022
ref28
ref27
ref29
ref60
Yang (ref56)
ref62
ref61
References_xml – ident: ref2
  doi: 10.1007/978-3-031-19842-7_7
– ident: ref30
  doi: 10.1109/ICCV.2017.322
– ident: ref62
  doi: 10.1109/ICCVW54120.2021.00160
– ident: ref55
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref9
  doi: 10.1109/JIOT.2021.3130000
– ident: ref10
  doi: 10.1109/JSEN.2021.3059050
– ident: ref15
  doi: 10.1109/TSMC.2020.3005231
– ident: ref38
  doi: 10.3390/rs13152881
– ident: ref11
  doi: 10.1109/TVT.2020.2983738
– ident: ref45
  doi: 10.1007/s41095-022-0271-y
– ident: ref41
  doi: 10.3390/s21010191
– ident: ref54
  doi: 10.1109/CVPR42600.2020.01104
– ident: ref8
  doi: 10.1109/TIP.2018.2878958
– ident: ref43
  doi: 10.1109/LGRS.2019.2932385
– ident: ref46
  doi: 10.1109/JSEN.2021.3115016
– ident: ref12
  doi: 10.1534/genetics.111.136903
– ident: ref26
  doi: 10.1007/s11263-013-0620-5
– ident: ref13
  doi: 10.3390/s19081815
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref51
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– ident: ref6
  doi: 10.1109/ICRA48506.2021.9560830
– ident: ref29
  doi: 10.1109/CVPR.2018.00644
– ident: ref32
  doi: 10.1109/ICCV.2017.324
– start-page: 11863
  volume-title: Proc. Int. Conf. Mach. Learn
  ident: ref56
  article-title: SimAM: A simple, parameter-free attention module for convolutional neural networks
– ident: ref16
  doi: 10.1109/TPAMI.2021.3119563
– ident: ref33
  doi: 10.1109/ICCVW54120.2021.00312
– ident: ref66
  doi: 10.1109/ICASSP39728.2021.9414568
– ident: ref35
  doi: 10.1016/j.neucom.2021.03.016
– ident: ref47
  doi: 10.1109/MSP.2020.2985815
– ident: ref40
  doi: 10.1109/IGARSS47720.2021.9554291
– ident: ref7
  doi: 10.1049/iet-its.2019.0826
– ident: ref36
  doi: 10.1109/TGRS.2019.2897139
– ident: ref5
  doi: 10.1109/ICCV48922.2021.01571
– ident: ref18
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref19
  doi: 10.1109/CVPR.2019.00094
– ident: ref31
  doi: 10.1109/ICCV.2019.00972
– ident: ref61
  doi: 10.3390/rs13050860
– ident: ref27
  doi: 10.1109/ICCV.2015.169
– ident: ref48
  doi: 10.1109/CVPR.2018.00745
– year: 2021
  ident: ref21
  article-title: YOLOX: Exceeding YOLO series in 2021
– ident: ref39
  doi: 10.3390/rs12182981
– ident: ref49
  doi: 10.1016/j.neucom.2021.10.024
– ident: ref53
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref1
  doi: 10.1109/TNNLS.2021.3093429
– ident: ref4
  doi: 10.1109/JSTARS.2020.3025790
– year: 2020
  ident: ref23
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– ident: ref63
  doi: 10.1007/s11263-007-0090-8
– ident: ref24
  doi: 10.1109/CVPR46437.2021.01284
– year: 2020
  ident: ref25
  article-title: YOLOv5
– ident: ref44
  doi: 10.1016/j.compag.2020.105665
– year: 2022
  ident: ref52
  article-title: CoBEVT: Cooperative birds eye view semantic segmentation with sparse transformers
– ident: ref58
  doi: 10.1109/CVPR.2017.106
– ident: ref20
  doi: 10.1109/CVPR42600.2020.00978
– ident: ref28
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref64
  doi: 10.1609/aaai.v34i07.6999
– year: 2019
  ident: ref65
  article-title: MMDetection: Open MMLab detection toolbox and benchmark
– ident: ref17
  doi: 10.1109/ICCV.2019.00667
– ident: ref14
  doi: 10.1007/s11263-019-01247-4
– ident: ref57
  doi: 10.1109/ICCV.2017.203
– ident: ref3
  doi: 10.1016/j.neucom.2021.03.128
– ident: ref42
  doi: 10.1007/978-3-030-65414-6_31
– ident: ref37
  doi: 10.1109/MGRS.2021.3115137
– ident: ref34
  doi: 10.1109/ICCVW54120.2021.00314
– year: 2018
  ident: ref22
  article-title: YOLOv3: An incremental improvement
– ident: ref60
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref50
  doi: 10.1109/ICCV.2017.89
– ident: ref59
  doi: 10.1109/CVPR.2018.00913
SSID ssj0062793
Score 2.6608024
Snippet Unmanned Aerial Vehicles (UAVs) equipped with lightweight sensors such as RGB cameras and LiDAR have significant potential in precision agriculture, including...
Unmanned aerial vehicles (UAVs) equipped with lightweight sensors, such as RGB cameras and LiDAR, have significant potential in precision agriculture,...
SourceID doaj
osti
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aggregation
Agriculture
Algorithms
Annotations
Cameras
CenterNet
Deep learning
Dependent variables
Detection
Feature extraction
Head
Image acquisition
Imagery
Learning
Lidar
Neck
Object detection
Object recognition
Precision agriculture
SimAM attention module
Small tassel detection
Transfer learning
Unmanned aerial vehicles
YOLOv5
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7aoqAP_mgVt62SBx-7bTab3SS-3amtgrRSW6lPYTfJlkLdK3fbQv97Z7K5A1EEn3ZZsiFkJjPfTJJvAN7KimCrxzBV1XUuGy5z3ZZVXgivXKsx4GhkLDahjo_1xYX5ugZ7q7swIYR4-Czs02vcy_czd0upsgOjtUE8vA7rSqnxrtbS6tZCRYJdxCMmJ8qYxDBUcHOAKj45_YaxoBD7pYg--TcvFMn6U3UVfMxwbf1hmaO7OXz6fwN9Bk8SrGSTUQ-ew1roN-Hx5HKeqDXCJjw8ikV877fA_Tj5cnJX5QMC53D9jn0ItJOAPoydxS8LdtWz06MpO598Z59_EsvFPaOELRtTEMGzsQc2RR_o2axn0eV1Yc4SX-vlCzg__Hj2_lOeii3kDhHTkDfOeONpG9Y5WVdBq9DJtmkK5esuSOECRpKF1hW2JkziOmkED14432gnQ_kSNvpZH14BK6RHW9E0vHOFbHnbVqgo2pEtcaEpywzEcvKtS0zkVBDj2saIhBs7SsySxGySWAZ7q59uRiKOfzefklRXTYlFO35AOdm0KG1ZKs6D0i13ipj3MXjEeN3XpdeirRTPYItku-okiTWDHdIRixiFiHYdnUhyg8XJMRWXGewuVccme7CwQlFVd1mpcvvvfe7AIxr-mNzZhY1hfhtewwN3N1wt5m-iqv8Cjv_22g
  priority: 102
  providerName: IEEE
Title YOLOv5-tassel: Detecting Tassels in RGB UAV Imagery with Improved YOLOv5 Based on Transfer Learning
URI https://ieeexplore.ieee.org/document/9889182
https://www.proquest.com/docview/2718794573
https://www.osti.gov/biblio/1889504
https://doaj.org/article/33700e78b0c74380871837d63d82b570
Volume 15
WOSCitedRecordID wos000861443200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQBRIXRCmI0A_5wJFQx3Zip7fdlhYk1KLSQjlZztiBlUoW7aaV-u8Zf-wKhAQXTpEsx3LejD1vEucNIS9lHWirwzRVNU0pLZOl7kRdVtwp6DQmHFbGYhPq9FRfXbUffin1Fc6EJXngBNy-EIoxr3THQAV1dCT4mFO5RjjNu1rFbB1ZzyqZSntww9HtssZQxdp9dPLJ-UfMBjl_LXiMyr_FoSjXn-ur4GWOq-uPvTkGnOPH5FFminSSZrhJ7vnhCXlwEivx3m0R-HL2_uy2Li-Q_frrA3rkw-cADEQ0tSzpbKDnJ1N6OflE330PUhV39PNs_EbTewTvaBqBTjGQOTofaIxbvV_QLLr69Sm5PH5zcfi2zBUTSkDaM5YWWte68C0VQDa118r3srO2QsB6Lzl4TAcrrWvsHYgF9LLlzDsOzmqQXjwjG8N88M8JraTDBW8t66GSHeu6Gq2tIWwI4K0QBeEr_AxkOfFQ1eLaxLSCtSaBbgLoJoNekFfrm34kNY2_d58Gw6y7Bins2IAOYrKDmH85SEG2glnXg7RaIwS8INvBzAaJRlDLhXCsCEaD4LQ1kwXZWVnf5EW9NFyF0uyyVuLF_5jYNnkYHja9z9khG-Pixu-S-3A7zpaLvejPe_F_xJ8GyvG5
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAgIOPFoQoQV84Ni0juPEDrddoA-xbFHZovZkJbZTVSpZtLut1H_PjONdCYGQOCWKHCvxjGe-GdvfALyTBcFWh2GqKstU1lymusmLNBNO2UZjwFHLUGxCjcf67Kz6ugY7q7Mw3vuw-czv0m1Yy3dTe02psr1K6wrx8B24W0gpsv601tLulkIFil1EJFVKpDGRYyjj1R4q-eDkG0aDQuzmInjl3_xQoOuP9VXwMsXZ9YdtDg5n_8n_fepTeByBJRv0mvAM1ny3AY8GF7NIruE34P5BKON7uwn2_Hh0fFOkC4TO_uo9--hpLQG9GJuEJ3N22bGTgyE7HXxnRz-I5-KWUcqW9UkI71jfAxuiF3Rs2rHg9Fo_Y5Gx9eI5nO5_mnw4TGO5hdQiZlqkta1c5Wgh1lpZFl4r38qmrjPlytZLYT3GkpnWBbYmVGJbWQnunbCu1lb6_AWsd9POvwSWSYfWoq55azPZ8KYpUFW0JWtifZ3nCYjl4BsbucipJMaVCTEJr0wvMUMSM1FiCeysXvrZU3H8u_mQpLpqSjza4QHKycRpafJcce6VbrhVxL2P4SNG7K7MnRZNoXgCmyTbVSdRrAlskY4YRClEtWtpT5JdGBycquAyge2l6phoEeZGKKrrLguVv_p7n2_hweHky8iMjsaft-Ah_Uqf6tmG9cXs2r-Ge_ZmcTmfvQlq_wuJ8_oh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv5-Tassel%3A+Detecting+Tassels+in+RGB+UAV+Imagery+With+Improved+YOLOv5+Based+on+Transfer+Learning&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Liu%2C+Wei&rft.au=Quijano%2C+Karoll&rft.au=Crawford%2C+Melba+M.&rft.date=2022&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=8085&rft.epage=8094&rft_id=info:doi/10.1109%2FJSTARS.2022.3206399&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2022_3206399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon