The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication
This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyro...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 47; H. 1; S. 228 - 237 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.01.2014
Elsevier |
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyroscope of three inertial measurement units and a smartphone around the waist of a subject, which include at most 744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait authentication performance on a number of factors such as gender, age group, sensor type, ground condition, and sensor location. The results with the latest existing authentication methods provide several insights for these factors.
•We present the world largest inertial sensor-based database to the community.•Based on the database, females have a better recognition performance than males.•People have the best recognition performance at their twenties.•An accelerometer has a better recognition performance than a gyroscope. |
|---|---|
| AbstractList | This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyroscope of three inertial measurement units and a smartphone around the waist of a subject, which include at most 744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait authentication performance on a number of factors such as gender, age group, sensor type, ground condition, and sensor location. The results with the latest existing authentication methods provide several insights for these factors.
•We present the world largest inertial sensor-based database to the community.•Based on the database, females have a better recognition performance than males.•People have the best recognition performance at their twenties.•An accelerometer has a better recognition performance than a gyroscope. This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyroscope of three inertial measurement units and a smartphone around the waist of a subject, which include at most 744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait authentication performance on a number of factors such as gender, age group, sensor type, ground condition, and sensor location. The results with the latest existing authentication methods provide several insights for these factors. |
| Author | Ngo, Thanh Trung Makihara, Yasushi Yagi, Yasushi Nagahara, Hajime Mukaigawa, Yasuhiro |
| Author_xml | – sequence: 1 givenname: Thanh Trung surname: Ngo fullname: Ngo, Thanh Trung email: trung@am.sanken.osaka-u.ac.jp, trungbeo@gmail.com organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan – sequence: 2 givenname: Yasushi surname: Makihara fullname: Makihara, Yasushi email: makihara@am.sanken.osaka-u.ac.jp organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan – sequence: 3 givenname: Hajime surname: Nagahara fullname: Nagahara, Hajime email: nagahara@limu.ait.kyushu-u.ac.jp organization: Faculty of Information Science and Electrical Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka 819-0395, Japan – sequence: 4 givenname: Yasuhiro surname: Mukaigawa fullname: Mukaigawa, Yasuhiro email: mukaigaw@am.sanken.osaka-u.ac.jp organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan – sequence: 5 givenname: Yasushi surname: Yagi fullname: Yagi, Yasushi email: yagi@am.sanken.osaka-u.ac.jp organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27805434$$DView record in Pascal Francis |
| BookMark | eNqFkU9r3DAQxUVJoZs036AHXQq92JEs2db2UCihbQqBXpKzGEujjRav5EjaQL99tX9y6aE9DcP83oM375JchBiQkA-ctZzx4WbbLlBM3LQd46JlQ8s69YasuBpF03PZXZAVY4I3omPiHbnMecsYH-thRZaHJ6QzpA3mQn3AVDzMNGPIMTUTZLR0A75QCwUOK4Vg6YLJxbSDYJDiC8x7KD4GGt2RPcsqlGOoZrAvTxiKN0fqPXnrYM54fZ5X5PH7t4fbu-b-14-ft1_vGyNFXxo1AQqrzATD4MaJq7XqkYnJDeh6Zmw_AsPJWj6uHRsGKUcDfFRKojPMSiGuyKeT75Li876m0zufDc4zBIz7rHnPhezXci0r-vGMQjYwu1SD-ayX5HeQfutuVKyX4sB9PnEmxZwTOm18OYYqCfysOdOHOvRWn-rQhzo0G3Sto4rlX-JX___IvpxkWH_14jHpbDzWx1uf0BRto_-3wR8WZ6s0 |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2019_06_023 crossref_primary_10_1038_s41597_022_01802_8 crossref_primary_10_1016_j_neucom_2020_01_098 crossref_primary_10_1109_TCYB_2017_2705799 crossref_primary_10_1186_s13673_018_0137_6 crossref_primary_10_1016_j_bspc_2024_106577 crossref_primary_10_1109_ACCESS_2021_3095477 crossref_primary_10_1109_ACCESS_2023_3321427 crossref_primary_10_1145_3161711 crossref_primary_10_1109_ACCESS_2024_3443231 crossref_primary_10_1109_JSEN_2022_3188527 crossref_primary_10_1016_j_compeleceng_2023_108663 crossref_primary_10_1038_s41597_023_02704_z crossref_primary_10_1016_j_medengphy_2020_06_001 crossref_primary_10_1109_JIOT_2018_2860592 crossref_primary_10_1016_j_patcog_2020_107408 crossref_primary_10_1038_s41597_022_01580_3 crossref_primary_10_1016_j_ins_2017_11_058 crossref_primary_10_3390_s19132945 crossref_primary_10_1109_TIFS_2015_2415753 crossref_primary_10_3390_s21082869 crossref_primary_10_1016_j_patcog_2017_09_005 crossref_primary_10_1109_TIM_2021_3108174 crossref_primary_10_3390_app7100986 crossref_primary_10_1109_ACCESS_2018_2879896 crossref_primary_10_3390_s20174756 crossref_primary_10_1007_s11042_016_3654_1 crossref_primary_10_1145_3594538 crossref_primary_10_1109_TIFS_2021_3124735 crossref_primary_10_1016_j_pmcj_2018_03_006 crossref_primary_10_3390_s21082866 crossref_primary_10_3390_s23031054 crossref_primary_10_1109_JIOT_2022_3222204 crossref_primary_10_1109_TIFS_2018_2850032 crossref_primary_10_1109_COMST_2016_2537748 crossref_primary_10_1145_3340293 crossref_primary_10_3390_s23229047 crossref_primary_10_1007_s00521_023_08863_9 crossref_primary_10_1145_3130906 crossref_primary_10_1007_s12652_019_01659_7 crossref_primary_10_1016_j_procs_2020_09_001 crossref_primary_10_3389_frobt_2021_749274 crossref_primary_10_1016_j_cose_2023_103643 crossref_primary_10_1109_JIOT_2022_3231381 crossref_primary_10_1038_s41597_022_01638_2 crossref_primary_10_1007_s00779_020_01480_6 crossref_primary_10_1016_j_patcog_2014_10_012 crossref_primary_10_1088_1742_6596_2026_1_012038 crossref_primary_10_3390_s20030949 crossref_primary_10_1007_s10207_015_0273_1 crossref_primary_10_1109_TCE_2024_3396177 crossref_primary_10_1109_TIM_2024_3449951 crossref_primary_10_1145_3615658 crossref_primary_10_3389_frobt_2023_1265543 crossref_primary_10_3390_s17030478 crossref_primary_10_1016_j_cose_2018_04_001 crossref_primary_10_1155_2022_4555136 crossref_primary_10_3390_s150100932 crossref_primary_10_1109_TCYB_2017_2682280 crossref_primary_10_1016_j_patcog_2022_108765 crossref_primary_10_3390_s22113968 crossref_primary_10_1016_j_patcog_2021_107939 crossref_primary_10_1109_TMC_2014_2365185 crossref_primary_10_3390_s17081838 crossref_primary_10_1007_s11042_020_09438_9 crossref_primary_10_1016_j_pmcj_2021_101483 crossref_primary_10_3390_s22134711 crossref_primary_10_1109_MIC_2017_33 crossref_primary_10_1109_TED_2019_2957067 crossref_primary_10_3390_s19184054 crossref_primary_10_3390_electronics12173608 crossref_primary_10_1016_j_jisa_2020_102466 crossref_primary_10_1016_j_neucom_2022_07_002 crossref_primary_10_3390_s23239430 crossref_primary_10_3389_fams_2020_564935 crossref_primary_10_1016_j_jvcir_2014_09_002 crossref_primary_10_1109_ACCESS_2018_2886899 crossref_primary_10_1016_j_sna_2024_115478 crossref_primary_10_1109_TIFS_2020_2985628 crossref_primary_10_1109_TIFS_2020_3016819 crossref_primary_10_1371_journal_pone_0264783 crossref_primary_10_1002_widm_1557 crossref_primary_10_1007_s11045_018_0611_3 crossref_primary_10_1109_ACCESS_2020_2966142 crossref_primary_10_1049_bme2_12099 crossref_primary_10_3390_s25113509 crossref_primary_10_1016_j_gaitpost_2023_05_001 crossref_primary_10_1109_ACCESS_2020_3031899 crossref_primary_10_3389_fninf_2024_1451529 crossref_primary_10_1109_ACCESS_2021_3056880 crossref_primary_10_3390_s150409438 crossref_primary_10_1145_3230633 crossref_primary_10_1007_s10462_022_10365_4 crossref_primary_10_1109_ACCESS_2022_3168019 crossref_primary_10_3390_s150922089 crossref_primary_10_1016_j_cose_2021_102557 crossref_primary_10_1016_j_gaitpost_2016_09_023 crossref_primary_10_1017_S026357472100179X crossref_primary_10_3390_s18041091 crossref_primary_10_1109_ACCESS_2019_2959557 crossref_primary_10_1177_1071181320641417 crossref_primary_10_1080_17445760_2017_1410817 crossref_primary_10_1145_3490235 crossref_primary_10_3390_s20082424 crossref_primary_10_1016_j_medengphy_2020_02_001 crossref_primary_10_1038_s41597_020_0563_y crossref_primary_10_1007_s00521_022_07741_0 crossref_primary_10_1109_JIOT_2023_3296650 crossref_primary_10_1016_j_cviu_2018_01_007 crossref_primary_10_1016_j_engappai_2023_106035 crossref_primary_10_1016_j_patcog_2023_109798 crossref_primary_10_1016_j_bspc_2022_103693 crossref_primary_10_1109_ACCESS_2023_3236000 crossref_primary_10_1109_JSEN_2017_2723840 crossref_primary_10_1109_TMC_2021_3072608 crossref_primary_10_1016_j_gaitpost_2017_07_030 crossref_primary_10_1109_TFUZZ_2018_2870590 crossref_primary_10_1109_TAI_2021_3114661 crossref_primary_10_1109_JBHI_2023_3311677 crossref_primary_10_1109_JSEN_2025_3560812 crossref_primary_10_1109_JSEN_2024_3430832 crossref_primary_10_1007_s12652_018_0880_6 crossref_primary_10_1016_j_engappai_2023_106682 crossref_primary_10_1109_ACCESS_2020_3016970 crossref_primary_10_1007_s10462_016_9514_6 crossref_primary_10_1109_TIM_2020_3009338 |
| Cites_doi | 10.1007/978-3-642-17610-4_20 10.1109/ICASSP.2011.5947150 10.1109/34.667881 10.1109/BTAS.2012.6374552 10.1117/12.603331 10.1016/j.patcog.2010.04.019 10.1007/3-540-44887-X_82 10.1109/ICBBE.2007.142 10.1109/TFUZZ.2011.2171973 10.1109/AUTOID.2007.380623 10.1109/IIHMSP.2010.84 10.1109/BTAS.2007.4401905 10.1023/A:1019154432472 10.1155/2009/415817 10.1109/ICB.2012.6199833 10.1007/11748625_12 10.1109/WAINA.2010.145 10.1109/IJCB.2011.6117527 10.1109/ICASSP.2005.1415569 10.1016/j.patrec.2008.08.002 10.1007/978-3-642-19318-7_52 10.1109/IIHMSP.2010.83 10.1109/ICIEA.2007.4318894 10.1016/j.patcog.2010.01.017 10.1109/BTAS.2010.5634532 10.1109/TIFS.2007.902030 10.1109/ROBOT.2007.364224 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patcog.2013.06.028 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 237 |
| ExternalDocumentID | 27805434 10_1016_j_patcog_2013_06_028 S003132031300280X |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c435t-8bae3d8cba66f7b18985e03bf6ef50cd57a0ebdd179f066447ca17884efc0d433 |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326903500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Mon Sep 29 03:51:43 EDT 2025 Mon Jul 21 09:13:28 EDT 2025 Tue Nov 18 22:08:46 EST 2025 Sat Nov 29 07:29:34 EST 2025 Fri Feb 23 02:25:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Performance evaluation Inertial sensor Large-scale database Gait-based owner authentication Range finding Ground based measurement Measurement sensor Sex Statistical method Authentication Database Gyroscope Localization Smartphone |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c435t-8bae3d8cba66f7b18985e03bf6ef50cd57a0ebdd179f066447ca17884efc0d433 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1513459494 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1513459494 pascalfrancis_primary_27805434 crossref_citationtrail_10_1016_j_patcog_2013_06_028 crossref_primary_10_1016_j_patcog_2013_06_028 elsevier_sciencedirect_doi_10_1016_j_patcog_2013_06_028 |
| PublicationCentury | 2000 |
| PublicationDate | January 2014 2014-01-00 2014 20140101 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Lipkus (bib36) 2006; 26 Yang, Wang, Chen (bib1) 2008; 29 Cook, Das (bib4) 2004 Gafurov, Helkala, Sondrol (bib10) 2006 Gafurov, Snekkenes, Bours (bib23) 2007; 2 C. Nickel, H. Brandt, C. Busch, Classification of acceleration data for biometric gait recognition on mobile devices, in: BIOSIG, 2011, pp. 57–66. J.R. Kwapisz, G.M. Weiss, S.A. Moore, Cell phone based biometric identification, in: IEEE Fourth International Conference on Biometrics: Theory, Applications and Systems, 2010, pp. 1–7. P. Phillips, D. Blackburn, M. Bone, P. Grother, R. Micheals, E. Tabassi, Face recognition vendor test Snedecor, Cochran (bib38) 1967 Gafurov, Snekkenes (bib11) 2009; 2009 J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, H. Ailisto, Identifying users of portable devices from gait pattern with accelerometers, in: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2005, pp. 973–976. B. Huang, M. Chen, P. Huang, Y. Xu, Gait modeling for human identification, in: IEEE International Conference on Robotics and Automation, 2007, pp. 4833–4838. In Japanese. A. Kale, N. Cuntoor, B. Yegnanarayana, A. Rajagopalan, R. Chellappa, Gait analysis for human identification, in: Audio– and Video–Based Biometric Person Authentication LNCS, 2003, pp. 706–714. Alvarez-Alvarez, Trivino, Cordon (bib19) 2012; 20 L. Rong, Z. Jianzhong, L. Ming, H. Xiangfeng, A wearable acceleration sensor system for gait recognition, in: 2nd IEEE Conference on Industrial Electronics and Applications, 2007, pp. 2654–2659. M.O. Derawi, P. Bours, K. Holien, Improved cycle detection for accelerometer based gait authentication, in: Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 312–317. E. Vildjiounaite, S.-M. Makela, M. Lindholm, R. Riihimaki, V. Kyllonen, J. Mantyjarvi, H. Ailisto, Unobtrusive multimodal biometrics for ensuring privacy and information security with personal devices, in: 4th International Conference on Pervasive Computing, PERVASIVE, 2006, pp. 187–201. D. Gafurov, E. Snekkenes, P. Bours, Improved gait recognition performance using cycle matching, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2010, pp. 836–841. D. Gafurov, Security analysis of impostor attempts with respect to gender in gait biometrics, in: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, 2007, pp. 1–6. Kionic Inc., KXTF9 S. Bonnet, P. Jallon, Hidden markov models applied onto gait classification, in: 18th European Signal Processing Conference (EUSIPCO-2010), 2010, pp. 929–933. F. Juefei-Xu, C. Bhagavatula, A. Jaech, U. Prasad, M. Savvides, Gait-id on the move: pace independent human identification using cell phone accelerometer dynamics, in: IEEE 5th International Conference on Biometrics, 2012, pp. 8–15. J.C. Augusto, C.D. Nugent, A new architecture for smart homes based on ADB and temporal reasoning, in: Toward a Human Friendly Assistive Environment, Proceedings of 2nd International Conference On Smart homes and health Telematic, ICOST2004, 2004, pp. 106–113. L. Rong, D. Zhiguo, Z. Jianzhong, L. Ming, Identification of individual walking patterns using gait acceleration, in: The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007, pp. 543–546. H.J. Ailisto, M. Lindholm, J. Mantyjarvi, E. Vildjiounaite, S. Makela, Identifying people from gait pattern with accelerometers, in: Biometric Technology for Human Identification, SPIE, vol. 5779, 2005, pp. 7–14. D. Gafurov, P. Bours, Improved hip based individual recognition using wearable motion recording sensor, in: Security Technology, Disaster Recovery and Business Continuity, vol. 122, Communications in Computer and Information Science, Springer, Berlin, Heidelberg, 2010, pp. 179–186. . D. Gafurov, E. Snekkenes, P. Bours, Gait authentication and identification using wearable accelerometer sensor, in: 5th IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 220–225. ZMP Inc., IMUZ Trivino, Alvarez-Alvarez, Bailador (bib18) 2010; 43 Y. Makihara, N.T. Trung, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration of a single quasi-periodic signal using self dynamic time warping, in: The Tenth Asian Conference on Computer Vision, Springer-Verlag, 2010, pp. 667–678. D. Gafurov, Performance and Security Analysis, Ph.D. Thesis, Faculty of Mathematics and Natural Sciences at the University of Oslo, 2008. Altun, Barshan, Tunçel (bib2) 2010; 43 M.O. Derawi, C. Nickely, P. Bours, C. Busch, Unobtrusive user-authentication on mobile phones using biometric gait recognition, in: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 306–311. N. Trung, Y. Makihara, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration in a gallery improving gait authentication, in: International Joint Conference on Biometrics (IJCB2011), IEEE and IAPR, 2011, pp. 1–7. Kittler, Hatef, Duin, Matas (bib35) 1998; 20 2002. N. Trung, Y. Makihara, H. Nagahara, Y. Mukaigawa, Y. Yagi, Performance evaluation of gait recognition using the largest inertial sensor-based gait database, in: Proceedings of the 5th IAPR International Conference on Biometrics, 2012, pp. 360–366. T. Kobayashi, K. Hasida, N. Otsu, Rotation invariant feature extraction from 3-D acceleration signals, in: International Conference on Acoustics, Speech, and Signal Processing, 2011, pp. 3684–3687. Sprager, Zazula (bib17) 2009; 5 10.1016/j.patcog.2013.06.028_bib30 10.1016/j.patcog.2013.06.028_bib28 10.1016/j.patcog.2013.06.028_bib29 Snedecor (10.1016/j.patcog.2013.06.028_bib38) 1967 Gafurov (10.1016/j.patcog.2013.06.028_bib10) 2006 10.1016/j.patcog.2013.06.028_bib20 10.1016/j.patcog.2013.06.028_bib21 10.1016/j.patcog.2013.06.028_bib22 10.1016/j.patcog.2013.06.028_bib24 10.1016/j.patcog.2013.06.028_bib25 Kittler (10.1016/j.patcog.2013.06.028_bib35) 1998; 20 10.1016/j.patcog.2013.06.028_bib26 10.1016/j.patcog.2013.06.028_bib27 Gafurov (10.1016/j.patcog.2013.06.028_bib11) 2009; 2009 Yang (10.1016/j.patcog.2013.06.028_bib1) 2008; 29 Trivino (10.1016/j.patcog.2013.06.028_bib18) 2010; 43 Gafurov (10.1016/j.patcog.2013.06.028_bib23) 2007; 2 Lipkus (10.1016/j.patcog.2013.06.028_bib36) 2006; 26 10.1016/j.patcog.2013.06.028_bib8 10.1016/j.patcog.2013.06.028_bib9 10.1016/j.patcog.2013.06.028_bib6 10.1016/j.patcog.2013.06.028_bib7 10.1016/j.patcog.2013.06.028_bib5 Alvarez-Alvarez (10.1016/j.patcog.2013.06.028_bib19) 2012; 20 10.1016/j.patcog.2013.06.028_bib3 10.1016/j.patcog.2013.06.028_bib31 10.1016/j.patcog.2013.06.028_bib32 10.1016/j.patcog.2013.06.028_bib33 Altun (10.1016/j.patcog.2013.06.028_bib2) 2010; 43 10.1016/j.patcog.2013.06.028_bib12 10.1016/j.patcog.2013.06.028_bib34 10.1016/j.patcog.2013.06.028_bib13 10.1016/j.patcog.2013.06.028_bib14 Sprager (10.1016/j.patcog.2013.06.028_bib17) 2009; 5 10.1016/j.patcog.2013.06.028_bib15 10.1016/j.patcog.2013.06.028_bib37 Cook (10.1016/j.patcog.2013.06.028_bib4) 2004 10.1016/j.patcog.2013.06.028_bib16 |
| References_xml | – reference: E. Vildjiounaite, S.-M. Makela, M. Lindholm, R. Riihimaki, V. Kyllonen, J. Mantyjarvi, H. Ailisto, Unobtrusive multimodal biometrics for ensuring privacy and information security with personal devices, in: 4th International Conference on Pervasive Computing, PERVASIVE, 2006, pp. 187–201. – reference: D. Gafurov, P. Bours, Improved hip based individual recognition using wearable motion recording sensor, in: Security Technology, Disaster Recovery and Business Continuity, vol. 122, Communications in Computer and Information Science, Springer, Berlin, Heidelberg, 2010, pp. 179–186. – reference: D. Gafurov, Performance and Security Analysis, Ph.D. Thesis, Faculty of Mathematics and Natural Sciences at the University of Oslo, 2008. – reference: D. Gafurov, E. Snekkenes, P. Bours, Gait authentication and identification using wearable accelerometer sensor, in: 5th IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 220–225. – volume: 2 start-page: 491 year: 2007 end-page: 502 ident: bib23 article-title: Spoof attacks on gait authentication system publication-title: IEEE Transactions on Information Forensics and Security – reference: C. Nickel, H. Brandt, C. Busch, Classification of acceleration data for biometric gait recognition on mobile devices, in: BIOSIG, 2011, pp. 57–66. – reference: J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, H. Ailisto, Identifying users of portable devices from gait pattern with accelerometers, in: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2005, pp. 973–976. – reference: Kionic Inc., KXTF9, – year: 1967 ident: bib38 article-title: Statistical Methods – reference: A. Kale, N. Cuntoor, B. Yegnanarayana, A. Rajagopalan, R. Chellappa, Gait analysis for human identification, in: Audio– and Video–Based Biometric Person Authentication LNCS, 2003, pp. 706–714. – start-page: 51 year: 2006 end-page: 59 ident: bib10 article-title: Biometric gait authentication using accelerometer sensor publication-title: Journal of Computers – volume: 29 start-page: 2213 year: 2008 end-page: 2220 ident: bib1 article-title: Using acceleration measurements for activity recognition publication-title: Pattern Recognition Letters – volume: 43 start-page: 2572 year: 2010 end-page: 2581 ident: bib18 article-title: Application of the computational theory of perceptions to human gait pattern recognition publication-title: Pattern Recognition – volume: 20 start-page: 205 year: 2012 end-page: 223 ident: bib19 article-title: Human gait modeling using a genetic fuzzy finite state machine publication-title: IEEE Transactions on Fuzzy Systems – year: 2004 ident: bib4 article-title: Smart Environments – reference: M.O. Derawi, P. Bours, K. Holien, Improved cycle detection for accelerometer based gait authentication, in: Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 312–317. – reference: L. Rong, Z. Jianzhong, L. Ming, H. Xiangfeng, A wearable acceleration sensor system for gait recognition, in: 2nd IEEE Conference on Industrial Electronics and Applications, 2007, pp. 2654–2659. – reference: P. Phillips, D. Blackburn, M. Bone, P. Grother, R. Micheals, E. Tabassi, Face recognition vendor test, – reference: D. Gafurov, E. Snekkenes, P. Bours, Improved gait recognition performance using cycle matching, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2010, pp. 836–841. – reference: H.J. Ailisto, M. Lindholm, J. Mantyjarvi, E. Vildjiounaite, S. Makela, Identifying people from gait pattern with accelerometers, in: Biometric Technology for Human Identification, SPIE, vol. 5779, 2005, pp. 7–14. – reference: Y. Makihara, N.T. Trung, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration of a single quasi-periodic signal using self dynamic time warping, in: The Tenth Asian Conference on Computer Vision, Springer-Verlag, 2010, pp. 667–678. – reference: T. Kobayashi, K. Hasida, N. Otsu, Rotation invariant feature extraction from 3-D acceleration signals, in: International Conference on Acoustics, Speech, and Signal Processing, 2011, pp. 3684–3687. – reference: N. Trung, Y. Makihara, H. Nagahara, Y. Mukaigawa, Y. Yagi, Performance evaluation of gait recognition using the largest inertial sensor-based gait database, in: Proceedings of the 5th IAPR International Conference on Biometrics, 2012, pp. 360–366. – reference: N. Trung, Y. Makihara, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration in a gallery improving gait authentication, in: International Joint Conference on Biometrics (IJCB2011), IEEE and IAPR, 2011, pp. 1–7. – reference: ZMP Inc., IMUZ, – reference: J.C. Augusto, C.D. Nugent, A new architecture for smart homes based on ADB and temporal reasoning, in: Toward a Human Friendly Assistive Environment, Proceedings of 2nd International Conference On Smart homes and health Telematic, ICOST2004, 2004, pp. 106–113. – reference: J.R. Kwapisz, G.M. Weiss, S.A. Moore, Cell phone based biometric identification, in: IEEE Fourth International Conference on Biometrics: Theory, Applications and Systems, 2010, pp. 1–7. – volume: 5 start-page: 369 year: 2009 end-page: 378 ident: bib17 article-title: A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine publication-title: WSEAS Transactions on Signal Processing – reference: , In Japanese. – reference: D. Gafurov, Security analysis of impostor attempts with respect to gender in gait biometrics, in: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, 2007, pp. 1–6. – reference: M.O. Derawi, C. Nickely, P. Bours, C. Busch, Unobtrusive user-authentication on mobile phones using biometric gait recognition, in: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 306–311. – reference: . – reference: , 2002. – reference: B. Huang, M. Chen, P. Huang, Y. Xu, Gait modeling for human identification, in: IEEE International Conference on Robotics and Automation, 2007, pp. 4833–4838. – reference: S. Bonnet, P. Jallon, Hidden markov models applied onto gait classification, in: 18th European Signal Processing Conference (EUSIPCO-2010), 2010, pp. 929–933. – reference: L. Rong, D. Zhiguo, Z. Jianzhong, L. Ming, Identification of individual walking patterns using gait acceleration, in: The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007, pp. 543–546. – volume: 26 start-page: 263 year: 2006 end-page: 265 ident: bib36 article-title: A proof of the triangle inequality for the Tanimoto distance publication-title: Journal of Mathematical Chemistry – volume: 43 start-page: 3605 year: 2010 end-page: 3620 ident: bib2 article-title: Comparative study on classifying human activities with miniature inertial and magnetic sensors publication-title: Pattern Recognition – reference: F. Juefei-Xu, C. Bhagavatula, A. Jaech, U. Prasad, M. Savvides, Gait-id on the move: pace independent human identification using cell phone accelerometer dynamics, in: IEEE 5th International Conference on Biometrics, 2012, pp. 8–15. – volume: 2009 start-page: 1 year: 2009 end-page: 16 ident: bib11 article-title: Gait recognition using wearable motion recording sensors publication-title: EURASIP Journal on Advances in Signal Processing – volume: 20 start-page: 226 year: 1998 end-page: 239 ident: bib35 article-title: On combining classifiers publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2004 ident: 10.1016/j.patcog.2013.06.028_bib4 – ident: 10.1016/j.patcog.2013.06.028_bib25 doi: 10.1007/978-3-642-17610-4_20 – ident: 10.1016/j.patcog.2013.06.028_bib7 doi: 10.1109/ICASSP.2011.5947150 – ident: 10.1016/j.patcog.2013.06.028_bib28 – ident: 10.1016/j.patcog.2013.06.028_bib3 – volume: 20 start-page: 226 issue: 3 year: 1998 ident: 10.1016/j.patcog.2013.06.028_bib35 article-title: On combining classifiers publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.667881 – ident: 10.1016/j.patcog.2013.06.028_bib30 doi: 10.1109/BTAS.2012.6374552 – ident: 10.1016/j.patcog.2013.06.028_bib5 doi: 10.1117/12.603331 – volume: 43 start-page: 3605 issue: 10 year: 2010 ident: 10.1016/j.patcog.2013.06.028_bib2 article-title: Comparative study on classifying human activities with miniature inertial and magnetic sensors publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.04.019 – ident: 10.1016/j.patcog.2013.06.028_bib32 – ident: 10.1016/j.patcog.2013.06.028_bib9 doi: 10.1007/3-540-44887-X_82 – ident: 10.1016/j.patcog.2013.06.028_bib14 doi: 10.1109/ICBBE.2007.142 – volume: 5 start-page: 369 issue: 11 year: 2009 ident: 10.1016/j.patcog.2013.06.028_bib17 article-title: A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine publication-title: WSEAS Transactions on Signal Processing – volume: 20 start-page: 205 issue: 2 year: 2012 ident: 10.1016/j.patcog.2013.06.028_bib19 article-title: Human gait modeling using a genetic fuzzy finite state machine publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2011.2171973 – ident: 10.1016/j.patcog.2013.06.028_bib22 doi: 10.1109/AUTOID.2007.380623 – ident: 10.1016/j.patcog.2013.06.028_bib15 doi: 10.1109/IIHMSP.2010.84 – ident: 10.1016/j.patcog.2013.06.028_bib24 doi: 10.1109/BTAS.2007.4401905 – volume: 26 start-page: 263 year: 2006 ident: 10.1016/j.patcog.2013.06.028_bib36 article-title: A proof of the triangle inequality for the Tanimoto distance publication-title: Journal of Mathematical Chemistry doi: 10.1023/A:1019154432472 – volume: 2009 start-page: 1 year: 2009 ident: 10.1016/j.patcog.2013.06.028_bib11 article-title: Gait recognition using wearable motion recording sensors publication-title: EURASIP Journal on Advances in Signal Processing doi: 10.1155/2009/415817 – ident: 10.1016/j.patcog.2013.06.028_bib20 doi: 10.1109/ICB.2012.6199833 – ident: 10.1016/j.patcog.2013.06.028_bib21 doi: 10.1007/11748625_12 – ident: 10.1016/j.patcog.2013.06.028_bib12 doi: 10.1109/WAINA.2010.145 – ident: 10.1016/j.patcog.2013.06.028_bib16 doi: 10.1109/IJCB.2011.6117527 – ident: 10.1016/j.patcog.2013.06.028_bib6 doi: 10.1109/ICASSP.2005.1415569 – volume: 29 start-page: 2213 issue: 16 year: 2008 ident: 10.1016/j.patcog.2013.06.028_bib1 article-title: Using acceleration measurements for activity recognition publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2008.08.002 – ident: 10.1016/j.patcog.2013.06.028_bib29 – ident: 10.1016/j.patcog.2013.06.028_bib34 doi: 10.1007/978-3-642-19318-7_52 – ident: 10.1016/j.patcog.2013.06.028_bib27 doi: 10.1109/IIHMSP.2010.83 – ident: 10.1016/j.patcog.2013.06.028_bib13 doi: 10.1109/ICIEA.2007.4318894 – ident: 10.1016/j.patcog.2013.06.028_bib33 – volume: 43 start-page: 2572 issue: 7 year: 2010 ident: 10.1016/j.patcog.2013.06.028_bib18 article-title: Application of the computational theory of perceptions to human gait pattern recognition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.01.017 – ident: 10.1016/j.patcog.2013.06.028_bib31 – ident: 10.1016/j.patcog.2013.06.028_bib8 doi: 10.1109/BTAS.2010.5634532 – volume: 2 start-page: 491 issue: 3 year: 2007 ident: 10.1016/j.patcog.2013.06.028_bib23 article-title: Spoof attacks on gait authentication system publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2007.902030 – ident: 10.1016/j.patcog.2013.06.028_bib37 – year: 1967 ident: 10.1016/j.patcog.2013.06.028_bib38 – start-page: 51 year: 2006 ident: 10.1016/j.patcog.2013.06.028_bib10 article-title: Biometric gait authentication using accelerometer sensor publication-title: Journal of Computers – ident: 10.1016/j.patcog.2013.06.028_bib26 doi: 10.1109/ROBOT.2007.364224 |
| SSID | ssj0017142 |
| Score | 2.5549634 |
| Snippet | This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 228 |
| SubjectTerms | Age Applied sciences Authentication Cryptography Exact sciences and technology Gait Gait-based owner authentication Grounds Inertial Inertial sensor Information, signal and communications theory Large-scale database Performance evaluation Sensors Signal and communications theory Telecommunications and information theory |
| Title | The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication |
| URI | https://dx.doi.org/10.1016/j.patcog.2013.06.028 https://www.proquest.com/docview/1513459494 |
| Volume | 47 |
| WOSCitedRecordID | wos000326903500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5swELbSbA-Vqr6rpo-VK_UWUQUM2BxRtU3SrdLVKlH3hoyxdxOlgEKy2j_U_1kb20AaVWkPvSAwGKLMZ894PPMNAB9COYC4x7mTESQcX6TUoZk8C4Ugql5h4KY1ietXPJuRq6vootf7aXNhbtc4z8ndXVT-V1HLNilslTr7D-JuXiob5LkUujxKscvjXwt-reK7K8X-r8KmVUqIXK0WG0fprGx4TZfboQoNVZeaKaCTPtDyfytDUj1rupXGbh9SFRWfb423r2veXtRsnSpDxoQltZv880k8mwznl4vZeDgbf2sEHZ9PJ_FlXKsCWu2qm2Xjn47Hsb01oavljzZMd3EeT8fx96bXzXJTdP0Xbuu5tCk13ekZuQ7yRqg7PWtCzj0YmrnWZJVrte1p7pgDjaCdE6uPpdRsxbWK5UM1Yavt3CXg_k0xNuGKnir84CP_HjjxcBCRPjiJp2dXX5rtKuz6mpbe_H6bo1kHEh5--U820MOSVnJkCl1S5cA6qE2e-RPwyKxVYKwx9hT0eP4MPDbrFmi0QiWbbGkQ2_YclBKF0KAQWhTCLgqhQha0KIQShbCDQtiiEBYCtiiEFoVwH4UvwOLz2fzTxDHFPRwmLfStQ1LKUUZYSsNQ4NQlEQn4CKUi5CIYsSzAdMTTLJMKQ0iz2Pcxoy4mxOeCjTIfoZegnxc5fwUgCgXHKeZMYKmSmKBpSEPmsYAGJOReOADI_t0JM8z3qgDLOrEhjqtECylRQkpUpKdHBsBpepWa-eXI89hKMjHWq7ZKEwnFIz1P9wTffM7ibgDeWyQkcvZXW3o058WuSqS9jvwg8iP_9bGXvAEP1PDT7sO3oL_d7Pg7cJ_dbpfV5tQg-hdJq9Z7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+largest+inertial+sensor-based+gait+database+and+performance+evaluation+of+gait-based+personal+authentication&rft.jtitle=Pattern+recognition&rft.au=THANH+TRUNG+NGO&rft.au=MAKIHARA%2C+Yasushi&rft.au=NAGAHARA%2C+Hajime&rft.au=MUKAIGAWA%2C+Yasuhiro&rft.date=2014&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=47&rft.issue=1&rft.spage=228&rft.epage=237&rft_id=info:doi/10.1016%2Fj.patcog.2013.06.028&rft.externalDBID=n%2Fa&rft.externalDocID=27805434 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |