Machine learning for network automation: overview, architecture, and applications [Invited Tutorial]

Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications.With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any ch...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optical communications and networking Ročník 10; číslo 10; s. D126 - D143
Hlavní autoři: Rafique, Danish, Velasco, Luis
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Piscataway Optica Publishing Group 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers (IEEE)
Témata:
ISSN:1943-0620, 1943-0639
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications.With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any changes, upgrades, or service deployments to take effect. Machine learning, a sub-domain of artificial intelligence, is highly suitable for complex system representation. In this tutorial paper, we review several machine learning concepts tailored to the optical networking industry and discuss algorithm choices, data and model management strategies, and integration into existing network control and management tools. We then describe four networking case studies in detail, covering predictive maintenance, virtual network topology management, capacity optimization, and optical spectral analysis.
AbstractList Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications.With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any changes, upgrades, or service deployments to take effect. Machine learning, a sub-domain of artificial intelligence, is highly suitable for complex system representation. In this tutorial paper, we review several machine learning concepts tailored to the optical networking industry and discuss algorithm choices, data and model management strategies, and integration into existing network control and management tools. We then describe four networking case studies in detail, covering predictive maintenance, virtual network topology management, capacity optimization, and optical spectral analysis.
Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications. With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any changes, upgrades, or service deployments to take effect. Machine learning, a sub-domain of artificial intelligence, is highly suitable for complex system representation. In this tutorial paper, we review several machine learning concepts tailored to the optical networking industry and discuss algorithm choices, data and model management strategies, and integration into existing network control and management tools. We then describe four networking case studies in detail, covering predictive maintenance, virtual network topology management, capacity optimization, and optical spectral analysis. Peer Reviewed
Author Rafique, Danish
Velasco, Luis
Author_xml – sequence: 1
  givenname: Danish
  surname: Rafique
  fullname: Rafique, Danish
  organization: ADVA Optical Networking SE, Fraunhoeferstr. 9a, 82152 Munich, Germany
– sequence: 2
  givenname: Luis
  surname: Velasco
  fullname: Velasco, Luis
  organization: Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
BookMark eNp1kE1PxCAQhonRRF29evFC4tVdB2jZ1ptZv6PuRU_GEKRTRSuslO7Gfy91jSYmHgi8YZ5heDbJqvMOCdlhMGJCZgeX08nNKAWAY8blCtlgZSaGIEW5-nPmsE422_YFQI4ZyzdIda3Ns3VIG9TBWfdEax-ow7jw4ZXqLvo3Ha13h9TPMcwtLvapDgmJaGIXMCVXUT2bNdZ8Fbb0_sLN03VFbxMdrG4etsharZsWt7_3Abk7PbmdnA-vpmcXk6OroclEHodlBYbzAnM0VSFEzYFXdYbIeAWlzjkvx_AocwMlpA_ronhkUGWyRJYzbqQUA8KWfU3bGRXQYEhDKa_tb-gXhzFXQowBisTsLZlZ8O8dtlG9-C64NKbiSWMmBSv6qtF35-DbNmCtZsG-6fChGKjevurt92FpPwHZH8DY-CUoBm2b_7HdJWYR8eeNIgeWCyE-AYbfk08
CODEN JOCNBB
CitedBy_id crossref_primary_10_1364_JOCN_492128
crossref_primary_10_1016_j_sna_2021_113096
crossref_primary_10_1109_JLT_2020_2975641
crossref_primary_10_1109_LCOMM_2021_3055064
crossref_primary_10_1016_j_comnet_2021_107981
crossref_primary_10_1364_JOCN_11_000140
crossref_primary_10_2139_ssrn_5203248
crossref_primary_10_1364_JOCN_411524
crossref_primary_10_1364_PRJ_551798
crossref_primary_10_1016_j_jss_2024_112202
crossref_primary_10_1007_s12596_021_00807_7
crossref_primary_10_1364_JOCN_12_00A113
crossref_primary_10_1016_j_yofte_2021_102804
crossref_primary_10_1109_MCOM_003_2200186
crossref_primary_10_1016_j_comnet_2025_111614
crossref_primary_10_1109_JLT_2019_2897313
crossref_primary_10_1364_JOCN_534525
crossref_primary_10_1007_s42979_024_03597_4
crossref_primary_10_1109_JLT_2020_3034135
crossref_primary_10_3390_su151813815
crossref_primary_10_3390_min12121621
crossref_primary_10_1016_j_yofte_2020_102355
crossref_primary_10_3390_photonics9010030
crossref_primary_10_1007_s11432_020_2871_2
crossref_primary_10_1117_1_AP_6_2_026006
crossref_primary_10_1109_JLT_2019_2922586
crossref_primary_10_1364_JOCN_433412
crossref_primary_10_1007_s10462_025_11108_x
crossref_primary_10_1364_JOCN_424428
crossref_primary_10_1364_JOCN_493347
crossref_primary_10_3390_s22239251
crossref_primary_10_1364_JOCN_12_0000A9
crossref_primary_10_1364_JOCN_401568
crossref_primary_10_1364_JOCN_533789
crossref_primary_10_1109_ACCESS_2020_3010896
crossref_primary_10_1109_JLT_2020_3003905
crossref_primary_10_3390_s24248054
crossref_primary_10_1364_JOCN_438269
crossref_primary_10_1109_LCOMM_2020_3022737
crossref_primary_10_1109_TNET_2024_3365534
crossref_primary_10_1109_ACCESS_2025_3569559
crossref_primary_10_1109_JLT_2020_3014810
crossref_primary_10_1364_JOCN_410694
crossref_primary_10_4218_etrij_2021_0182
crossref_primary_10_1364_JOCN_537463
crossref_primary_10_1109_JLT_2025_3564134
crossref_primary_10_3390_math12081254
crossref_primary_10_1364_JOCN_507128
crossref_primary_10_1364_JOCN_511863
crossref_primary_10_1109_LCOMM_2020_2989080
crossref_primary_10_1002_itl2_291
crossref_primary_10_1109_TNSM_2023_3339201
crossref_primary_10_1109_MNET_2019_1800341
crossref_primary_10_1364_JOCN_477341
crossref_primary_10_1016_j_osn_2020_100594
crossref_primary_10_1109_TCCN_2019_2946312
crossref_primary_10_1364_JOCN_438951
crossref_primary_10_1109_JSAC_2021_3064698
crossref_primary_10_2478_fcds_2020_0012
crossref_primary_10_1109_JLT_2018_2859199
crossref_primary_10_1109_TII_2022_3215231
crossref_primary_10_1016_j_yofte_2025_104137
crossref_primary_10_1364_JOCN_411017
crossref_primary_10_1109_TII_2022_3212003
crossref_primary_10_1109_JLT_2019_2902454
crossref_primary_10_1364_JOCN_425891
crossref_primary_10_3390_app10010363
crossref_primary_10_1364_JOCN_12_000A82
crossref_primary_10_1109_TNSM_2021_3077736
crossref_primary_10_1364_JOCN_514981
crossref_primary_10_3390_s24020535
crossref_primary_10_1007_s10586_024_04430_6
crossref_primary_10_1109_JLT_2019_2947562
crossref_primary_10_1109_TCOMM_2022_3222519
crossref_primary_10_1016_j_comcom_2019_11_052
crossref_primary_10_1109_JPROC_2022_3188337
crossref_primary_10_1364_JOCN_413188
crossref_primary_10_1007_s00500_023_08365_9
crossref_primary_10_1364_JOCN_461422
crossref_primary_10_3390_electronics10020162
crossref_primary_10_1364_JOCN_11_000226
crossref_primary_10_1016_j_ifacol_2021_08_083
crossref_primary_10_1109_COMST_2023_3247842
crossref_primary_10_1109_JLT_2019_2952179
crossref_primary_10_1109_JLT_2022_3172523
crossref_primary_10_1364_JOCN_425167
crossref_primary_10_1007_s11432_022_3557_9
crossref_primary_10_1109_JLT_2020_2987032
crossref_primary_10_1007_s11107_020_00909_5
crossref_primary_10_1364_JOCN_12_000A70
crossref_primary_10_3390_app11167686
crossref_primary_10_1109_JLT_2022_3157527
crossref_primary_10_1109_LPT_2019_2902973
crossref_primary_10_1515_nanoph_2021_0578
crossref_primary_10_1016_j_osn_2021_100651
crossref_primary_10_1109_TNSM_2021_3077543
crossref_primary_10_1016_j_comnet_2024_110964
crossref_primary_10_1109_ACCESS_2021_3107296
crossref_primary_10_1364_JOCN_424639
crossref_primary_10_1364_JOCN_438255
crossref_primary_10_1016_j_yofte_2022_103006
crossref_primary_10_1007_s11432_020_2874_y
crossref_primary_10_3390_info10060192
crossref_primary_10_3390_app10228139
crossref_primary_10_1109_JSEN_2020_3025188
crossref_primary_10_1364_JOCN_482932
crossref_primary_10_1007_s11107_018_0808_2
crossref_primary_10_1109_JLT_2021_3110788
crossref_primary_10_1109_TNSM_2023_3340351
crossref_primary_10_1590_2179_10742025v24i1289308
crossref_primary_10_1364_JOCN_437414
crossref_primary_10_1002_eng2_12304
crossref_primary_10_1016_j_icte_2022_02_002
crossref_primary_10_1016_j_jnca_2020_102576
crossref_primary_10_1109_JLT_2019_2891990
crossref_primary_10_1364_JOCN_409817
crossref_primary_10_1364_JOCN_560632
crossref_primary_10_1109_ACCESS_2020_3025432
crossref_primary_10_1109_JLT_2020_2971104
crossref_primary_10_1109_JLT_2020_2967087
crossref_primary_10_1364_JOCN_451315
crossref_primary_10_1364_JOCN_479849
crossref_primary_10_1080_09537287_2025_2555924
crossref_primary_10_1002_itl2_135
crossref_primary_10_1109_TGCN_2021_3126286
crossref_primary_10_2184_lsj_49_12_671
crossref_primary_10_1007_s11082_022_03867_6
crossref_primary_10_1364_JOCN_470902
crossref_primary_10_1007_s11276_023_03599_9
crossref_primary_10_1364_JOCN_500706
crossref_primary_10_1364_JOCN_417434
crossref_primary_10_3390_electronics10131578
crossref_primary_10_3390_photonics9050286
crossref_primary_10_3390_s21248306
crossref_primary_10_1016_j_ijleo_2019_163314
crossref_primary_10_1109_JIOT_2022_3172270
crossref_primary_10_1007_s11107_020_00890_z
crossref_primary_10_1007_s41315_023_00305_y
crossref_primary_10_1109_ACCESS_2019_2928564
crossref_primary_10_2184_lsj_49_12_660
crossref_primary_10_1364_JOCN_534417
crossref_primary_10_3390_s21237821
crossref_primary_10_1109_JSAC_2021_3064657
Cites_doi 10.1109/ACCESS.2015.2461602
10.1109/JLT.2017.2781540
10.1364/JOCN.9.000A35
10.1364/OFC.2018.M3A.5
10.1109/JLT.2018.2793464
10.1364/OFC.2017.W2A.25
10.1214/aoms/1177729885
10.1364/OFC.2018.Tu3E.3
10.1109/JLT.2012.2217729
10.1364/JOCN.10.000A27
10.1561/2200000006
10.1109/JSAC-OCN.2007.028806
10.1364/OFC.2017.Th1J.2
10.1364/JOCN.10.000482
10.1109/JLT.2008.926913
10.1364/OFC.2017.Th1J.1
10.1364/OFC.2018.W4F.6
10.1364/OE.19.016739
10.1109/LPT.2013.2290745
10.1002/nem.756
10.1145/2949741.2949758
10.1109/JLT.2017.2747223
10.1109/JLT.2015.2394808
10.1016/j.osn.2017.12.006
10.1109/MCOM.2015.7081090
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
– notice: info:eu-repo/semantics/openAccess
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
XX2
DOI 10.1364/JOCN.10.00D126
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-0639
EndPage D143
ExternalDocumentID oai_recercat_cat_2072_337008
10_1364_JOCN_10_00D126
8501533
Genre orig-research
GroupedDBID 0R~
29L
29N
4.4
5VS
6IK
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AEDJG
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKGWG
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
AZYMN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DSZJF
DU5
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
ODPQJ
OFLFD
OPJBK
RIA
RIE
RNS
ROL
ROS
TR6
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c435t-9d0c228e5ecd833f202df4ee12d09a522970b65c090136a88b10d469e1512c663
IEDL.DBID RIE
ISICitedReferencesCount 216
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1943-0620
IngestDate Fri Nov 07 13:39:08 EST 2025
Sun Nov 30 04:39:33 EST 2025
Tue Nov 18 21:28:15 EST 2025
Sat Nov 29 02:27:47 EST 2025
Wed Aug 27 02:17:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-9d0c228e5ecd833f202df4ee12d09a522970b65c090136a88b10d469e1512c663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3682-1620
0000-0002-7345-296X
OpenAccessLink https://recercat.cat/handle/2072/337008
PQID 2126463188
PQPubID 85498
ParticipantIDs crossref_primary_10_1364_JOCN_10_00D126
crossref_citationtrail_10_1364_JOCN_10_00D126
csuc_recercat_oai_recercat_cat_2072_337008
ieee_primary_8501533
proquest_journals_2126463188
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle Journal of optical communications and networking
PublicationTitleAbbrev jocn
PublicationYear 2018
Publisher Optica Publishing Group
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers (IEEE)
Publisher_xml – name: Optica Publishing Group
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers (IEEE)
References Wittern (jocn-10-10-D126-R28) 2014
Bengio (jocn-10-10-D126-R20) 2009; 2
Rafique (jocn-10-10-D126-R12) 2018; 36
Rafique (jocn-10-10-D126-R40) 2018
Vela (jocn-10-10-D126-R13) 2018; 10
Pandey (jocn-10-10-D126-R26) 2011; 21
Morales (jocn-10-10-D126-R21) 2017; 9
Grubbs (jocn-10-10-D126-R35) 1950; 21
Kiran (jocn-10-10-D126-R25) 2007; 25
Velasco (jocn-10-10-D126-R29) 2015; 53
Poggiolini (jocn-10-10-D126-R41) 2012; 30
Tembo (jocn-10-10-D126-R33) 2016
Barletta (jocn-10-10-D126-R38) 2017
Lopez (jocn-10-10-D126-R4) 2016
Gupta (jocn-10-10-D126-R1) 2015; 3
Vela (jocn-10-10-D126-R37) 2017; 35
Watkins (jocn-10-10-D126-R24) 1992; 8
Petridou (jocn-10-10-D126-R22) 2008; 26
Rafique (jocn-10-10-D126-R34) 2018
Paparrizos (jocn-10-10-D126-R36) 2016; 45
Huang (jocn-10-10-D126-R10) 2017
Zibar (jocn-10-10-D126-R9) 2015; 33
Shahkarami (jocn-10-10-D126-R18) 2018
Casellas (jocn-10-10-D126-R30) 2018; 36
Rahman (jocn-10-10-D126-R42) 2014; 26
Mata (jocn-10-10-D126-R14) 2018; 28
Rafique (jocn-10-10-D126-R3) 2017
Kotsiantis (jocn-10-10-D126-R19) 2007
Tanimura (jocn-10-10-D126-R39) 2018
Rafique (jocn-10-10-D126-R43) 2011; 19
Gifre (jocn-10-10-D126-R31) 2018; 10
References_xml – volume: 3
  start-page: 1206
  year: 2015
  ident: jocn-10-10-D126-R1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2461602
– volume: 36
  start-page: 1443
  year: 2018
  ident: jocn-10-10-D126-R12
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2781540
– volume: 9
  start-page: A35
  year: 2017
  ident: jocn-10-10-D126-R21
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.9.000A35
– start-page: M3
  volume-title: Optical Fiber Communication Conf.
  year: 2018
  ident: jocn-10-10-D126-R18
  article-title: Machine-learning-based soft-failure detection and identification in optical networks
  doi: 10.1364/OFC.2018.M3A.5
– volume: 36
  start-page: 1390
  year: 2018
  ident: jocn-10-10-D126-R30
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2793464
– start-page: 1
  volume-title: Optical Fiber Communications Conf. and Exhibition (OFC)
  year: 2017
  ident: jocn-10-10-D126-R3
  article-title: Enabling 64Gbaud coherent optical transceivers
  doi: 10.1364/OFC.2017.W2A.25
– start-page: 41
  volume-title: IEEE Int. Conf. Web Services
  year: 2014
  ident: jocn-10-10-D126-R28
  article-title: A graph-based data model for API ecosystem insights
– volume: 21
  start-page: 27
  year: 1950
  ident: jocn-10-10-D126-R35
  publication-title: Annu. Math. Stat.
  doi: 10.1214/aoms/1177729885
– start-page: Tu3E.3
  volume-title: Optical Fiber Communication Conf.
  year: 2018
  ident: jocn-10-10-D126-R39
  article-title: Data analytics based optical performance monitoring technique for optical transport networks
  doi: 10.1364/OFC.2018.Tu3E.3
– volume: 30
  start-page: 3857
  year: 2012
  ident: jocn-10-10-D126-R41
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2012.2217729
– start-page: 138
  volume-title: European Conf. Networks and Communications (EuCNC)
  year: 2016
  ident: jocn-10-10-D126-R4
  article-title: The role of SDN in application centric IP and optical networks
– volume: 10
  start-page: A27
  year: 2018
  ident: jocn-10-10-D126-R13
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.000A27
– volume: 2
  start-page: 1
  year: 2009
  ident: jocn-10-10-D126-R20
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 25
  start-page: 18
  year: 2007
  ident: jocn-10-10-D126-R25
  publication-title: IEEE J. Select Areas Commun.
  doi: 10.1109/JSAC-OCN.2007.028806
– start-page: 1
  volume-title: Optical Fiber Communications Conf. and Exhibition (OFC)
  year: 2017
  ident: jocn-10-10-D126-R10
  article-title: Dynamic power pre-adjustments with machine learning that mitigate EDFA excursions during defragmentation
  doi: 10.1364/OFC.2017.Th1J.2
– volume: 8
  start-page: 279
  year: 1992
  ident: jocn-10-10-D126-R24
  publication-title: Mach. Learn.
– volume: 10
  start-page: 482
  year: 2018
  ident: jocn-10-10-D126-R31
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.000482
– volume: 26
  start-page: 2999
  year: 2008
  ident: jocn-10-10-D126-R22
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2008.926913
– start-page: 1
  volume-title: Optical Fiber Communications Conf. and Exhibition (OFC)
  year: 2017
  ident: jocn-10-10-D126-R38
  article-title: QoT estimation for unestablished lighpaths using machine learning
  doi: 10.1364/OFC.2017.Th1J.1
– start-page: W4
  volume-title: Optical Fiber Communication Conf.
  year: 2018
  ident: jocn-10-10-D126-R34
  article-title: Analytics-driven fault discovery and diagnosis for cognitive root cause analysis
  doi: 10.1364/OFC.2018.W4F.6
– volume: 19
  start-page: 16739
  year: 2011
  ident: jocn-10-10-D126-R43
  publication-title: Opt. Express
  doi: 10.1364/OE.19.016739
– volume: 26
  start-page: 154
  year: 2014
  ident: jocn-10-10-D126-R42
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2013.2290745
– volume: 21
  start-page: 169
  year: 2011
  ident: jocn-10-10-D126-R26
  publication-title: Int. J. Netw. Manage.
  doi: 10.1002/nem.756
– volume: 45
  start-page: 69
  year: 2016
  ident: jocn-10-10-D126-R36
  publication-title: SIGMOD Rec.
  doi: 10.1145/2949741.2949758
– volume: 35
  start-page: 4595
  year: 2017
  ident: jocn-10-10-D126-R37
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2747223
– start-page: 369
  volume-title: Int. Wireless Communications and Mobile Computing Conf. (IWCMC)
  year: 2016
  ident: jocn-10-10-D126-R33
  article-title: A tutorial on the EM algorithm for Bayesian networks: application to self-diagnosis of GPON-FTTH networks
– start-page: 3
  volume-title: Emerging Artificial Intelligence Applications in Computer Engineering—Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies
  year: 2007
  ident: jocn-10-10-D126-R19
  article-title: Supervised machine learning: a review of classification techniques
– volume: 33
  start-page: 1333
  year: 2015
  ident: jocn-10-10-D126-R9
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2394808
– volume: 28
  start-page: 43
  year: 2018
  ident: jocn-10-10-D126-R14
  publication-title: Opt. Switching Netw.
  doi: 10.1016/j.osn.2017.12.006
– volume: 53
  start-page: 159
  year: 2015
  ident: jocn-10-10-D126-R29
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2015.7081090
– start-page: Tu.A3.5
  volume-title: Int. Conf. Transparent Optical Networks
  year: 2018
  ident: jocn-10-10-D126-R40
  article-title: Machine learning based optimal modulation format prediction for physical layer network planning
SSID ssj0067115
Score 2.5941858
Snippet Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and...
SourceID csuc
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage D126
SubjectTerms Analytics
Analytics; Artificial intelligence; Autonomousnetworking; Big data; Communication networks;Machine learning; Optical fiber communication; Telemetry
Aprenentatge automàtic
Artificial intelligence
Autonomous networking
Big data
Communication networks
Comunicacions òptiques
Data models
Digital media
Enginyeria de la telecomunicació
Informàtica
Intel·ligència artificial
Machine learning
Management
Network control
Optical amplifiers
Optical communication
Optical communications
Optical fiber communication
Optical fiber networks
Optical fibers
Optimization
Prediction algorithms
Predictive maintenance
Telecomunicació òptica
Telemetry
Topology optimization
Video transmission
Àrees temàtiques de la UPC
Title Machine learning for network automation: overview, architecture, and applications [Invited Tutorial]
URI https://ieeexplore.ieee.org/document/8501533
https://www.proquest.com/docview/2126463188
https://recercat.cat/handle/2072/337008
Volume 10
WOSCitedRecordID wos000451273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1943-0639
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067115
  issn: 1943-0620
  databaseCode: RIE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7SsIf2oeuWlqbrhh4KhRG3-hVb2ttoF7ZCsz2kECjF2JJSCsUp-dG_v3eyEwJdH_pgsEA2Rp-s-6S7-w7gRLtSW2UniVeiSDQS_MTaUlA2GtdOBGtkEYtNZMOhGY_tvxb01rkwIYQYfBbO6Db68v3ULemo7Nz0OdGTLdjKsrTO1VqtumkmYrUC3JNTtQLJG4FGlerzq78Xw7MYwnUpSERhwwC13XzpmsIqr1bjaGIGH9_3cXuw21BJ9rPG_hO0QvUZdjYEBjvgr2OsZGBNcYh7hhyVVXXoNyuWi2mdufiDUSQneQl6bNO1gK3Ks00nN7v9Uz0TTWUjUj_A2Xu3DzeDX6OL30lTVyFxSI4WifXcSWlCPzhvlJpILv1EhyCk57ZAQmYzXqZ9xy0JuhXGlIJ73EYHYgcOKcoBtKtpFQ6BKVvgQDhBsn66H5DsKFMabjIvJ14UvAvJarBz14iOU-2Lxzx60lKdEzjUqMHpwum6_1Mtt_Fmz--EXY52IcxwCHLSyV436JI8k7lSGbKcLnQIsPUrG6y6cLxCPG9-3XmOtjzVKS515uj_T32BbWRNtSiuOIb2YrYMX-GDe148zGff4qx8AfNz30o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB7sWah90LZWvNa2eSgUiqv5tbuJb2Ir2uq1D1cQSgm7Sa4Isif3w7-_M9m948D64MPCBrLLki-b-ZKZ-Qbgo_a1tsqOsqBElWkk-Jm1taBsNK69iNbIKhWbKAcDc3Vlf67B_jIXJsaYgs_iAd0mX34Y-zkdlR2anBM9eQLrudaSt9lai3W3KEWqV4C7cqpXIHkn0agKffjtx8ngIAVxfREko7Bignp-OvddaZV763EyMqdbj_u8F7DZkUl23KL_EtZi8wqer0gMbkO4TNGSkXXlIf4yZKmsaYO_WTWfjdvcxSNGsZzkJ9hnq84FbDWBrbq52e_z5o6IKhuS_gHO3z-v4dfp1-HJWdZVVsg80qNZZgP3UpqYRx-MUiPJZRjpGIUM3FZIyWzJ6yL33JKkW2VMLXjAjXQkfuCRpOxArxk3cReYshUOhBck7KfziHRHmdpwUwY5CqLifcgWg-18JztO1S9uXPKlFdoRONRowenDp2X_21Zw48Genwk7h5YhTnAIHCllLxt0SV5Kp1SJPKcP2wTY8pUdVn3YWyDuup936tCaF7rAxc68-f9TH-DZ2fDywl2cD76_hQ3kUK1ErtiD3mwyj-_gqb-bXU8n79MM_Qe1PeKR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Network+Automation%3A+Overview%2C+Architecture%2C+and+Applications+%5BInvited+Tutorial%5D&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Rafique%2C+Danish&rft.au=Velasco%2C+Luis&rft.date=2018-10-01&rft.issn=1943-0620&rft.eissn=1943-0639&rft.volume=10&rft.issue=10&rft.spage=D126&rft_id=info:doi/10.1364%2FJOCN.10.00D126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_JOCN_10_00D126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon