The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication

This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 47; H. 1; S. 228 - 237
Hauptverfasser: Ngo, Thanh Trung, Makihara, Yasushi, Nagahara, Hajime, Mukaigawa, Yasuhiro, Yagi, Yasushi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.01.2014
Elsevier
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyroscope of three inertial measurement units and a smartphone around the waist of a subject, which include at most 744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait authentication performance on a number of factors such as gender, age group, sensor type, ground condition, and sensor location. The results with the latest existing authentication methods provide several insights for these factors. •We present the world largest inertial sensor-based database to the community.•Based on the database, females have a better recognition performance than males.•People have the best recognition performance at their twenties.•An accelerometer has a better recognition performance than a gyroscope.
AbstractList This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyroscope of three inertial measurement units and a smartphone around the waist of a subject, which include at most 744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait authentication performance on a number of factors such as gender, age group, sensor type, ground condition, and sensor location. The results with the latest existing authentication methods provide several insights for these factors. •We present the world largest inertial sensor-based database to the community.•Based on the database, females have a better recognition performance than males.•People have the best recognition performance at their twenties.•An accelerometer has a better recognition performance than a gyroscope.
This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyroscope of three inertial measurement units and a smartphone around the waist of a subject, which include at most 744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait authentication performance on a number of factors such as gender, age group, sensor type, ground condition, and sensor location. The results with the latest existing authentication methods provide several insights for these factors.
Author Ngo, Thanh Trung
Makihara, Yasushi
Yagi, Yasushi
Nagahara, Hajime
Mukaigawa, Yasuhiro
Author_xml – sequence: 1
  givenname: Thanh Trung
  surname: Ngo
  fullname: Ngo, Thanh Trung
  email: trung@am.sanken.osaka-u.ac.jp, trungbeo@gmail.com
  organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
– sequence: 2
  givenname: Yasushi
  surname: Makihara
  fullname: Makihara, Yasushi
  email: makihara@am.sanken.osaka-u.ac.jp
  organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
– sequence: 3
  givenname: Hajime
  surname: Nagahara
  fullname: Nagahara, Hajime
  email: nagahara@limu.ait.kyushu-u.ac.jp
  organization: Faculty of Information Science and Electrical Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka 819-0395, Japan
– sequence: 4
  givenname: Yasuhiro
  surname: Mukaigawa
  fullname: Mukaigawa, Yasuhiro
  email: mukaigaw@am.sanken.osaka-u.ac.jp
  organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
– sequence: 5
  givenname: Yasushi
  surname: Yagi
  fullname: Yagi, Yasushi
  email: yagi@am.sanken.osaka-u.ac.jp
  organization: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27805434$$DView record in Pascal Francis
BookMark eNqFkU9r3DAQxUVJoZs036AHXQq92JEs2db2UCihbQqBXpKzGEujjRav5EjaQL99tX9y6aE9DcP83oM375JchBiQkA-ctZzx4WbbLlBM3LQd46JlQ8s69YasuBpF03PZXZAVY4I3omPiHbnMecsYH-thRZaHJ6QzpA3mQn3AVDzMNGPIMTUTZLR0A75QCwUOK4Vg6YLJxbSDYJDiC8x7KD4GGt2RPcsqlGOoZrAvTxiKN0fqPXnrYM54fZ5X5PH7t4fbu-b-14-ft1_vGyNFXxo1AQqrzATD4MaJq7XqkYnJDeh6Zmw_AsPJWj6uHRsGKUcDfFRKojPMSiGuyKeT75Li876m0zufDc4zBIz7rHnPhezXci0r-vGMQjYwu1SD-ayX5HeQfutuVKyX4sB9PnEmxZwTOm18OYYqCfysOdOHOvRWn-rQhzo0G3Sto4rlX-JX___IvpxkWH_14jHpbDzWx1uf0BRto_-3wR8WZ6s0
CODEN PTNRA8
CitedBy_id crossref_primary_10_1016_j_inffus_2019_06_023
crossref_primary_10_1038_s41597_022_01802_8
crossref_primary_10_1016_j_neucom_2020_01_098
crossref_primary_10_1109_TCYB_2017_2705799
crossref_primary_10_1186_s13673_018_0137_6
crossref_primary_10_1016_j_bspc_2024_106577
crossref_primary_10_1109_ACCESS_2021_3095477
crossref_primary_10_1109_ACCESS_2023_3321427
crossref_primary_10_1145_3161711
crossref_primary_10_1109_ACCESS_2024_3443231
crossref_primary_10_1109_JSEN_2022_3188527
crossref_primary_10_1016_j_compeleceng_2023_108663
crossref_primary_10_1038_s41597_023_02704_z
crossref_primary_10_1016_j_medengphy_2020_06_001
crossref_primary_10_1109_JIOT_2018_2860592
crossref_primary_10_1016_j_patcog_2020_107408
crossref_primary_10_1038_s41597_022_01580_3
crossref_primary_10_1016_j_ins_2017_11_058
crossref_primary_10_3390_s19132945
crossref_primary_10_1109_TIFS_2015_2415753
crossref_primary_10_3390_s21082869
crossref_primary_10_1016_j_patcog_2017_09_005
crossref_primary_10_1109_TIM_2021_3108174
crossref_primary_10_3390_app7100986
crossref_primary_10_1109_ACCESS_2018_2879896
crossref_primary_10_3390_s20174756
crossref_primary_10_1007_s11042_016_3654_1
crossref_primary_10_1145_3594538
crossref_primary_10_1109_TIFS_2021_3124735
crossref_primary_10_1016_j_pmcj_2018_03_006
crossref_primary_10_3390_s21082866
crossref_primary_10_3390_s23031054
crossref_primary_10_1109_JIOT_2022_3222204
crossref_primary_10_1109_TIFS_2018_2850032
crossref_primary_10_1109_COMST_2016_2537748
crossref_primary_10_1145_3340293
crossref_primary_10_3390_s23229047
crossref_primary_10_1007_s00521_023_08863_9
crossref_primary_10_1145_3130906
crossref_primary_10_1007_s12652_019_01659_7
crossref_primary_10_1016_j_procs_2020_09_001
crossref_primary_10_3389_frobt_2021_749274
crossref_primary_10_1016_j_cose_2023_103643
crossref_primary_10_1109_JIOT_2022_3231381
crossref_primary_10_1038_s41597_022_01638_2
crossref_primary_10_1007_s00779_020_01480_6
crossref_primary_10_1016_j_patcog_2014_10_012
crossref_primary_10_1088_1742_6596_2026_1_012038
crossref_primary_10_3390_s20030949
crossref_primary_10_1007_s10207_015_0273_1
crossref_primary_10_1109_TCE_2024_3396177
crossref_primary_10_1109_TIM_2024_3449951
crossref_primary_10_1145_3615658
crossref_primary_10_3389_frobt_2023_1265543
crossref_primary_10_3390_s17030478
crossref_primary_10_1016_j_cose_2018_04_001
crossref_primary_10_1155_2022_4555136
crossref_primary_10_3390_s150100932
crossref_primary_10_1109_TCYB_2017_2682280
crossref_primary_10_1016_j_patcog_2022_108765
crossref_primary_10_3390_s22113968
crossref_primary_10_1016_j_patcog_2021_107939
crossref_primary_10_1109_TMC_2014_2365185
crossref_primary_10_3390_s17081838
crossref_primary_10_1007_s11042_020_09438_9
crossref_primary_10_1016_j_pmcj_2021_101483
crossref_primary_10_3390_s22134711
crossref_primary_10_1109_MIC_2017_33
crossref_primary_10_1109_TED_2019_2957067
crossref_primary_10_3390_s19184054
crossref_primary_10_3390_electronics12173608
crossref_primary_10_1016_j_jisa_2020_102466
crossref_primary_10_1016_j_neucom_2022_07_002
crossref_primary_10_3390_s23239430
crossref_primary_10_3389_fams_2020_564935
crossref_primary_10_1016_j_jvcir_2014_09_002
crossref_primary_10_1109_ACCESS_2018_2886899
crossref_primary_10_1016_j_sna_2024_115478
crossref_primary_10_1109_TIFS_2020_2985628
crossref_primary_10_1109_TIFS_2020_3016819
crossref_primary_10_1371_journal_pone_0264783
crossref_primary_10_1002_widm_1557
crossref_primary_10_1007_s11045_018_0611_3
crossref_primary_10_1109_ACCESS_2020_2966142
crossref_primary_10_1049_bme2_12099
crossref_primary_10_3390_s25113509
crossref_primary_10_1016_j_gaitpost_2023_05_001
crossref_primary_10_1109_ACCESS_2020_3031899
crossref_primary_10_3389_fninf_2024_1451529
crossref_primary_10_1109_ACCESS_2021_3056880
crossref_primary_10_3390_s150409438
crossref_primary_10_1145_3230633
crossref_primary_10_1007_s10462_022_10365_4
crossref_primary_10_1109_ACCESS_2022_3168019
crossref_primary_10_3390_s150922089
crossref_primary_10_1016_j_cose_2021_102557
crossref_primary_10_1016_j_gaitpost_2016_09_023
crossref_primary_10_1017_S026357472100179X
crossref_primary_10_3390_s18041091
crossref_primary_10_1109_ACCESS_2019_2959557
crossref_primary_10_1177_1071181320641417
crossref_primary_10_1080_17445760_2017_1410817
crossref_primary_10_1145_3490235
crossref_primary_10_3390_s20082424
crossref_primary_10_1016_j_medengphy_2020_02_001
crossref_primary_10_1038_s41597_020_0563_y
crossref_primary_10_1007_s00521_022_07741_0
crossref_primary_10_1109_JIOT_2023_3296650
crossref_primary_10_1016_j_cviu_2018_01_007
crossref_primary_10_1016_j_engappai_2023_106035
crossref_primary_10_1016_j_patcog_2023_109798
crossref_primary_10_1016_j_bspc_2022_103693
crossref_primary_10_1109_ACCESS_2023_3236000
crossref_primary_10_1109_JSEN_2017_2723840
crossref_primary_10_1109_TMC_2021_3072608
crossref_primary_10_1016_j_gaitpost_2017_07_030
crossref_primary_10_1109_TFUZZ_2018_2870590
crossref_primary_10_1109_TAI_2021_3114661
crossref_primary_10_1109_JBHI_2023_3311677
crossref_primary_10_1109_JSEN_2025_3560812
crossref_primary_10_1109_JSEN_2024_3430832
crossref_primary_10_1007_s12652_018_0880_6
crossref_primary_10_1016_j_engappai_2023_106682
crossref_primary_10_1109_ACCESS_2020_3016970
crossref_primary_10_1007_s10462_016_9514_6
crossref_primary_10_1109_TIM_2020_3009338
Cites_doi 10.1007/978-3-642-17610-4_20
10.1109/ICASSP.2011.5947150
10.1109/34.667881
10.1109/BTAS.2012.6374552
10.1117/12.603331
10.1016/j.patcog.2010.04.019
10.1007/3-540-44887-X_82
10.1109/ICBBE.2007.142
10.1109/TFUZZ.2011.2171973
10.1109/AUTOID.2007.380623
10.1109/IIHMSP.2010.84
10.1109/BTAS.2007.4401905
10.1023/A:1019154432472
10.1155/2009/415817
10.1109/ICB.2012.6199833
10.1007/11748625_12
10.1109/WAINA.2010.145
10.1109/IJCB.2011.6117527
10.1109/ICASSP.2005.1415569
10.1016/j.patrec.2008.08.002
10.1007/978-3-642-19318-7_52
10.1109/IIHMSP.2010.83
10.1109/ICIEA.2007.4318894
10.1016/j.patcog.2010.01.017
10.1109/BTAS.2010.5634532
10.1109/TIFS.2007.902030
10.1109/ROBOT.2007.364224
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2013.06.028
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 237
ExternalDocumentID 27805434
10_1016_j_patcog_2013_06_028
S003132031300280X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c435t-8bae3d8cba66f7b18985e03bf6ef50cd57a0ebdd179f066447ca17884efc0d433
ISICitedReferencesCount 205
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326903500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Mon Sep 29 03:51:43 EDT 2025
Mon Jul 21 09:13:28 EDT 2025
Tue Nov 18 22:08:46 EST 2025
Sat Nov 29 07:29:34 EST 2025
Fri Feb 23 02:25:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance evaluation
Inertial sensor
Large-scale database
Gait-based owner authentication
Range finding
Ground based measurement
Measurement sensor
Sex
Statistical method
Authentication
Database
Gyroscope
Localization
Smartphone
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-8bae3d8cba66f7b18985e03bf6ef50cd57a0ebdd179f066447ca17884efc0d433
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1513459494
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1513459494
pascalfrancis_primary_27805434
crossref_citationtrail_10_1016_j_patcog_2013_06_028
crossref_primary_10_1016_j_patcog_2013_06_028
elsevier_sciencedirect_doi_10_1016_j_patcog_2013_06_028
PublicationCentury 2000
PublicationDate January 2014
2014-01-00
2014
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lipkus (bib36) 2006; 26
Yang, Wang, Chen (bib1) 2008; 29
Cook, Das (bib4) 2004
Gafurov, Helkala, Sondrol (bib10) 2006
Gafurov, Snekkenes, Bours (bib23) 2007; 2
C. Nickel, H. Brandt, C. Busch, Classification of acceleration data for biometric gait recognition on mobile devices, in: BIOSIG, 2011, pp. 57–66.
J.R. Kwapisz, G.M. Weiss, S.A. Moore, Cell phone based biometric identification, in: IEEE Fourth International Conference on Biometrics: Theory, Applications and Systems, 2010, pp. 1–7.
P. Phillips, D. Blackburn, M. Bone, P. Grother, R. Micheals, E. Tabassi, Face recognition vendor test
Snedecor, Cochran (bib38) 1967
Gafurov, Snekkenes (bib11) 2009; 2009
J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, H. Ailisto, Identifying users of portable devices from gait pattern with accelerometers, in: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2005, pp. 973–976.
B. Huang, M. Chen, P. Huang, Y. Xu, Gait modeling for human identification, in: IEEE International Conference on Robotics and Automation, 2007, pp. 4833–4838.
In Japanese.
A. Kale, N. Cuntoor, B. Yegnanarayana, A. Rajagopalan, R. Chellappa, Gait analysis for human identification, in: Audio– and Video–Based Biometric Person Authentication LNCS, 2003, pp. 706–714.
Alvarez-Alvarez, Trivino, Cordon (bib19) 2012; 20
L. Rong, Z. Jianzhong, L. Ming, H. Xiangfeng, A wearable acceleration sensor system for gait recognition, in: 2nd IEEE Conference on Industrial Electronics and Applications, 2007, pp. 2654–2659.
M.O. Derawi, P. Bours, K. Holien, Improved cycle detection for accelerometer based gait authentication, in: Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 312–317.
E. Vildjiounaite, S.-M. Makela, M. Lindholm, R. Riihimaki, V. Kyllonen, J. Mantyjarvi, H. Ailisto, Unobtrusive multimodal biometrics for ensuring privacy and information security with personal devices, in: 4th International Conference on Pervasive Computing, PERVASIVE, 2006, pp. 187–201.
D. Gafurov, E. Snekkenes, P. Bours, Improved gait recognition performance using cycle matching, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2010, pp. 836–841.
D. Gafurov, Security analysis of impostor attempts with respect to gender in gait biometrics, in: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, 2007, pp. 1–6.
Kionic Inc., KXTF9
S. Bonnet, P. Jallon, Hidden markov models applied onto gait classification, in: 18th European Signal Processing Conference (EUSIPCO-2010), 2010, pp. 929–933.
F. Juefei-Xu, C. Bhagavatula, A. Jaech, U. Prasad, M. Savvides, Gait-id on the move: pace independent human identification using cell phone accelerometer dynamics, in: IEEE 5th International Conference on Biometrics, 2012, pp. 8–15.
J.C. Augusto, C.D. Nugent, A new architecture for smart homes based on ADB and temporal reasoning, in: Toward a Human Friendly Assistive Environment, Proceedings of 2nd International Conference On Smart homes and health Telematic, ICOST2004, 2004, pp. 106–113.
L. Rong, D. Zhiguo, Z. Jianzhong, L. Ming, Identification of individual walking patterns using gait acceleration, in: The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007, pp. 543–546.
H.J. Ailisto, M. Lindholm, J. Mantyjarvi, E. Vildjiounaite, S. Makela, Identifying people from gait pattern with accelerometers, in: Biometric Technology for Human Identification, SPIE, vol. 5779, 2005, pp. 7–14.
D. Gafurov, P. Bours, Improved hip based individual recognition using wearable motion recording sensor, in: Security Technology, Disaster Recovery and Business Continuity, vol. 122, Communications in Computer and Information Science, Springer, Berlin, Heidelberg, 2010, pp. 179–186.
.
D. Gafurov, E. Snekkenes, P. Bours, Gait authentication and identification using wearable accelerometer sensor, in: 5th IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 220–225.
ZMP Inc., IMUZ
Trivino, Alvarez-Alvarez, Bailador (bib18) 2010; 43
Y. Makihara, N.T. Trung, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration of a single quasi-periodic signal using self dynamic time warping, in: The Tenth Asian Conference on Computer Vision, Springer-Verlag, 2010, pp. 667–678.
D. Gafurov, Performance and Security Analysis, Ph.D. Thesis, Faculty of Mathematics and Natural Sciences at the University of Oslo, 2008.
Altun, Barshan, Tunçel (bib2) 2010; 43
M.O. Derawi, C. Nickely, P. Bours, C. Busch, Unobtrusive user-authentication on mobile phones using biometric gait recognition, in: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 306–311.
N. Trung, Y. Makihara, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration in a gallery improving gait authentication, in: International Joint Conference on Biometrics (IJCB2011), IEEE and IAPR, 2011, pp. 1–7.
Kittler, Hatef, Duin, Matas (bib35) 1998; 20
2002.
N. Trung, Y. Makihara, H. Nagahara, Y. Mukaigawa, Y. Yagi, Performance evaluation of gait recognition using the largest inertial sensor-based gait database, in: Proceedings of the 5th IAPR International Conference on Biometrics, 2012, pp. 360–366.
T. Kobayashi, K. Hasida, N. Otsu, Rotation invariant feature extraction from 3-D acceleration signals, in: International Conference on Acoustics, Speech, and Signal Processing, 2011, pp. 3684–3687.
Sprager, Zazula (bib17) 2009; 5
10.1016/j.patcog.2013.06.028_bib30
10.1016/j.patcog.2013.06.028_bib28
10.1016/j.patcog.2013.06.028_bib29
Snedecor (10.1016/j.patcog.2013.06.028_bib38) 1967
Gafurov (10.1016/j.patcog.2013.06.028_bib10) 2006
10.1016/j.patcog.2013.06.028_bib20
10.1016/j.patcog.2013.06.028_bib21
10.1016/j.patcog.2013.06.028_bib22
10.1016/j.patcog.2013.06.028_bib24
10.1016/j.patcog.2013.06.028_bib25
Kittler (10.1016/j.patcog.2013.06.028_bib35) 1998; 20
10.1016/j.patcog.2013.06.028_bib26
10.1016/j.patcog.2013.06.028_bib27
Gafurov (10.1016/j.patcog.2013.06.028_bib11) 2009; 2009
Yang (10.1016/j.patcog.2013.06.028_bib1) 2008; 29
Trivino (10.1016/j.patcog.2013.06.028_bib18) 2010; 43
Gafurov (10.1016/j.patcog.2013.06.028_bib23) 2007; 2
Lipkus (10.1016/j.patcog.2013.06.028_bib36) 2006; 26
10.1016/j.patcog.2013.06.028_bib8
10.1016/j.patcog.2013.06.028_bib9
10.1016/j.patcog.2013.06.028_bib6
10.1016/j.patcog.2013.06.028_bib7
10.1016/j.patcog.2013.06.028_bib5
Alvarez-Alvarez (10.1016/j.patcog.2013.06.028_bib19) 2012; 20
10.1016/j.patcog.2013.06.028_bib3
10.1016/j.patcog.2013.06.028_bib31
10.1016/j.patcog.2013.06.028_bib32
10.1016/j.patcog.2013.06.028_bib33
Altun (10.1016/j.patcog.2013.06.028_bib2) 2010; 43
10.1016/j.patcog.2013.06.028_bib12
10.1016/j.patcog.2013.06.028_bib34
10.1016/j.patcog.2013.06.028_bib13
10.1016/j.patcog.2013.06.028_bib14
Sprager (10.1016/j.patcog.2013.06.028_bib17) 2009; 5
10.1016/j.patcog.2013.06.028_bib15
10.1016/j.patcog.2013.06.028_bib37
Cook (10.1016/j.patcog.2013.06.028_bib4) 2004
10.1016/j.patcog.2013.06.028_bib16
References_xml – reference: E. Vildjiounaite, S.-M. Makela, M. Lindholm, R. Riihimaki, V. Kyllonen, J. Mantyjarvi, H. Ailisto, Unobtrusive multimodal biometrics for ensuring privacy and information security with personal devices, in: 4th International Conference on Pervasive Computing, PERVASIVE, 2006, pp. 187–201.
– reference: D. Gafurov, P. Bours, Improved hip based individual recognition using wearable motion recording sensor, in: Security Technology, Disaster Recovery and Business Continuity, vol. 122, Communications in Computer and Information Science, Springer, Berlin, Heidelberg, 2010, pp. 179–186.
– reference: D. Gafurov, Performance and Security Analysis, Ph.D. Thesis, Faculty of Mathematics and Natural Sciences at the University of Oslo, 2008.
– reference: D. Gafurov, E. Snekkenes, P. Bours, Gait authentication and identification using wearable accelerometer sensor, in: 5th IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 220–225.
– volume: 2
  start-page: 491
  year: 2007
  end-page: 502
  ident: bib23
  article-title: Spoof attacks on gait authentication system
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: C. Nickel, H. Brandt, C. Busch, Classification of acceleration data for biometric gait recognition on mobile devices, in: BIOSIG, 2011, pp. 57–66.
– reference: J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, H. Ailisto, Identifying users of portable devices from gait pattern with accelerometers, in: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2005, pp. 973–976.
– reference: Kionic Inc., KXTF9,
– year: 1967
  ident: bib38
  article-title: Statistical Methods
– reference: A. Kale, N. Cuntoor, B. Yegnanarayana, A. Rajagopalan, R. Chellappa, Gait analysis for human identification, in: Audio– and Video–Based Biometric Person Authentication LNCS, 2003, pp. 706–714.
– start-page: 51
  year: 2006
  end-page: 59
  ident: bib10
  article-title: Biometric gait authentication using accelerometer sensor
  publication-title: Journal of Computers
– volume: 29
  start-page: 2213
  year: 2008
  end-page: 2220
  ident: bib1
  article-title: Using acceleration measurements for activity recognition
  publication-title: Pattern Recognition Letters
– volume: 43
  start-page: 2572
  year: 2010
  end-page: 2581
  ident: bib18
  article-title: Application of the computational theory of perceptions to human gait pattern recognition
  publication-title: Pattern Recognition
– volume: 20
  start-page: 205
  year: 2012
  end-page: 223
  ident: bib19
  article-title: Human gait modeling using a genetic fuzzy finite state machine
  publication-title: IEEE Transactions on Fuzzy Systems
– year: 2004
  ident: bib4
  article-title: Smart Environments
– reference: M.O. Derawi, P. Bours, K. Holien, Improved cycle detection for accelerometer based gait authentication, in: Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 312–317.
– reference: L. Rong, Z. Jianzhong, L. Ming, H. Xiangfeng, A wearable acceleration sensor system for gait recognition, in: 2nd IEEE Conference on Industrial Electronics and Applications, 2007, pp. 2654–2659.
– reference: P. Phillips, D. Blackburn, M. Bone, P. Grother, R. Micheals, E. Tabassi, Face recognition vendor test,
– reference: D. Gafurov, E. Snekkenes, P. Bours, Improved gait recognition performance using cycle matching, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2010, pp. 836–841.
– reference: H.J. Ailisto, M. Lindholm, J. Mantyjarvi, E. Vildjiounaite, S. Makela, Identifying people from gait pattern with accelerometers, in: Biometric Technology for Human Identification, SPIE, vol. 5779, 2005, pp. 7–14.
– reference: Y. Makihara, N.T. Trung, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration of a single quasi-periodic signal using self dynamic time warping, in: The Tenth Asian Conference on Computer Vision, Springer-Verlag, 2010, pp. 667–678.
– reference: T. Kobayashi, K. Hasida, N. Otsu, Rotation invariant feature extraction from 3-D acceleration signals, in: International Conference on Acoustics, Speech, and Signal Processing, 2011, pp. 3684–3687.
– reference: N. Trung, Y. Makihara, H. Nagahara, Y. Mukaigawa, Y. Yagi, Performance evaluation of gait recognition using the largest inertial sensor-based gait database, in: Proceedings of the 5th IAPR International Conference on Biometrics, 2012, pp. 360–366.
– reference: N. Trung, Y. Makihara, H. Nagahara, R. Sagawa, Y. Mukaigawa, Y. Yagi, Phase registration in a gallery improving gait authentication, in: International Joint Conference on Biometrics (IJCB2011), IEEE and IAPR, 2011, pp. 1–7.
– reference: ZMP Inc., IMUZ,
– reference: J.C. Augusto, C.D. Nugent, A new architecture for smart homes based on ADB and temporal reasoning, in: Toward a Human Friendly Assistive Environment, Proceedings of 2nd International Conference On Smart homes and health Telematic, ICOST2004, 2004, pp. 106–113.
– reference: J.R. Kwapisz, G.M. Weiss, S.A. Moore, Cell phone based biometric identification, in: IEEE Fourth International Conference on Biometrics: Theory, Applications and Systems, 2010, pp. 1–7.
– volume: 5
  start-page: 369
  year: 2009
  end-page: 378
  ident: bib17
  article-title: A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine
  publication-title: WSEAS Transactions on Signal Processing
– reference: , In Japanese.
– reference: D. Gafurov, Security analysis of impostor attempts with respect to gender in gait biometrics, in: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, 2007, pp. 1–6.
– reference: M.O. Derawi, C. Nickely, P. Bours, C. Busch, Unobtrusive user-authentication on mobile phones using biometric gait recognition, in: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010, pp. 306–311.
– reference: .
– reference: , 2002.
– reference: B. Huang, M. Chen, P. Huang, Y. Xu, Gait modeling for human identification, in: IEEE International Conference on Robotics and Automation, 2007, pp. 4833–4838.
– reference: S. Bonnet, P. Jallon, Hidden markov models applied onto gait classification, in: 18th European Signal Processing Conference (EUSIPCO-2010), 2010, pp. 929–933.
– reference: L. Rong, D. Zhiguo, Z. Jianzhong, L. Ming, Identification of individual walking patterns using gait acceleration, in: The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007, pp. 543–546.
– volume: 26
  start-page: 263
  year: 2006
  end-page: 265
  ident: bib36
  article-title: A proof of the triangle inequality for the Tanimoto distance
  publication-title: Journal of Mathematical Chemistry
– volume: 43
  start-page: 3605
  year: 2010
  end-page: 3620
  ident: bib2
  article-title: Comparative study on classifying human activities with miniature inertial and magnetic sensors
  publication-title: Pattern Recognition
– reference: F. Juefei-Xu, C. Bhagavatula, A. Jaech, U. Prasad, M. Savvides, Gait-id on the move: pace independent human identification using cell phone accelerometer dynamics, in: IEEE 5th International Conference on Biometrics, 2012, pp. 8–15.
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 16
  ident: bib11
  article-title: Gait recognition using wearable motion recording sensors
  publication-title: EURASIP Journal on Advances in Signal Processing
– volume: 20
  start-page: 226
  year: 1998
  end-page: 239
  ident: bib35
  article-title: On combining classifiers
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2004
  ident: 10.1016/j.patcog.2013.06.028_bib4
– ident: 10.1016/j.patcog.2013.06.028_bib25
  doi: 10.1007/978-3-642-17610-4_20
– ident: 10.1016/j.patcog.2013.06.028_bib7
  doi: 10.1109/ICASSP.2011.5947150
– ident: 10.1016/j.patcog.2013.06.028_bib28
– ident: 10.1016/j.patcog.2013.06.028_bib3
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  ident: 10.1016/j.patcog.2013.06.028_bib35
  article-title: On combining classifiers
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.667881
– ident: 10.1016/j.patcog.2013.06.028_bib30
  doi: 10.1109/BTAS.2012.6374552
– ident: 10.1016/j.patcog.2013.06.028_bib5
  doi: 10.1117/12.603331
– volume: 43
  start-page: 3605
  issue: 10
  year: 2010
  ident: 10.1016/j.patcog.2013.06.028_bib2
  article-title: Comparative study on classifying human activities with miniature inertial and magnetic sensors
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.04.019
– ident: 10.1016/j.patcog.2013.06.028_bib32
– ident: 10.1016/j.patcog.2013.06.028_bib9
  doi: 10.1007/3-540-44887-X_82
– ident: 10.1016/j.patcog.2013.06.028_bib14
  doi: 10.1109/ICBBE.2007.142
– volume: 5
  start-page: 369
  issue: 11
  year: 2009
  ident: 10.1016/j.patcog.2013.06.028_bib17
  article-title: A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine
  publication-title: WSEAS Transactions on Signal Processing
– volume: 20
  start-page: 205
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2013.06.028_bib19
  article-title: Human gait modeling using a genetic fuzzy finite state machine
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2011.2171973
– ident: 10.1016/j.patcog.2013.06.028_bib22
  doi: 10.1109/AUTOID.2007.380623
– ident: 10.1016/j.patcog.2013.06.028_bib15
  doi: 10.1109/IIHMSP.2010.84
– ident: 10.1016/j.patcog.2013.06.028_bib24
  doi: 10.1109/BTAS.2007.4401905
– volume: 26
  start-page: 263
  year: 2006
  ident: 10.1016/j.patcog.2013.06.028_bib36
  article-title: A proof of the triangle inequality for the Tanimoto distance
  publication-title: Journal of Mathematical Chemistry
  doi: 10.1023/A:1019154432472
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.patcog.2013.06.028_bib11
  article-title: Gait recognition using wearable motion recording sensors
  publication-title: EURASIP Journal on Advances in Signal Processing
  doi: 10.1155/2009/415817
– ident: 10.1016/j.patcog.2013.06.028_bib20
  doi: 10.1109/ICB.2012.6199833
– ident: 10.1016/j.patcog.2013.06.028_bib21
  doi: 10.1007/11748625_12
– ident: 10.1016/j.patcog.2013.06.028_bib12
  doi: 10.1109/WAINA.2010.145
– ident: 10.1016/j.patcog.2013.06.028_bib16
  doi: 10.1109/IJCB.2011.6117527
– ident: 10.1016/j.patcog.2013.06.028_bib6
  doi: 10.1109/ICASSP.2005.1415569
– volume: 29
  start-page: 2213
  issue: 16
  year: 2008
  ident: 10.1016/j.patcog.2013.06.028_bib1
  article-title: Using acceleration measurements for activity recognition
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.08.002
– ident: 10.1016/j.patcog.2013.06.028_bib29
– ident: 10.1016/j.patcog.2013.06.028_bib34
  doi: 10.1007/978-3-642-19318-7_52
– ident: 10.1016/j.patcog.2013.06.028_bib27
  doi: 10.1109/IIHMSP.2010.83
– ident: 10.1016/j.patcog.2013.06.028_bib13
  doi: 10.1109/ICIEA.2007.4318894
– ident: 10.1016/j.patcog.2013.06.028_bib33
– volume: 43
  start-page: 2572
  issue: 7
  year: 2010
  ident: 10.1016/j.patcog.2013.06.028_bib18
  article-title: Application of the computational theory of perceptions to human gait pattern recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.01.017
– ident: 10.1016/j.patcog.2013.06.028_bib31
– ident: 10.1016/j.patcog.2013.06.028_bib8
  doi: 10.1109/BTAS.2010.5634532
– volume: 2
  start-page: 491
  issue: 3
  year: 2007
  ident: 10.1016/j.patcog.2013.06.028_bib23
  article-title: Spoof attacks on gait authentication system
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2007.902030
– ident: 10.1016/j.patcog.2013.06.028_bib37
– year: 1967
  ident: 10.1016/j.patcog.2013.06.028_bib38
– start-page: 51
  year: 2006
  ident: 10.1016/j.patcog.2013.06.028_bib10
  article-title: Biometric gait authentication using accelerometer sensor
  publication-title: Journal of Computers
– ident: 10.1016/j.patcog.2013.06.028_bib26
  doi: 10.1109/ROBOT.2007.364224
SSID ssj0017142
Score 2.5549634
Snippet This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 228
SubjectTerms Age
Applied sciences
Authentication
Cryptography
Exact sciences and technology
Gait
Gait-based owner authentication
Grounds
Inertial
Inertial sensor
Information, signal and communications theory
Large-scale database
Performance evaluation
Sensors
Signal and communications theory
Telecommunications and information theory
Title The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication
URI https://dx.doi.org/10.1016/j.patcog.2013.06.028
https://www.proquest.com/docview/1513459494
Volume 47
WOSCitedRecordID wos000326903500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5swELbSbA-Vqr6rpo-VK_UWUQUM2BxRtU3SrdLVKlH3hoyxdxOlgEKy2j_U_1kb20AaVWkPvSAwGKLMZ894PPMNAB9COYC4x7mTESQcX6TUoZk8C4Ugql5h4KY1ietXPJuRq6vootf7aXNhbtc4z8ndXVT-V1HLNilslTr7D-JuXiob5LkUujxKscvjXwt-reK7K8X-r8KmVUqIXK0WG0fprGx4TZfboQoNVZeaKaCTPtDyfytDUj1rupXGbh9SFRWfb423r2veXtRsnSpDxoQltZv880k8mwznl4vZeDgbf2sEHZ9PJ_FlXKsCWu2qm2Xjn47Hsb01oavljzZMd3EeT8fx96bXzXJTdP0Xbuu5tCk13ekZuQ7yRqg7PWtCzj0YmrnWZJVrte1p7pgDjaCdE6uPpdRsxbWK5UM1Yavt3CXg_k0xNuGKnir84CP_HjjxcBCRPjiJp2dXX5rtKuz6mpbe_H6bo1kHEh5--U820MOSVnJkCl1S5cA6qE2e-RPwyKxVYKwx9hT0eP4MPDbrFmi0QiWbbGkQ2_YclBKF0KAQWhTCLgqhQha0KIQShbCDQtiiEBYCtiiEFoVwH4UvwOLz2fzTxDHFPRwmLfStQ1LKUUZYSsNQ4NQlEQn4CKUi5CIYsSzAdMTTLJMKQ0iz2Pcxoy4mxOeCjTIfoZegnxc5fwUgCgXHKeZMYKmSmKBpSEPmsYAGJOReOADI_t0JM8z3qgDLOrEhjqtECylRQkpUpKdHBsBpepWa-eXI89hKMjHWq7ZKEwnFIz1P9wTffM7ibgDeWyQkcvZXW3o058WuSqS9jvwg8iP_9bGXvAEP1PDT7sO3oL_d7Pg7cJ_dbpfV5tQg-hdJq9Z7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+largest+inertial+sensor-based+gait+database+and+performance+evaluation+of+gait-based+personal+authentication&rft.jtitle=Pattern+recognition&rft.au=THANH+TRUNG+NGO&rft.au=MAKIHARA%2C+Yasushi&rft.au=NAGAHARA%2C+Hajime&rft.au=MUKAIGAWA%2C+Yasuhiro&rft.date=2014&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=47&rft.issue=1&rft.spage=228&rft.epage=237&rft_id=info:doi/10.1016%2Fj.patcog.2013.06.028&rft.externalDBID=n%2Fa&rft.externalDocID=27805434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon