Machine learning for network automation: overview, architecture, and applications [Invited Tutorial]
Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications.With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any ch...
Uloženo v:
| Vydáno v: | Journal of optical communications and networking Ročník 10; číslo 10; s. D126 - D143 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
Optica Publishing Group
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers (IEEE) |
| Témata: | |
| ISSN: | 1943-0620, 1943-0639 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications.With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any changes, upgrades, or service deployments to take effect. Machine learning, a sub-domain of artificial intelligence, is highly suitable for complex system representation. In this tutorial paper, we review several machine learning concepts tailored to the optical networking industry and discuss algorithm choices, data and model management strategies, and integration into existing network control and management tools. We then describe four networking case studies in detail, covering predictive maintenance, virtual network topology management, capacity optimization, and optical spectral analysis. |
|---|---|
| AbstractList | Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications.With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any changes, upgrades, or service deployments to take effect. Machine learning, a sub-domain of artificial intelligence, is highly suitable for complex system representation. In this tutorial paper, we review several machine learning concepts tailored to the optical networking industry and discuss algorithm choices, data and model management strategies, and integration into existing network control and management tools. We then describe four networking case studies in detail, covering predictive maintenance, virtual network topology management, capacity optimization, and optical spectral analysis. Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications. With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any changes, upgrades, or service deployments to take effect. Machine learning, a sub-domain of artificial intelligence, is highly suitable for complex system representation. In this tutorial paper, we review several machine learning concepts tailored to the optical networking industry and discuss algorithm choices, data and model management strategies, and integration into existing network control and management tools. We then describe four networking case studies in detail, covering predictive maintenance, virtual network topology management, capacity optimization, and optical spectral analysis. Peer Reviewed |
| Author | Rafique, Danish Velasco, Luis |
| Author_xml | – sequence: 1 givenname: Danish surname: Rafique fullname: Rafique, Danish organization: ADVA Optical Networking SE, Fraunhoeferstr. 9a, 82152 Munich, Germany – sequence: 2 givenname: Luis surname: Velasco fullname: Velasco, Luis organization: Universitat Politecnica de Catalunya, 08034 Barcelona, Spain |
| BookMark | eNp1kE1PxCAQhonRRF29evFC4tVdB2jZ1ptZv6PuRU_GEKRTRSuslO7Gfy91jSYmHgi8YZ5heDbJqvMOCdlhMGJCZgeX08nNKAWAY8blCtlgZSaGIEW5-nPmsE422_YFQI4ZyzdIda3Ns3VIG9TBWfdEax-ow7jw4ZXqLvo3Ha13h9TPMcwtLvapDgmJaGIXMCVXUT2bNdZ8Fbb0_sLN03VFbxMdrG4etsharZsWt7_3Abk7PbmdnA-vpmcXk6OroclEHodlBYbzAnM0VSFEzYFXdYbIeAWlzjkvx_AocwMlpA_ronhkUGWyRJYzbqQUA8KWfU3bGRXQYEhDKa_tb-gXhzFXQowBisTsLZlZ8O8dtlG9-C64NKbiSWMmBSv6qtF35-DbNmCtZsG-6fChGKjevurt92FpPwHZH8DY-CUoBm2b_7HdJWYR8eeNIgeWCyE-AYbfk08 |
| CODEN | JOCNBB |
| CitedBy_id | crossref_primary_10_1364_JOCN_492128 crossref_primary_10_1016_j_sna_2021_113096 crossref_primary_10_1109_JLT_2020_2975641 crossref_primary_10_1109_LCOMM_2021_3055064 crossref_primary_10_1016_j_comnet_2021_107981 crossref_primary_10_1364_JOCN_11_000140 crossref_primary_10_2139_ssrn_5203248 crossref_primary_10_1364_JOCN_411524 crossref_primary_10_1364_PRJ_551798 crossref_primary_10_1016_j_jss_2024_112202 crossref_primary_10_1007_s12596_021_00807_7 crossref_primary_10_1364_JOCN_12_00A113 crossref_primary_10_1016_j_yofte_2021_102804 crossref_primary_10_1109_MCOM_003_2200186 crossref_primary_10_1016_j_comnet_2025_111614 crossref_primary_10_1109_JLT_2019_2897313 crossref_primary_10_1364_JOCN_534525 crossref_primary_10_1007_s42979_024_03597_4 crossref_primary_10_1109_JLT_2020_3034135 crossref_primary_10_3390_su151813815 crossref_primary_10_3390_min12121621 crossref_primary_10_1016_j_yofte_2020_102355 crossref_primary_10_3390_photonics9010030 crossref_primary_10_1007_s11432_020_2871_2 crossref_primary_10_1117_1_AP_6_2_026006 crossref_primary_10_1109_JLT_2019_2922586 crossref_primary_10_1364_JOCN_433412 crossref_primary_10_1007_s10462_025_11108_x crossref_primary_10_1364_JOCN_424428 crossref_primary_10_1364_JOCN_493347 crossref_primary_10_3390_s22239251 crossref_primary_10_1364_JOCN_12_0000A9 crossref_primary_10_1364_JOCN_401568 crossref_primary_10_1364_JOCN_533789 crossref_primary_10_1109_ACCESS_2020_3010896 crossref_primary_10_1109_JLT_2020_3003905 crossref_primary_10_3390_s24248054 crossref_primary_10_1364_JOCN_438269 crossref_primary_10_1109_LCOMM_2020_3022737 crossref_primary_10_1109_TNET_2024_3365534 crossref_primary_10_1109_ACCESS_2025_3569559 crossref_primary_10_1109_JLT_2020_3014810 crossref_primary_10_1364_JOCN_410694 crossref_primary_10_4218_etrij_2021_0182 crossref_primary_10_1364_JOCN_537463 crossref_primary_10_1109_JLT_2025_3564134 crossref_primary_10_3390_math12081254 crossref_primary_10_1364_JOCN_507128 crossref_primary_10_1364_JOCN_511863 crossref_primary_10_1109_LCOMM_2020_2989080 crossref_primary_10_1002_itl2_291 crossref_primary_10_1109_TNSM_2023_3339201 crossref_primary_10_1109_MNET_2019_1800341 crossref_primary_10_1364_JOCN_477341 crossref_primary_10_1016_j_osn_2020_100594 crossref_primary_10_1109_TCCN_2019_2946312 crossref_primary_10_1364_JOCN_438951 crossref_primary_10_1109_JSAC_2021_3064698 crossref_primary_10_2478_fcds_2020_0012 crossref_primary_10_1109_JLT_2018_2859199 crossref_primary_10_1109_TII_2022_3215231 crossref_primary_10_1016_j_yofte_2025_104137 crossref_primary_10_1364_JOCN_411017 crossref_primary_10_1109_TII_2022_3212003 crossref_primary_10_1109_JLT_2019_2902454 crossref_primary_10_1364_JOCN_425891 crossref_primary_10_3390_app10010363 crossref_primary_10_1364_JOCN_12_000A82 crossref_primary_10_1109_TNSM_2021_3077736 crossref_primary_10_1364_JOCN_514981 crossref_primary_10_3390_s24020535 crossref_primary_10_1007_s10586_024_04430_6 crossref_primary_10_1109_JLT_2019_2947562 crossref_primary_10_1109_TCOMM_2022_3222519 crossref_primary_10_1016_j_comcom_2019_11_052 crossref_primary_10_1109_JPROC_2022_3188337 crossref_primary_10_1364_JOCN_413188 crossref_primary_10_1007_s00500_023_08365_9 crossref_primary_10_1364_JOCN_461422 crossref_primary_10_3390_electronics10020162 crossref_primary_10_1364_JOCN_11_000226 crossref_primary_10_1016_j_ifacol_2021_08_083 crossref_primary_10_1109_COMST_2023_3247842 crossref_primary_10_1109_JLT_2019_2952179 crossref_primary_10_1109_JLT_2022_3172523 crossref_primary_10_1364_JOCN_425167 crossref_primary_10_1007_s11432_022_3557_9 crossref_primary_10_1109_JLT_2020_2987032 crossref_primary_10_1007_s11107_020_00909_5 crossref_primary_10_1364_JOCN_12_000A70 crossref_primary_10_3390_app11167686 crossref_primary_10_1109_JLT_2022_3157527 crossref_primary_10_1109_LPT_2019_2902973 crossref_primary_10_1515_nanoph_2021_0578 crossref_primary_10_1016_j_osn_2021_100651 crossref_primary_10_1109_TNSM_2021_3077543 crossref_primary_10_1016_j_comnet_2024_110964 crossref_primary_10_1109_ACCESS_2021_3107296 crossref_primary_10_1364_JOCN_424639 crossref_primary_10_1364_JOCN_438255 crossref_primary_10_1016_j_yofte_2022_103006 crossref_primary_10_1007_s11432_020_2874_y crossref_primary_10_3390_info10060192 crossref_primary_10_3390_app10228139 crossref_primary_10_1109_JSEN_2020_3025188 crossref_primary_10_1364_JOCN_482932 crossref_primary_10_1007_s11107_018_0808_2 crossref_primary_10_1109_JLT_2021_3110788 crossref_primary_10_1109_TNSM_2023_3340351 crossref_primary_10_1590_2179_10742025v24i1289308 crossref_primary_10_1364_JOCN_437414 crossref_primary_10_1002_eng2_12304 crossref_primary_10_1016_j_icte_2022_02_002 crossref_primary_10_1016_j_jnca_2020_102576 crossref_primary_10_1109_JLT_2019_2891990 crossref_primary_10_1364_JOCN_409817 crossref_primary_10_1364_JOCN_560632 crossref_primary_10_1109_ACCESS_2020_3025432 crossref_primary_10_1109_JLT_2020_2971104 crossref_primary_10_1109_JLT_2020_2967087 crossref_primary_10_1364_JOCN_451315 crossref_primary_10_1364_JOCN_479849 crossref_primary_10_1080_09537287_2025_2555924 crossref_primary_10_1002_itl2_135 crossref_primary_10_1109_TGCN_2021_3126286 crossref_primary_10_2184_lsj_49_12_671 crossref_primary_10_1007_s11082_022_03867_6 crossref_primary_10_1364_JOCN_470902 crossref_primary_10_1007_s11276_023_03599_9 crossref_primary_10_1364_JOCN_500706 crossref_primary_10_1364_JOCN_417434 crossref_primary_10_3390_electronics10131578 crossref_primary_10_3390_photonics9050286 crossref_primary_10_3390_s21248306 crossref_primary_10_1016_j_ijleo_2019_163314 crossref_primary_10_1109_JIOT_2022_3172270 crossref_primary_10_1007_s11107_020_00890_z crossref_primary_10_1007_s41315_023_00305_y crossref_primary_10_1109_ACCESS_2019_2928564 crossref_primary_10_2184_lsj_49_12_660 crossref_primary_10_1364_JOCN_534417 crossref_primary_10_3390_s21237821 crossref_primary_10_1109_JSAC_2021_3064657 |
| Cites_doi | 10.1109/ACCESS.2015.2461602 10.1109/JLT.2017.2781540 10.1364/JOCN.9.000A35 10.1364/OFC.2018.M3A.5 10.1109/JLT.2018.2793464 10.1364/OFC.2017.W2A.25 10.1214/aoms/1177729885 10.1364/OFC.2018.Tu3E.3 10.1109/JLT.2012.2217729 10.1364/JOCN.10.000A27 10.1561/2200000006 10.1109/JSAC-OCN.2007.028806 10.1364/OFC.2017.Th1J.2 10.1364/JOCN.10.000482 10.1109/JLT.2008.926913 10.1364/OFC.2017.Th1J.1 10.1364/OFC.2018.W4F.6 10.1364/OE.19.016739 10.1109/LPT.2013.2290745 10.1002/nem.756 10.1145/2949741.2949758 10.1109/JLT.2017.2747223 10.1109/JLT.2015.2394808 10.1016/j.osn.2017.12.006 10.1109/MCOM.2015.7081090 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors – sequence: 2 fullname: Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 – notice: info:eu-repo/semantics/openAccess |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D XX2 |
| DOI | 10.1364/JOCN.10.00D126 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Recercat |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1943-0639 |
| EndPage | D143 |
| ExternalDocumentID | oai_recercat_cat_2072_337008 10_1364_JOCN_10_00D126 8501533 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29L 29N 4.4 5VS 6IK 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACIWK AEDJG AENEX AETIX AGQYO AGSQL AHBIQ AKGWG AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR AZYMN BEFXN BFFAM BGNUA BKEBE BPEOZ DSZJF DU5 EBS EJD HZ~ IES IFIPE IPLJI JAVBF M43 O9- OCL ODPQJ OFLFD OPJBK RIA RIE RNS ROL ROS TR6 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D XX2 |
| ID | FETCH-LOGICAL-c435t-9d0c228e5ecd833f202df4ee12d09a522970b65c090136a88b10d469e1512c663 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 216 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1943-0620 |
| IngestDate | Fri Nov 07 13:39:08 EST 2025 Sun Nov 30 04:39:33 EST 2025 Tue Nov 18 21:28:15 EST 2025 Sat Nov 29 02:27:47 EST 2025 Wed Aug 27 02:17:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c435t-9d0c228e5ecd833f202df4ee12d09a522970b65c090136a88b10d469e1512c663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3682-1620 0000-0002-7345-296X |
| OpenAccessLink | https://recercat.cat/handle/2072/337008 |
| PQID | 2126463188 |
| PQPubID | 85498 |
| ParticipantIDs | crossref_primary_10_1364_JOCN_10_00D126 crossref_citationtrail_10_1364_JOCN_10_00D126 csuc_recercat_oai_recercat_cat_2072_337008 ieee_primary_8501533 proquest_journals_2126463188 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | Journal of optical communications and networking |
| PublicationTitleAbbrev | jocn |
| PublicationYear | 2018 |
| Publisher | Optica Publishing Group The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers (IEEE) |
| Publisher_xml | – name: Optica Publishing Group – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers (IEEE) |
| References | Wittern (jocn-10-10-D126-R28) 2014 Bengio (jocn-10-10-D126-R20) 2009; 2 Rafique (jocn-10-10-D126-R12) 2018; 36 Rafique (jocn-10-10-D126-R40) 2018 Vela (jocn-10-10-D126-R13) 2018; 10 Pandey (jocn-10-10-D126-R26) 2011; 21 Morales (jocn-10-10-D126-R21) 2017; 9 Grubbs (jocn-10-10-D126-R35) 1950; 21 Kiran (jocn-10-10-D126-R25) 2007; 25 Velasco (jocn-10-10-D126-R29) 2015; 53 Poggiolini (jocn-10-10-D126-R41) 2012; 30 Tembo (jocn-10-10-D126-R33) 2016 Barletta (jocn-10-10-D126-R38) 2017 Lopez (jocn-10-10-D126-R4) 2016 Gupta (jocn-10-10-D126-R1) 2015; 3 Vela (jocn-10-10-D126-R37) 2017; 35 Watkins (jocn-10-10-D126-R24) 1992; 8 Petridou (jocn-10-10-D126-R22) 2008; 26 Rafique (jocn-10-10-D126-R34) 2018 Paparrizos (jocn-10-10-D126-R36) 2016; 45 Huang (jocn-10-10-D126-R10) 2017 Zibar (jocn-10-10-D126-R9) 2015; 33 Shahkarami (jocn-10-10-D126-R18) 2018 Casellas (jocn-10-10-D126-R30) 2018; 36 Rahman (jocn-10-10-D126-R42) 2014; 26 Mata (jocn-10-10-D126-R14) 2018; 28 Rafique (jocn-10-10-D126-R3) 2017 Kotsiantis (jocn-10-10-D126-R19) 2007 Tanimura (jocn-10-10-D126-R39) 2018 Rafique (jocn-10-10-D126-R43) 2011; 19 Gifre (jocn-10-10-D126-R31) 2018; 10 |
| References_xml | – volume: 3 start-page: 1206 year: 2015 ident: jocn-10-10-D126-R1 publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2461602 – volume: 36 start-page: 1443 year: 2018 ident: jocn-10-10-D126-R12 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2781540 – volume: 9 start-page: A35 year: 2017 ident: jocn-10-10-D126-R21 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.9.000A35 – start-page: M3 volume-title: Optical Fiber Communication Conf. year: 2018 ident: jocn-10-10-D126-R18 article-title: Machine-learning-based soft-failure detection and identification in optical networks doi: 10.1364/OFC.2018.M3A.5 – volume: 36 start-page: 1390 year: 2018 ident: jocn-10-10-D126-R30 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2793464 – start-page: 1 volume-title: Optical Fiber Communications Conf. and Exhibition (OFC) year: 2017 ident: jocn-10-10-D126-R3 article-title: Enabling 64Gbaud coherent optical transceivers doi: 10.1364/OFC.2017.W2A.25 – start-page: 41 volume-title: IEEE Int. Conf. Web Services year: 2014 ident: jocn-10-10-D126-R28 article-title: A graph-based data model for API ecosystem insights – volume: 21 start-page: 27 year: 1950 ident: jocn-10-10-D126-R35 publication-title: Annu. Math. Stat. doi: 10.1214/aoms/1177729885 – start-page: Tu3E.3 volume-title: Optical Fiber Communication Conf. year: 2018 ident: jocn-10-10-D126-R39 article-title: Data analytics based optical performance monitoring technique for optical transport networks doi: 10.1364/OFC.2018.Tu3E.3 – volume: 30 start-page: 3857 year: 2012 ident: jocn-10-10-D126-R41 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2012.2217729 – start-page: 138 volume-title: European Conf. Networks and Communications (EuCNC) year: 2016 ident: jocn-10-10-D126-R4 article-title: The role of SDN in application centric IP and optical networks – volume: 10 start-page: A27 year: 2018 ident: jocn-10-10-D126-R13 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.000A27 – volume: 2 start-page: 1 year: 2009 ident: jocn-10-10-D126-R20 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 25 start-page: 18 year: 2007 ident: jocn-10-10-D126-R25 publication-title: IEEE J. Select Areas Commun. doi: 10.1109/JSAC-OCN.2007.028806 – start-page: 1 volume-title: Optical Fiber Communications Conf. and Exhibition (OFC) year: 2017 ident: jocn-10-10-D126-R10 article-title: Dynamic power pre-adjustments with machine learning that mitigate EDFA excursions during defragmentation doi: 10.1364/OFC.2017.Th1J.2 – volume: 8 start-page: 279 year: 1992 ident: jocn-10-10-D126-R24 publication-title: Mach. Learn. – volume: 10 start-page: 482 year: 2018 ident: jocn-10-10-D126-R31 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.000482 – volume: 26 start-page: 2999 year: 2008 ident: jocn-10-10-D126-R22 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2008.926913 – start-page: 1 volume-title: Optical Fiber Communications Conf. and Exhibition (OFC) year: 2017 ident: jocn-10-10-D126-R38 article-title: QoT estimation for unestablished lighpaths using machine learning doi: 10.1364/OFC.2017.Th1J.1 – start-page: W4 volume-title: Optical Fiber Communication Conf. year: 2018 ident: jocn-10-10-D126-R34 article-title: Analytics-driven fault discovery and diagnosis for cognitive root cause analysis doi: 10.1364/OFC.2018.W4F.6 – volume: 19 start-page: 16739 year: 2011 ident: jocn-10-10-D126-R43 publication-title: Opt. Express doi: 10.1364/OE.19.016739 – volume: 26 start-page: 154 year: 2014 ident: jocn-10-10-D126-R42 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2013.2290745 – volume: 21 start-page: 169 year: 2011 ident: jocn-10-10-D126-R26 publication-title: Int. J. Netw. Manage. doi: 10.1002/nem.756 – volume: 45 start-page: 69 year: 2016 ident: jocn-10-10-D126-R36 publication-title: SIGMOD Rec. doi: 10.1145/2949741.2949758 – volume: 35 start-page: 4595 year: 2017 ident: jocn-10-10-D126-R37 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2747223 – start-page: 369 volume-title: Int. Wireless Communications and Mobile Computing Conf. (IWCMC) year: 2016 ident: jocn-10-10-D126-R33 article-title: A tutorial on the EM algorithm for Bayesian networks: application to self-diagnosis of GPON-FTTH networks – start-page: 3 volume-title: Emerging Artificial Intelligence Applications in Computer Engineering—Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies year: 2007 ident: jocn-10-10-D126-R19 article-title: Supervised machine learning: a review of classification techniques – volume: 33 start-page: 1333 year: 2015 ident: jocn-10-10-D126-R9 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2394808 – volume: 28 start-page: 43 year: 2018 ident: jocn-10-10-D126-R14 publication-title: Opt. Switching Netw. doi: 10.1016/j.osn.2017.12.006 – volume: 53 start-page: 159 year: 2015 ident: jocn-10-10-D126-R29 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2015.7081090 – start-page: Tu.A3.5 volume-title: Int. Conf. Transparent Optical Networks year: 2018 ident: jocn-10-10-D126-R40 article-title: Machine learning based optimal modulation format prediction for physical layer network planning |
| SSID | ssj0067115 |
| Score | 2.5941858 |
| Snippet | Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and... |
| SourceID | csuc proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | D126 |
| SubjectTerms | Analytics Analytics; Artificial intelligence; Autonomousnetworking; Big data; Communication networks;Machine learning; Optical fiber communication; Telemetry Aprenentatge automàtic Artificial intelligence Autonomous networking Big data Communication networks Comunicacions òptiques Data models Digital media Enginyeria de la telecomunicació Informàtica Intel·ligència artificial Machine learning Management Network control Optical amplifiers Optical communication Optical communications Optical fiber communication Optical fiber networks Optical fibers Optimization Prediction algorithms Predictive maintenance Telecomunicació òptica Telemetry Topology optimization Video transmission Àrees temàtiques de la UPC |
| Title | Machine learning for network automation: overview, architecture, and applications [Invited Tutorial] |
| URI | https://ieeexplore.ieee.org/document/8501533 https://www.proquest.com/docview/2126463188 https://recercat.cat/handle/2072/337008 |
| Volume | 10 |
| WOSCitedRecordID | wos000451273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1943-0639 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067115 issn: 1943-0620 databaseCode: RIE dateStart: 20090101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7SsIf2oeuWlqbrhh4KhRG3-hVb2ttoF7ZCsz2kECjF2JJSCsUp-dG_v3eyEwJdH_pgsEA2Rp-s-6S7-w7gRLtSW2UniVeiSDQS_MTaUlA2GtdOBGtkEYtNZMOhGY_tvxb01rkwIYQYfBbO6Db68v3ULemo7Nz0OdGTLdjKsrTO1VqtumkmYrUC3JNTtQLJG4FGlerzq78Xw7MYwnUpSERhwwC13XzpmsIqr1bjaGIGH9_3cXuw21BJ9rPG_hO0QvUZdjYEBjvgr2OsZGBNcYh7hhyVVXXoNyuWi2mdufiDUSQneQl6bNO1gK3Ks00nN7v9Uz0TTWUjUj_A2Xu3DzeDX6OL30lTVyFxSI4WifXcSWlCPzhvlJpILv1EhyCk57ZAQmYzXqZ9xy0JuhXGlIJ73EYHYgcOKcoBtKtpFQ6BKVvgQDhBsn66H5DsKFMabjIvJ14UvAvJarBz14iOU-2Lxzx60lKdEzjUqMHpwum6_1Mtt_Fmz--EXY52IcxwCHLSyV436JI8k7lSGbKcLnQIsPUrG6y6cLxCPG9-3XmOtjzVKS515uj_T32BbWRNtSiuOIb2YrYMX-GDe148zGff4qx8AfNz30o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB7sWah90LZWvNa2eSgUiqv5tbuJb2Ir2uq1D1cQSgm7Sa4Isif3w7-_M9m948D64MPCBrLLki-b-ZKZ-Qbgo_a1tsqOsqBElWkk-Jm1taBsNK69iNbIKhWbKAcDc3Vlf67B_jIXJsaYgs_iAd0mX34Y-zkdlR2anBM9eQLrudaSt9lai3W3KEWqV4C7cqpXIHkn0agKffjtx8ngIAVxfREko7Bignp-OvddaZV763EyMqdbj_u8F7DZkUl23KL_EtZi8wqer0gMbkO4TNGSkXXlIf4yZKmsaYO_WTWfjdvcxSNGsZzkJ9hnq84FbDWBrbq52e_z5o6IKhuS_gHO3z-v4dfp1-HJWdZVVsg80qNZZgP3UpqYRx-MUiPJZRjpGIUM3FZIyWzJ6yL33JKkW2VMLXjAjXQkfuCRpOxArxk3cReYshUOhBck7KfziHRHmdpwUwY5CqLifcgWg-18JztO1S9uXPKlFdoRONRowenDp2X_21Zw48Genwk7h5YhTnAIHCllLxt0SV5Kp1SJPKcP2wTY8pUdVn3YWyDuup936tCaF7rAxc68-f9TH-DZ2fDywl2cD76_hQ3kUK1ErtiD3mwyj-_gqb-bXU8n79MM_Qe1PeKR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Network+Automation%3A+Overview%2C+Architecture%2C+and+Applications+%5BInvited+Tutorial%5D&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Rafique%2C+Danish&rft.au=Velasco%2C+Luis&rft.date=2018-10-01&rft.issn=1943-0620&rft.eissn=1943-0639&rft.volume=10&rft.issue=10&rft.spage=D126&rft_id=info:doi/10.1364%2FJOCN.10.00D126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_JOCN_10_00D126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon |