Guarded Cubical Type Theory

This paper improves the treatment of equality in guarded dependent type theory ( GDTT ), by combining it with cubical type theory ( CTT ). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of automated reasoning Ročník 63; číslo 2; s. 211 - 253
Hlavní autoři: Birkedal, Lars, Bizjak, Aleš, Clouston, Ranald, Grathwohl, Hans Bugge, Spitters, Bas, Vezzosi, Andrea
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.08.2019
Springer Nature B.V
Témata:
ISSN:0168-7433, 1573-0670, 1573-0670
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper improves the treatment of equality in guarded dependent type theory ( GDTT ), by combining it with cubical type theory ( CTT ). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory ( GCTT ), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that CTT can be given semantics in presheaves on C × D , where C is the cube category, and D is any small category with an initial object. We then show that the category of presheaves on C × ω provides semantics for GCTT .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0168-7433
1573-0670
1573-0670
DOI:10.1007/s10817-018-9471-7