An innovative neural network approach for stock market prediction

This paper aims to develop an innovative neural network approach to achieve better stock market predictions. Data were obtained from the live stock market for real-time and off-line analysis and results of visualizations and analytics to demonstrate Internet of Multimedia of Things for stock analysi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 76; číslo 3; s. 2098 - 2118
Hlavní autoři: Pang, Xiongwen, Zhou, Yanqiang, Wang, Pan, Lin, Weiwei, Chang, Victor
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2020
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper aims to develop an innovative neural network approach to achieve better stock market predictions. Data were obtained from the live stock market for real-time and off-line analysis and results of visualizations and analytics to demonstrate Internet of Multimedia of Things for stock analysis. To study the influence of market characteristics on stock prices, traditional neural network algorithms may incorrectly predict the stock market, since the initial weight of the random selection problem can be easily prone to incorrect predictions. Based on the development of word vector in deep learning, we demonstrate the concept of “stock vector.” The input is no longer a single index or single stock index, but multi-stock high-dimensional historical data. We propose the deep long short-term memory neural network (LSTM) with embedded layer and the long short-term memory neural network with automatic encoder to predict the stock market. In these two models, we use the embedded layer and the automatic encoder, respectively, to vectorize the data, in a bid to forecast the stock via long short-term memory neural network. The experimental results show that the deep LSTM with embedded layer is better. Specifically, the accuracy of two models is 57.2 and 56.9%, respectively, for the Shanghai A-shares composite index. Furthermore, they are 52.4 and 52.5%, respectively, for individual stocks. We demonstrate research contributions in IMMT for neural network-based financial analysis.
AbstractList This paper aims to develop an innovative neural network approach to achieve better stock market predictions. Data were obtained from the live stock market for real-time and off-line analysis and results of visualizations and analytics to demonstrate Internet of Multimedia of Things for stock analysis. To study the influence of market characteristics on stock prices, traditional neural network algorithms may incorrectly predict the stock market, since the initial weight of the random selection problem can be easily prone to incorrect predictions. Based on the development of word vector in deep learning, we demonstrate the concept of “stock vector.” The input is no longer a single index or single stock index, but multi-stock high-dimensional historical data. We propose the deep long short-term memory neural network (LSTM) with embedded layer and the long short-term memory neural network with automatic encoder to predict the stock market. In these two models, we use the embedded layer and the automatic encoder, respectively, to vectorize the data, in a bid to forecast the stock via long short-term memory neural network. The experimental results show that the deep LSTM with embedded layer is better. Specifically, the accuracy of two models is 57.2 and 56.9%, respectively, for the Shanghai A-shares composite index. Furthermore, they are 52.4 and 52.5%, respectively, for individual stocks. We demonstrate research contributions in IMMT for neural network-based financial analysis.
Author Lin, Weiwei
Zhou, Yanqiang
Wang, Pan
Pang, Xiongwen
Chang, Victor
Author_xml – sequence: 1
  givenname: Xiongwen
  surname: Pang
  fullname: Pang, Xiongwen
  organization: School of Computer, South China Normal University
– sequence: 2
  givenname: Yanqiang
  surname: Zhou
  fullname: Zhou, Yanqiang
  organization: School of Computer, South China Normal University
– sequence: 3
  givenname: Pan
  surname: Wang
  fullname: Wang, Pan
  organization: School of Computer, South China Normal University
– sequence: 4
  givenname: Weiwei
  surname: Lin
  fullname: Lin, Weiwei
  email: linww@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology
– sequence: 5
  givenname: Victor
  surname: Chang
  fullname: Chang, Victor
  organization: International Business School Suzhou, Xi’an Jiaotong-Liverpool University
BookMark eNp9kEtLAzEUhYNUsK3-AHcDrqN5kpllKb6g4EbXIZO5o9PWZEwylf57M4wgCLq5d3O-e849CzRz3gFCl5RcU0LUTaSUMYUJVZgxVuLjCZpTqTgmohQzNCcVI7iUgp2hRYxbQojgis_RauWKzjl_MKk7QOFgCGafV_r0YVeYvg_e2Lei9aGIydtd8W7CDlLRB2g6mzrvztFpa_YRLr73Er3c3T6vH_Dm6f5xvdpgK7hMWKmG1XmAEdbIpqkFZxU1DEBKQzmHltQVl5IKBrKqS7CUSitVXbaSMNHwJbqa7uZIHwPEpLd-CC5basZVWY33yqyik8oGH2OAVvehy5mPmhI9NqWnpnRuSo9N6WNm1C_GdsmMv6Vguv2_JJvImF3cK4SfTH9DXwh1f-M
CitedBy_id crossref_primary_10_1007_s11042_023_14587_8
crossref_primary_10_1109_ACCESS_2019_2946223
crossref_primary_10_3233_IDT_220184
crossref_primary_10_1002_cpe_7864
crossref_primary_10_1002_cpe_7467
crossref_primary_10_22399_ijcesen_1418
crossref_primary_10_1109_ACCESS_2021_3101952
crossref_primary_10_3390_axioms11100499
crossref_primary_10_1007_s11135_024_01964_0
crossref_primary_10_1007_s13042_025_02740_8
crossref_primary_10_1016_j_eswa_2021_115149
crossref_primary_10_1155_2021_5955375
crossref_primary_10_3390_su17062492
crossref_primary_10_1016_j_eswa_2020_114332
crossref_primary_10_1057_s41599_025_04761_8
crossref_primary_10_3390_math9243268
crossref_primary_10_1007_s13278_024_01230_z
crossref_primary_10_3390_math12233801
crossref_primary_10_1109_ACCESS_2021_3077004
crossref_primary_10_1016_j_matpr_2021_06_153
crossref_primary_10_1134_S036176882470035X
crossref_primary_10_1016_j_asoc_2023_110835
crossref_primary_10_1016_j_knosys_2024_111630
crossref_primary_10_1016_j_finr_2025_100019
crossref_primary_10_1007_s00530_021_00758_w
crossref_primary_10_1142_S2010324724400101
crossref_primary_10_1155_2021_6210627
crossref_primary_10_3390_s23010001
crossref_primary_10_1186_s40854_024_00681_9
crossref_primary_10_1016_j_ins_2022_11_136
crossref_primary_10_3390_joitmc8020096
crossref_primary_10_1007_s11227_024_06182_x
crossref_primary_10_3390_su12187529
crossref_primary_10_1109_TFUZZ_2022_3169624
crossref_primary_10_3390_app11209373
crossref_primary_10_3233_IDT_190035
crossref_primary_10_1155_2022_7536492
crossref_primary_10_3390_asi4010009
crossref_primary_10_1007_s00500_020_04950_4
crossref_primary_10_1007_s00500_022_07451_8
crossref_primary_10_7717_peerj_cs_915
crossref_primary_10_1007_s00500_023_09362_8
crossref_primary_10_1007_s13278_022_00979_5
crossref_primary_10_1108_K_04_2023_0637
crossref_primary_10_3390_electronics13040771
crossref_primary_10_1108_IJICC_05_2021_0098
crossref_primary_10_1109_ACCESS_2020_2995958
crossref_primary_10_2139_ssrn_5065576
crossref_primary_10_1007_s12652_024_04894_9
crossref_primary_10_1016_j_joitmc_2023_100079
crossref_primary_10_1016_j_technovation_2024_103067
crossref_primary_10_1016_j_eswa_2022_118485
crossref_primary_10_1007_s13132_024_02108_3
crossref_primary_10_1177_1088467X251361072
crossref_primary_10_4018_IJRSDA_288521
crossref_primary_10_1155_2021_5522375
crossref_primary_10_1016_j_eswa_2022_116506
crossref_primary_10_3390_electronics12040932
crossref_primary_10_1049_cit2_12059
crossref_primary_10_3390_sym15101840
crossref_primary_10_1007_s13369_020_04782_2
crossref_primary_10_1109_TFUZZ_2024_3474476
crossref_primary_10_1007_s40031_023_00912_0
crossref_primary_10_1007_s42979_025_04125_8
crossref_primary_10_1016_j_ins_2023_119756
crossref_primary_10_1016_j_asoc_2021_107898
crossref_primary_10_1007_s11227_022_04834_4
crossref_primary_10_3390_math12162434
crossref_primary_10_1016_j_daach_2021_e00182
crossref_primary_10_1007_s42979_021_00524_9
crossref_primary_10_3233_JCM_230021
crossref_primary_10_3724_2096_7004_di_2024_0004
crossref_primary_10_1109_ACCESS_2022_3224938
crossref_primary_10_3390_ijfs13010028
crossref_primary_10_1109_TCSS_2022_3224054
crossref_primary_10_1016_j_jisa_2021_102821
crossref_primary_10_1016_j_eswa_2022_116970
crossref_primary_10_1142_S1469026824420021
crossref_primary_10_1007_s11227_018_2394_6
crossref_primary_10_1007_s10479_024_06118_x
crossref_primary_10_1016_j_asoc_2023_110469
crossref_primary_10_1016_j_eswa_2024_126298
crossref_primary_10_3390_jrfm16100440
crossref_primary_10_1109_ACCESS_2020_3015966
crossref_primary_10_1016_j_egyr_2022_06_007
crossref_primary_10_1109_ACCESS_2025_3586233
crossref_primary_10_1007_s10489_025_06462_w
crossref_primary_10_1080_1331677X_2023_2223263
crossref_primary_10_1016_j_eswa_2024_123538
crossref_primary_10_1016_j_eswa_2022_119152
crossref_primary_10_1186_s40537_020_00333_6
crossref_primary_10_1016_j_techfore_2024_123746
crossref_primary_10_1007_s00521_024_10807_w
crossref_primary_10_1002_ijfe_2805
crossref_primary_10_1371_journal_pone_0253121
crossref_primary_10_1155_2022_9323646
crossref_primary_10_1007_s10489_024_05271_x
crossref_primary_10_3390_forecast7030049
crossref_primary_10_1155_2022_2427389
crossref_primary_10_1007_s10258_023_00246_1
crossref_primary_10_1016_j_cmpb_2021_106092
crossref_primary_10_1109_TCYB_2021_3132704
crossref_primary_10_1111_exsy_13291
crossref_primary_10_1016_j_jksuci_2021_08_022
crossref_primary_10_3233_HIS_230002
crossref_primary_10_1080_24751839_2021_1874252
crossref_primary_10_1016_j_procs_2023_10_601
crossref_primary_10_3390_s23156717
crossref_primary_10_4018_IJAMC_292511
crossref_primary_10_1007_s00521_023_09179_4
crossref_primary_10_1007_s12197_023_09629_8
crossref_primary_10_1016_j_matpr_2020_11_399
crossref_primary_10_1007_s43069_025_00421_4
crossref_primary_10_3390_e22111239
crossref_primary_10_48175_IJETIR_6012
crossref_primary_10_1007_s11042_022_12328_x
crossref_primary_10_1016_j_jestch_2021_02_016
crossref_primary_10_1155_2022_4975288
crossref_primary_10_1016_j_procs_2023_01_086
crossref_primary_10_1002_cpe_6282
crossref_primary_10_1016_j_engappai_2022_105626
crossref_primary_10_1109_TFUZZ_2024_3395833
crossref_primary_10_3390_a17060234
crossref_primary_10_3390_electronics10212717
crossref_primary_10_1007_s12652_023_04570_4
crossref_primary_10_1016_j_frl_2024_106487
crossref_primary_10_3390_jrfm14110526
crossref_primary_10_24215_16666038_24_e07
crossref_primary_10_1155_2022_6542862
crossref_primary_10_5194_essd_15_1389_2023
crossref_primary_10_1142_S0219649224500138
crossref_primary_10_1002_tee_24005
crossref_primary_10_1002_int_22732
crossref_primary_10_1016_j_energy_2024_131321
crossref_primary_10_3390_app13148124
crossref_primary_10_1155_2023_9963940
crossref_primary_10_32604_cmc_2022_014637
crossref_primary_10_3390_a15110428
crossref_primary_10_1007_s12652_021_03094_z
crossref_primary_10_1007_s11227_018_2577_1
crossref_primary_10_32604_cmc_2023_036553
crossref_primary_10_1080_00036846_2022_2133897
crossref_primary_10_7717_peerj_cs_1057
crossref_primary_10_1016_j_neunet_2020_12_023
crossref_primary_10_1155_2022_4951912
crossref_primary_10_1016_j_eswa_2023_120880
crossref_primary_10_1016_j_eswa_2024_123671
crossref_primary_10_1016_j_iref_2025_104396
crossref_primary_10_1016_j_jksuci_2021_07_001
crossref_primary_10_1007_s42979_022_01158_1
crossref_primary_10_3390_econometrics9040043
crossref_primary_10_1007_s11227_018_2619_8
crossref_primary_10_1007_s00500_022_07571_1
crossref_primary_10_1007_s10489_023_04817_9
crossref_primary_10_1007_s00607_020_00865_y
crossref_primary_10_3390_math11020314
crossref_primary_10_7717_peerj_cs_1205
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1007_s41315_022_00250_2
crossref_primary_10_1007_s12652_020_02768_4
crossref_primary_10_32604_cmc_2022_017068
crossref_primary_10_3390_info14110598
crossref_primary_10_1109_ACCESS_2024_3435683
crossref_primary_10_4018_IJISMD_361593
crossref_primary_10_1007_s42979_024_03355_6
crossref_primary_10_1007_s40031_021_00583_9
Cites_doi 10.1186/2251-712X-9-1
10.1016/j.eswa.2016.05.033
10.1007/s00521-013-1386-y
10.1016/j.neucom.2013.03.047
10.1016/j.eswa.2014.10.001
10.1016/j.eswa.2016.01.018
10.1016/j.ejor.2016.02.056
10.1016/j.eswa.2015.05.013
10.1016/j.eswa.2016.09.027
10.1126/science.1127647
10.1016/j.neucom.2015.04.071
10.1016/j.future.2013.12.028
10.1016/j.knosys.2017.03.003
10.1016/j.procs.2014.05.284
10.1109/WOCC.2015.7346197
10.1007/978-3-319-43162-8_13
10.1007/s11042-017-5186-8
10.1016/j.jpdc.2017.08.014
10.1007/s12652-017-0561-x
10.1109/CISP.2014.7003950
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
2018© Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: 2018© Springer Science+Business Media, LLC, part of Springer Nature 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-017-2228-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 2118
ExternalDocumentID 10_1007_s11227_017_2228_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772205; 61402183
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c435t-77d2b77dea4ca5ddb43291a2ee55a133ef0b9355142e59b8ec115c57b8f5024d3
IEDL.DBID RSV
ISICitedReferencesCount 230
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520542500037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:45:46 EDT 2025
Sat Nov 29 04:27:36 EST 2025
Tue Nov 18 21:33:20 EST 2025
Fri Feb 21 02:27:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Stock vector
Automatic encoder
Stock market prediction
Long short-term memory neural network (LSTM neural network)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-77d2b77dea4ca5ddb43291a2ee55a133ef0b9355142e59b8ec115c57b8f5024d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2378943298
PQPubID 2043774
PageCount 21
ParticipantIDs proquest_journals_2378943298
crossref_primary_10_1007_s11227_017_2228_y
crossref_citationtrail_10_1007_s11227_017_2228_y
springer_journals_10_1007_s11227_017_2228_y
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hsu, Lessmann, Sung (CR1) 2016; 61
Shen, Chao, Zhao (CR23) 2015; 167
CR17
CR16
Zhu, Yin, Li (CR18) 2014; 10
Yu, Chen, Zhang (CR8) 2014; 31
Kuremoto, Kimura, Kobayashi (CR15) 2014; 137
CR31
Zhang (CR26) 2016
Gerlein, McGinnity, Belatreche (CR12) 2016; 54
Ballings, Van den Poel, Hespeels (CR10) 2015; 42
Chen, Qiu, Xu (CR2) 2014; 29
Zhong, Enke (CR13) 2017; 67
Gao (CR27) 2016
Niaki, Hoseinzade (CR6) 2013; 9
CR4
CR3
Zbikowski (CR9) 2015; 42
Oztekin, Kizilaslan, Freund (CR11) 2016; 253
CR5
CR29
Chang (CR30) 2017; 127
Chang (CR19) 2014; 37
Hinton, Salakhutdinov (CR14) 2006; 313
CR24
CR22
CR20
Batres-Estrada (CR21) 2015
Yu (CR25) 2016
McNally (CR28) 2016
Adhikari, Agrawal (CR7) 2014; 24
V Chang (2228_CR19) 2014; 37
STA Niaki (2228_CR6) 2013; 9
B Batres-Estrada (2228_CR21) 2015
F-F Yu (2228_CR25) 2016
MW Hsu (2228_CR1) 2016; 61
E-H Chen (2228_CR2) 2014; 29
K Zbikowski (2228_CR9) 2015; 42
V Chang (2228_CR30) 2017; 127
EA Gerlein (2228_CR12) 2016; 54
2228_CR16
Q Gao (2228_CR27) 2016
A Oztekin (2228_CR11) 2016; 253
2228_CR17
X Zhong (2228_CR13) 2017; 67
R Adhikari (2228_CR7) 2014; 24
S McNally (2228_CR28) 2016
T Kuremoto (2228_CR15) 2014; 137
2228_CR31
M Ballings (2228_CR10) 2015; 42
2228_CR5
2228_CR4
GE Hinton (2228_CR14) 2006; 313
2228_CR3
2228_CR22
2228_CR24
F Shen (2228_CR23) 2015; 167
2228_CR29
G-Y Zhang (2228_CR26) 2016
H Yu (2228_CR8) 2014; 31
C Zhu (2228_CR18) 2014; 10
2228_CR20
References_xml – ident: CR22
– volume: 9
  start-page: 1
  issue: 1
  year: 2013
  end-page: 9
  ident: CR6
  article-title: Forecasting S&P 500 index using artificial neural networks and design of experiments
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-9-1
– volume: 61
  start-page: 215
  year: 2016
  end-page: 234
  ident: CR1
  article-title: Bridging the divide in financial market forecasting: machine learners vs. financial economists
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.05.033
– ident: CR4
– ident: CR16
– volume: 10
  start-page: 883
  issue: 2
  year: 2014
  end-page: 893
  ident: CR18
  article-title: A stock decision support system based on DBNs
  publication-title: J Comput Inf Syst
– volume: 29
  start-page: 19
  issue: 1
  year: 2014
  end-page: 29
  ident: CR2
  article-title: Word embedding—continuous space representation of natural language
  publication-title: Data Acquis Process
– volume: 24
  start-page: 1441
  issue: 5
  year: 2014
  end-page: 1449
  ident: CR7
  article-title: A combination of artificial neural network and random walk models for financial time series forecasting
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1386-y
– year: 2015
  ident: CR21
  publication-title: Deep learning for multivariate financial time series
– volume: 137
  start-page: 47
  year: 2014
  end-page: 56
  ident: CR15
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.047
– year: 2016
  ident: CR25
  publication-title: Based on the neural network of stock forecast [D]
– ident: CR29
– volume: 42
  start-page: 1797
  issue: 4
  year: 2015
  end-page: 1805
  ident: CR9
  article-title: Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.001
– volume: 54
  start-page: 193
  year: 2016
  end-page: 207
  ident: CR12
  article-title: Evaluating machine learning classification for financial trading: an empirical approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.01.018
– volume: 253
  start-page: 697
  issue: 3
  year: 2016
  end-page: 710
  ident: CR11
  article-title: A data analytic approach to forecasting daily stock returns in an emerging market
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.02.056
– volume: 42
  start-page: 7046
  issue: 20
  year: 2015
  end-page: 7056
  ident: CR10
  article-title: Evaluating multiple classifiers for stock price direction prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.05.013
– volume: 67
  start-page: 126
  year: 2017
  end-page: 139
  ident: CR13
  article-title: Forecasting daily stock market return using dimensionality reduction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.027
– year: 2016
  ident: CR26
  publication-title: Application of improved convolution neural network in financial forecasting
– ident: CR3
– ident: CR17
– ident: CR31
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: CR14
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 167
  start-page: 243
  issue: C
  year: 2015
  end-page: 253
  ident: CR23
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.071
– year: 2016
  ident: CR27
  publication-title: Stock market forecasting using recurrent neural network
– ident: CR5
– volume: 37
  start-page: 512
  issue: 2014
  year: 2014
  end-page: 534
  ident: CR19
  article-title: The business intelligence as a service in the cloud
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2013.12.028
– volume: 127
  start-page: 29
  year: 2017
  end-page: 45
  ident: CR30
  article-title: Towards data analysis for weather cloud computing
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.03.003
– year: 2016
  ident: CR28
  publication-title: Predicting the price of Bitcoin using machine learning
– ident: CR24
– volume: 31
  start-page: 406
  issue: 31
  year: 2014
  end-page: 412
  ident: CR8
  article-title: A SVM stock selection model within PCA
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2014.05.284
– ident: CR20
– volume: 61
  start-page: 215
  year: 2016
  ident: 2228_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.05.033
– ident: 2228_CR22
  doi: 10.1109/WOCC.2015.7346197
– volume-title: Based on the neural network of stock forecast [D]
  year: 2016
  ident: 2228_CR25
– volume-title: Stock market forecasting using recurrent neural network
  year: 2016
  ident: 2228_CR27
– ident: 2228_CR29
  doi: 10.1007/978-3-319-43162-8_13
– volume-title: Application of improved convolution neural network in financial forecasting
  year: 2016
  ident: 2228_CR26
– volume-title: Deep learning for multivariate financial time series
  year: 2015
  ident: 2228_CR21
– volume: 9
  start-page: 1
  issue: 1
  year: 2013
  ident: 2228_CR6
  publication-title: J Ind Eng Int
  doi: 10.1186/2251-712X-9-1
– volume: 167
  start-page: 243
  issue: C
  year: 2015
  ident: 2228_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.071
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2228_CR14
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 253
  start-page: 697
  issue: 3
  year: 2016
  ident: 2228_CR11
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.02.056
– volume: 10
  start-page: 883
  issue: 2
  year: 2014
  ident: 2228_CR18
  publication-title: J Comput Inf Syst
– volume: 42
  start-page: 1797
  issue: 4
  year: 2015
  ident: 2228_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.001
– ident: 2228_CR24
– volume: 42
  start-page: 7046
  issue: 20
  year: 2015
  ident: 2228_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.05.013
– volume: 37
  start-page: 512
  issue: 2014
  year: 2014
  ident: 2228_CR19
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2013.12.028
– volume-title: Predicting the price of Bitcoin using machine learning
  year: 2016
  ident: 2228_CR28
– ident: 2228_CR20
– volume: 137
  start-page: 47
  year: 2014
  ident: 2228_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.047
– ident: 2228_CR31
  doi: 10.1007/s11042-017-5186-8
– volume: 24
  start-page: 1441
  issue: 5
  year: 2014
  ident: 2228_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1386-y
– ident: 2228_CR3
– volume: 54
  start-page: 193
  year: 2016
  ident: 2228_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.01.018
– ident: 2228_CR4
  doi: 10.1016/j.jpdc.2017.08.014
– ident: 2228_CR5
  doi: 10.1007/s12652-017-0561-x
– volume: 29
  start-page: 19
  issue: 1
  year: 2014
  ident: 2228_CR2
  publication-title: Data Acquis Process
– volume: 127
  start-page: 29
  year: 2017
  ident: 2228_CR30
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.03.003
– ident: 2228_CR17
– ident: 2228_CR16
  doi: 10.1109/CISP.2014.7003950
– volume: 67
  start-page: 126
  year: 2017
  ident: 2228_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.027
– volume: 31
  start-page: 406
  issue: 31
  year: 2014
  ident: 2228_CR8
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2014.05.284
SSID ssj0004373
Score 2.6117458
Snippet This paper aims to develop an innovative neural network approach to achieve better stock market predictions. Data were obtained from the live stock market for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2098
SubjectTerms Algorithms
Coders
Compilers
Computer Science
Financial analysis
Interpreters
Machine learning
Model accuracy
Multimedia
Neural networks
Pricing
Processor Architectures
Programming Languages
Securities markets
Short term
Stock exchanges
Title An innovative neural network approach for stock market prediction
URI https://link.springer.com/article/10.1007/s11227-017-2228-y
https://www.proquest.com/docview/2378943298
Volume 76
WOSCitedRecordID wos000520542500037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWK1yh48KYFkk002xyIWD1LER-ltyT4CRU1LWwv9984mWYOigl5yye4SZnd2vsnMfANwrtAKZZoGnklC6kVc-x7XuUQvReVKMhXSsp3P8DYZDPholN7Vddxzl-3uQpLlTd0UuwWU2jTJxLN_LbzVOmygteNWG-8fhk0xZFiFlVP0iziLqAtlfrfEZ2PUIMwvQdHS1vTb__rKHdiuoSXpVWdhF9ZMsQdt17aB1Fq8D71eQcZ1M9SlIZbREqcVVT44cSTjBNEsQWSonslrWRlNpjMb1LEbeQBP_evHqxuv7qTgKYRDC4TQmkp8mCxSGdNaRiFNg4waw1iGXqrJfWmJ1oOIGpZKbhQCRcUSyXOGRlyHh9AqJoU5AmKL52WMN0Gco75rlqoki1mg7MXhxzzogO9EKlRNM267XbyIhiDZikigiIQVkVh14OJjyrTi2PhtcNftk6jVbS5omFgeeZryDly6fWle_7jY8Z9Gn8AWtd52mYHWhdZi9mZOYVMtF-P57Kw8he_lv9Zl
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwSSmsadOmj0McE-cQncO30CYpDLWObQ7233tpG4uigr70pUkod0nuu97ddwCnEq1QrKjr6NCjjs9Vy-EqTdBLkalMmPRo3s5n2Av7ff74GN2WddxTm-1uQ5L5TV0Vu7mUmjTJ0DF_LZzFMqz4aLBMHt_d_bAqhvSKsHKEfhFnPrWhzO-W-GyMKoT5JSia25pO_V9fuQkbJbQk7WIvbMGSzrahbts2kPIU70C7nZFR2Qx1rolhtMRpWZEPTizJOEE0SxAZyifykldGk_HEBHWMInfhoXM5uOg6ZScFRyIcmiGEVjTBh459GTOlEt-jkRtTrRmL0UvVaSsxROuuTzWLEq4lAkXJwoSnDI248vaglr1meh-IKZ5PArwJghTPu2KRDOOAudJcHK2Auw1oWZEKWdKMm24Xz6IiSDYiEigiYUQkFg04-5gyLjg2fhvctHoS5XGbCuqFhkeeRrwB51Yv1esfFzv40-gTWOsObnqid9W_PoR1ajzvPButCbXZ5E0fwaqcz0bTyXG-I98B_ALZSQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pBTbtGnTx6EOxTEG6thbaD4KQ61jq4P99yZtY1FUEF_60iSUuyR317v7_QBOhbZCicSeoyIfOwGVrkNlynWUIlLBifBxQecz7EX9Ph2N4kHFczqz1e42JVn2NBiUpiy_mMj0om588zA2JZORY_5gOItlWAkMZ5AJ1--HdWOkX6aYYx0jURJgm9b8bonPhqn2Nr8kSAu7023--4s3YaNyOVGn3CNbsKSybWhaOgdUne4d6HQyNK5IUucKGaRLPS0r68SRBR9H2stF2mMUT-il6JhGk6lJ9hgF78Jj9_rh8sapGBYcod2kXLvWEnP9UEkgEiIlD3wcewlWipBER68qdbkBYPcCrEjMqRLagRQk4jQl2rhLfw8a2Wum9gGZpnoe6hsiTPU9IEksoiQknjAXihtSrwWuFS8TFfy4YcF4ZjVwshER0yJiRkRs0YKzjymTEnvjt8FtqzNWHcMZw35k8OVxTFtwbnVUv_5xsYM_jT6BtcFVl_Vu-3eHsI5NQF4UqbWhkU_f1BGsink-nk2Pi835Dq784i0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+neural+network+approach+for+stock+market+prediction&rft.jtitle=The+Journal+of+supercomputing&rft.au=Pang%2C+Xiongwen&rft.au=Zhou%2C+Yanqiang&rft.au=Wang%2C+Pan&rft.au=Lin%2C+Weiwei&rft.date=2020-03-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=3&rft.spage=2098&rft.epage=2118&rft_id=info:doi/10.1007%2Fs11227-017-2228-y&rft.externalDocID=10_1007_s11227_017_2228_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon