Temporal constrained objects for modelling neuronal dynamics

Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the dynamics of complex systems requires various levels of abstractions and reductive measures in representing the underlying behaviour. This also...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PeerJ. Computer science Ročník 4; s. e159
Hlavní autoři: Nair, Manjusha, Manchan Kannimoola, Jinesh, Jayaraman, Bharat, Nair, Bipin, Diwakar, Shyam
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States PeerJ, Inc 23.07.2018
PeerJ Inc
Témata:
ISSN:2376-5992, 2376-5992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the dynamics of complex systems requires various levels of abstractions and reductive measures in representing the underlying behaviour. This also often requires making a trade-off between how realistic a model should be in order to address the scientific questions of interest and the computational tractability of the model. In this paper, we propose a novel programming paradigm, called which facilitates a principled approach to modelling complex dynamical systems. are an extension of with a focus on the analysis and prediction of the dynamic behaviour of a system. The structural aspects of a neuronal system are represented using objects, as in object-oriented languages, while the dynamic behaviour of neurons and synapses are modelled using declarative temporal constraints. Computation in this paradigm is a process of constraint satisfaction within a time-based simulation. We identified the feasibility and practicality in automatically mapping different kinds of neuron and synapse models to the constraints of . Simple neuronal networks were modelled by composing circuit components, implicitly satisfying the internal constraints of each component and interface constraints of the composition. Simulations show that provide significant conciseness in the formulation of these models. The underlying computational engine employed here automatically finds the solutions to the problems stated, reducing the code for modelling and simulation control. All examples reported in this paper have been programmed and successfully tested using the prototype language called TCOB. The code along with the programming environment are available at http://github.com/compneuro/TCOB_Neuron. provide powerful capabilities for modelling the structural and dynamic aspects of neural systems. Capabilities of the constraint programming paradigm, such as declarative specification, the ability to express partial information and non-directionality, and capabilities of the object-oriented paradigm especially aggregation and inheritance, make this paradigm the right candidate for complex systems and computational modelling studies. With the advent of multi-core parallel computer architectures and techniques or parallel constraint-solving, the paradigm of lends itself to highly efficient execution which is necessary for modelling and simulation of large brain circuits.
AbstractList Background Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the dynamics of complex systems requires various levels of abstractions and reductive measures in representing the underlying behaviour. This also often requires making a trade-off between how realistic a model should be in order to address the scientific questions of interest and the computational tractability of the model. Methods In this paper, we propose a novel programming paradigm, called temporal constrained objects, which facilitates a principled approach to modelling complex dynamical systems. Temporal constrained objects are an extension of constrained objects with a focus on the analysis and prediction of the dynamic behaviour of a system. The structural aspects of a neuronal system are represented using objects, as in object-oriented languages, while the dynamic behaviour of neurons and synapses are modelled using declarative temporal constraints. Computation in this paradigm is a process of constraint satisfaction within a time-based simulation. Results We identified the feasibility and practicality in automatically mapping different kinds of neuron and synapse models to the constraints of temporal constrained objects. Simple neuronal networks were modelled by composing circuit components, implicitly satisfying the internal constraints of each component and interface constraints of the composition. Simulations show that temporal constrained objects provide significant conciseness in the formulation of these models. The underlying computational engine employed here automatically finds the solutions to the problems stated, reducing the code for modelling and simulation control. All examples reported in this paper have been programmed and successfully tested using the prototype language called TCOB. The code along with the programming environment are available at http://github.com/compneuro/TCOB_Neuron. Discussion Temporal constrained objects provide powerful capabilities for modelling the structural and dynamic aspects of neural systems. Capabilities of the constraint programming paradigm, such as declarative specification, the ability to express partial information and non-directionality, and capabilities of the object-oriented paradigm especially aggregation and inheritance, make this paradigm the right candidate for complex systems and computational modelling studies. With the advent of multi-core parallel computer architectures and techniques or parallel constraint-solving, the paradigm of temporal constrained objects lends itself to highly efficient execution which is necessary for modelling and simulation of large brain circuits.
Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the dynamics of complex systems requires various levels of abstractions and reductive measures in representing the underlying behaviour. This also often requires making a trade-off between how realistic a model should be in order to address the scientific questions of interest and the computational tractability of the model. In this paper, we propose a novel programming paradigm, called which facilitates a principled approach to modelling complex dynamical systems. are an extension of with a focus on the analysis and prediction of the dynamic behaviour of a system. The structural aspects of a neuronal system are represented using objects, as in object-oriented languages, while the dynamic behaviour of neurons and synapses are modelled using declarative temporal constraints. Computation in this paradigm is a process of constraint satisfaction within a time-based simulation. We identified the feasibility and practicality in automatically mapping different kinds of neuron and synapse models to the constraints of . Simple neuronal networks were modelled by composing circuit components, implicitly satisfying the internal constraints of each component and interface constraints of the composition. Simulations show that provide significant conciseness in the formulation of these models. The underlying computational engine employed here automatically finds the solutions to the problems stated, reducing the code for modelling and simulation control. All examples reported in this paper have been programmed and successfully tested using the prototype language called TCOB. The code along with the programming environment are available at http://github.com/compneuro/TCOB_Neuron. provide powerful capabilities for modelling the structural and dynamic aspects of neural systems. Capabilities of the constraint programming paradigm, such as declarative specification, the ability to express partial information and non-directionality, and capabilities of the object-oriented paradigm especially aggregation and inheritance, make this paradigm the right candidate for complex systems and computational modelling studies. With the advent of multi-core parallel computer architectures and techniques or parallel constraint-solving, the paradigm of lends itself to highly efficient execution which is necessary for modelling and simulation of large brain circuits.
Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the dynamics of complex systems requires various levels of abstractions and reductive measures in representing the underlying behaviour. This also often requires making a trade-off between how realistic a model should be in order to address the scientific questions of interest and the computational tractability of the model.BACKGROUNDSeveral new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the dynamics of complex systems requires various levels of abstractions and reductive measures in representing the underlying behaviour. This also often requires making a trade-off between how realistic a model should be in order to address the scientific questions of interest and the computational tractability of the model.In this paper, we propose a novel programming paradigm, called temporal constrained objects, which facilitates a principled approach to modelling complex dynamical systems. Temporal constrained objects are an extension of constrained objects with a focus on the analysis and prediction of the dynamic behaviour of a system. The structural aspects of a neuronal system are represented using objects, as in object-oriented languages, while the dynamic behaviour of neurons and synapses are modelled using declarative temporal constraints. Computation in this paradigm is a process of constraint satisfaction within a time-based simulation.METHODSIn this paper, we propose a novel programming paradigm, called temporal constrained objects, which facilitates a principled approach to modelling complex dynamical systems. Temporal constrained objects are an extension of constrained objects with a focus on the analysis and prediction of the dynamic behaviour of a system. The structural aspects of a neuronal system are represented using objects, as in object-oriented languages, while the dynamic behaviour of neurons and synapses are modelled using declarative temporal constraints. Computation in this paradigm is a process of constraint satisfaction within a time-based simulation.We identified the feasibility and practicality in automatically mapping different kinds of neuron and synapse models to the constraints of temporal constrained objects. Simple neuronal networks were modelled by composing circuit components, implicitly satisfying the internal constraints of each component and interface constraints of the composition. Simulations show that temporal constrained objects provide significant conciseness in the formulation of these models. The underlying computational engine employed here automatically finds the solutions to the problems stated, reducing the code for modelling and simulation control. All examples reported in this paper have been programmed and successfully tested using the prototype language called TCOB. The code along with the programming environment are available at http://github.com/compneuro/TCOB_Neuron.RESULTSWe identified the feasibility and practicality in automatically mapping different kinds of neuron and synapse models to the constraints of temporal constrained objects. Simple neuronal networks were modelled by composing circuit components, implicitly satisfying the internal constraints of each component and interface constraints of the composition. Simulations show that temporal constrained objects provide significant conciseness in the formulation of these models. The underlying computational engine employed here automatically finds the solutions to the problems stated, reducing the code for modelling and simulation control. All examples reported in this paper have been programmed and successfully tested using the prototype language called TCOB. The code along with the programming environment are available at http://github.com/compneuro/TCOB_Neuron.Temporal constrained objects provide powerful capabilities for modelling the structural and dynamic aspects of neural systems. Capabilities of the constraint programming paradigm, such as declarative specification, the ability to express partial information and non-directionality, and capabilities of the object-oriented paradigm especially aggregation and inheritance, make this paradigm the right candidate for complex systems and computational modelling studies. With the advent of multi-core parallel computer architectures and techniques or parallel constraint-solving, the paradigm of temporal constrained objects lends itself to highly efficient execution which is necessary for modelling and simulation of large brain circuits.DISCUSSIONTemporal constrained objects provide powerful capabilities for modelling the structural and dynamic aspects of neural systems. Capabilities of the constraint programming paradigm, such as declarative specification, the ability to express partial information and non-directionality, and capabilities of the object-oriented paradigm especially aggregation and inheritance, make this paradigm the right candidate for complex systems and computational modelling studies. With the advent of multi-core parallel computer architectures and techniques or parallel constraint-solving, the paradigm of temporal constrained objects lends itself to highly efficient execution which is necessary for modelling and simulation of large brain circuits.
ArticleNumber e159
Author Manchan Kannimoola, Jinesh
Nair, Manjusha
Nair, Bipin
Diwakar, Shyam
Jayaraman, Bharat
Author_xml – sequence: 1
  givenname: Manjusha
  surname: Nair
  fullname: Nair, Manjusha
  organization: Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India, Department of Computer Science and Applications, Amritapuri Campus, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
– sequence: 2
  givenname: Jinesh
  orcidid: 0000-0001-5392-0570
  surname: Manchan Kannimoola
  fullname: Manchan Kannimoola, Jinesh
  organization: Center for Cybersecurity Systems and Networks, Amritapuri Campus, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
– sequence: 3
  givenname: Bharat
  surname: Jayaraman
  fullname: Jayaraman, Bharat
  organization: Department of Computer Science & Engineering, State University of New York at Buffalo, Buffalo, NY, USA
– sequence: 4
  givenname: Bipin
  surname: Nair
  fullname: Nair, Bipin
  organization: Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
– sequence: 5
  givenname: Shyam
  orcidid: 0000-0003-1546-0184
  surname: Diwakar
  fullname: Diwakar, Shyam
  organization: Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33816812$$D View this record in MEDLINE/PubMed
BookMark eNpdkstLHTEUh4MoPm7ddV0GunHhaJ6TBEpBxLYXBDe6DnnezjCT3CYzgv99o9eKNpuE5OPjnJPfCdiPKXoAPiN4wTnil1vv89DacoGY3APHmPCuZVLi_XfnI3BaygAhRAzVJQ_BESECdQLhY_Dt3k_blPXY2BTLnHUfvWuSGbydSxNSbqbk_Dj2cdNEv-QUK-qeop56Wz6Bg6DH4k9f9xV4-HFzf_2rvb37ub6-um0tJWxuWYctsxhTjYRmhDINgwuMc4ENoUhYLwkS3DoJnTOOwsACNIQF3mlBAyYrsN55XdKD2uZ-0vlJJd2rl4uUN0rnubejV4hDbkygRmBLTQjaCUIMdZ3QyEDYVdf3nWu7mMk762Ntevwg_fgS-99qkx4Vl5hyCKvg7FWQ05_Fl1lNfbF1RDr6tBSFGRRCdoygin79Dx3SkusEKwU5kZQhTCv15X1Fb6X8-6QKnO8Am1Mp2Yc3BEH1HAP1EgNli6oxIH8B986mLA
Cites_doi 10.1113/jphysiol.1995.sp020673
10.1002/cpe.4330020302
10.1371/journal.pcbi.1000815
10.1142/S0219635211002762
10.1152/jn.90382.2008
10.3389/fninf.2014.00079
10.1523/JNEUROSCI.5709-07.2008
10.3389/fninf.2014.00023
10.1002/bit.10849
10.1113/jphysiol.1952.sp004717
10.1145/2814270.2814311
10.1016/j.neucom.2004.01.100
10.1145/76372.77531
10.1080/13873954.2017.1298627
10.7551/mitpress/9780262013277.003.0007
10.1016/S0304-3975(01)00013-5
10.3389/neuro.11.011.2008
10.1016/j.cl.2017.03.002
10.1093/bioinformatics/btg015
10.1109/tnn.2003.820440
10.1038/nrn1848
10.1007/s00422-008-0264-7
10.1145/357146.357147
10.1152/jn.00686.2005
10.3389/neuro.11.005.2008
10.1002/9780470612309
10.1016/j.jphysparis.2003.09.005
10.1007/s12021-013-9208-z
10.1186/1471-2202-11-S1-P66
10.1162/neco.1997.9.6.1179
10.1007/978-1-4612-1634-6_21
10.1007/978-3-319-04132-2_11
10.3389/fncel.2010.00012
10.1093/cercor/3.5.387
10.1007/3-540-45587-6_4
10.3389/neuro.11.006.2008
ContentType Journal Article
Copyright 2018 Nair et al.
2018 Nair et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Nair et al. 2018 Nair et al.
Copyright_xml – notice: 2018 Nair et al.
– notice: 2018 Nair et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Nair et al. 2018 Nair et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.159
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_1707bbf4b82c4bffad833b4d68a1b006
PMC7924700
33816812
10_7717_peerj_cs_159
Genre Journal Article
GeographicLocations United States--US
India
GeographicLocations_xml – name: United States--US
– name: India
GrantInformation_xml – fundername: Department of Science and Technology
  grantid: SR/CSRI/60/2013, Young Faculty Research Fellowship
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
ARCSS
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c435t-562c5c224a18a5345a0fdf57782b3418ce93187cd90ddbd40f5f0b35f76a84f23
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454680600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Mon Nov 10 04:32:12 EST 2025
Tue Nov 04 01:47:39 EST 2025
Fri Sep 05 12:33:41 EDT 2025
Sun Nov 30 04:02:48 EST 2025
Thu Jan 02 22:53:48 EST 2025
Sat Nov 29 03:19:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Object-oriented languages
Declarative modelling
Neuron models
Constraint programming
Temporal constrained objects
Language English
License http://creativecommons.org/licenses/by/4.0
2018 Nair et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-562c5c224a18a5345a0fdf57782b3418ce93187cd90ddbd40f5f0b35f76a84f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5392-0570
0000-0003-1546-0184
OpenAccessLink https://www.proquest.com/docview/2073945124?pq-origsite=%requestingapplication%
PMID 33816812
PQID 2073945124
PQPubID 2045934
ParticipantIDs doaj_primary_oai_doaj_org_article_1707bbf4b82c4bffad833b4d68a1b006
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7924700
proquest_miscellaneous_2508896531
proquest_journals_2073945124
pubmed_primary_33816812
crossref_primary_10_7717_peerj_cs_159
PublicationCentury 2000
PublicationDate 2018-07-23
PublicationDateYYYYMMDD 2018-07-23
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Francisco, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2018
Publisher PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ, Inc
– name: PeerJ Inc
References Bezzi (10.7717/peerj-cs.159/ref-3) 2004; 58–60
Hines (10.7717/peerj-cs.159/ref-25) 1997; 9
Pushpendran (10.7717/peerj-cs.159/ref-48) 2006
Rolf (10.7717/peerj-cs.159/ref-54) 2011
Nair (10.7717/peerj-cs.159/ref-46) 2014
Borning (10.7717/peerj-cs.159/ref-4) 1981; 3
Davison (10.7717/peerj-cs.159/ref-12) 2009; 2
Izhikevich (10.7717/peerj-cs.159/ref-32) 2003; 14
Roggeri (10.7717/peerj-cs.159/ref-53) 2008; 28
Diwakar (10.7717/peerj-cs.159/ref-15) 2009; 101
Horn (10.7717/peerj-cs.159/ref-28) 1991
Hon (10.7717/peerj-cs.159/ref-27) 1999
Kandel (10.7717/peerj-cs.159/ref-34) 2000
Medini (10.7717/peerj-cs.159/ref-45) 2014; 14
Lloyd (10.7717/peerj-cs.159/ref-41) 1994
Kannimoola (10.7717/peerj-cs.159/ref-36) 2018
Lago (10.7717/peerj-cs.159/ref-39) 2001; 269
Darlington (10.7717/peerj-cs.159/ref-11) 1990; 2
Leler (10.7717/peerj-cs.159/ref-40) 1987
Barták (10.7717/peerj-cs.159/ref-1) 1999
Goddard (10.7717/peerj-cs.159/ref-20) 1998
Goodman (10.7717/peerj-cs.159/ref-21) 2008; 2
Ray (10.7717/peerj-cs.159/ref-50) 2008; 2
Solinas (10.7717/peerj-cs.159/ref-56) 2010; 4
Covert (10.7717/peerj-cs.159/ref-8) 2003; 84
Kannimoola (10.7717/peerj-cs.159/ref-37) 2017; 49
Markram (10.7717/peerj-cs.159/ref-43) 2006; 7
Raikov (10.7717/peerj-cs.159/ref-49) 2010; 11
D’Angelo (10.7717/peerj-cs.159/ref-9) 2011; 10
Campeotto (10.7717/peerj-cs.159/ref-6) 2014; 8324
Diesmann (10.7717/peerj-cs.159/ref-14) 2001
Benhamou (10.7717/peerj-cs.159/ref-2) 2007
Naud (10.7717/peerj-cs.159/ref-47) 2008; 99
Cannon (10.7717/peerj-cs.159/ref-7) 2014; 8
Hucka (10.7717/peerj-cs.159/ref-30) 2003; 19
Zaytsev (10.7717/peerj-cs.159/ref-58) 2014; 8
D’Angelo (10.7717/peerj-cs.159/ref-10) 1995; 484
Kannimoola (10.7717/peerj-cs.159/ref-35) 2016
Lopez (10.7717/peerj-cs.159/ref-42) 1994; 821
Koch (10.7717/peerj-cs.159/ref-38) 1998
Richmond (10.7717/peerj-cs.159/ref-52) 2014; 12
Hutchison (10.7717/peerj-cs.159/ref-31) 1973
Reiner (10.7717/peerj-cs.159/ref-51) 2017; 23
Roth (10.7717/peerj-cs.159/ref-55) 2009
Gleeson (10.7717/peerj-cs.159/ref-19) 2010; 6
Gupta (10.7717/peerj-cs.159/ref-23) 1995
Fritzson (10.7717/peerj-cs.159/ref-18) 2004
Hodgkin (10.7717/peerj-cs.159/ref-26) 1952; 116
Gutkin (10.7717/peerj-cs.159/ref-24) 2003; 97
Govindarajan (10.7717/peerj-cs.159/ref-22) 1996
Tambay (10.7717/peerj-cs.159/ref-57) 2003
Horn (10.7717/peerj-cs.159/ref-29) 1993
Felgentreff (10.7717/peerj-cs.159/ref-16) 2015; 50
Freeman-Benson (10.7717/peerj-cs.159/ref-17) 1990; 33
Jayaraman (10.7717/peerj-cs.159/ref-33) 2002; 2257
McCormick (10.7717/peerj-cs.159/ref-44) 1993; 3
Brette (10.7717/peerj-cs.159/ref-5) 2005; 94
Destexhe (10.7717/peerj-cs.159/ref-13) 1998
References_xml – volume: 484
  start-page: 397
  issue: 2
  year: 1995
  ident: 10.7717/peerj-cs.159/ref-10
  article-title: Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.1995.sp020673
– volume: 2
  start-page: 149
  issue: 3
  year: 1990
  ident: 10.7717/peerj-cs.159/ref-11
  article-title: Declarative languages and program transformation for programming parallel systems: a case study
  publication-title: Concurrency: Computation Practice and Experience
  doi: 10.1002/cpe.4330020302
– start-page: 226
  year: 1995
  ident: 10.7717/peerj-cs.159/ref-23
  article-title: Programming in hybrid constraint languages
– volume: 6
  start-page: e1000815
  issue: 6
  year: 2010
  ident: 10.7717/peerj-cs.159/ref-19
  article-title: NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000815
– volume: 10
  start-page: 317
  issue: 3
  year: 2011
  ident: 10.7717/peerj-cs.159/ref-9
  article-title: Neural circuits of the cerebellum: hypothesis for function
  publication-title: Journal of Integrative Neuroscience
  doi: 10.1142/S0219635211002762
– volume: 101
  start-page: 519
  issue: 2
  year: 2009
  ident: 10.7717/peerj-cs.159/ref-15
  article-title: Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.90382.2008
– volume: 8
  start-page: 79
  year: 2014
  ident: 10.7717/peerj-cs.159/ref-7
  article-title: LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2014.00079
– volume: 28
  start-page: 6354
  issue: 25
  year: 2008
  ident: 10.7717/peerj-cs.159/ref-53
  article-title: Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum
  publication-title: Journal of Neuroscience: The Official Journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.5709-07.2008
– volume: 8
  start-page: 23
  year: 2014
  ident: 10.7717/peerj-cs.159/ref-58
  article-title: CyNEST: a maintainable Cython-based interface for the NEST simulator
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2014.00023
– start-page: 3
  year: 1994
  ident: 10.7717/peerj-cs.159/ref-41
  article-title: Practical advantages of declarative programming
– volume: 84
  start-page: 763
  issue: 7
  year: 2003
  ident: 10.7717/peerj-cs.159/ref-8
  article-title: Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology?
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.10849
– volume: 116
  start-page: 449
  issue: 4
  year: 1952
  ident: 10.7717/peerj-cs.159/ref-26
  article-title: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.1952.sp004717
– year: 2011
  ident: 10.7717/peerj-cs.159/ref-54
  article-title: Parallelism in constraint programming
– volume: 50
  start-page: 767
  issue: 10
  year: 2015
  ident: 10.7717/peerj-cs.159/ref-16
  article-title: Checks and balances: constraint solving without surprises in object-constraint programming languages
  publication-title: OOPSLA 2015: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
  doi: 10.1145/2814270.2814311
– volume-title: Principles and Practice of Constraint Programming—CP 2009
  year: 1973
  ident: 10.7717/peerj-cs.159/ref-31
– volume-title: Principles of Neural Science
  year: 2000
  ident: 10.7717/peerj-cs.159/ref-34
– year: 2016
  ident: 10.7717/peerj-cs.159/ref-35
  article-title: Dynamic constrained objects for vehicular system modeling
– year: 2006
  ident: 10.7717/peerj-cs.159/ref-48
  article-title: A constraint object approach to systems biology
– volume: 58–60
  start-page: 593
  year: 2004
  ident: 10.7717/peerj-cs.159/ref-3
  article-title: An integrate-and-fire model of a cerebellar granule cell
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.01.100
– volume: 33
  start-page: 54
  issue: 1
  year: 1990
  ident: 10.7717/peerj-cs.159/ref-17
  article-title: An incremental constraint solver
  publication-title: Communications of the ACM
  doi: 10.1145/76372.77531
– volume: 23
  start-page: 319
  year: 2017
  ident: 10.7717/peerj-cs.159/ref-51
  article-title: Object-oriented modelling of wind turbines and its application for control design based on nonlinear dynamic inversion
  publication-title: Mathematical and Computer Modelling of Dynamical Systems
  doi: 10.1080/13873954.2017.1298627
– start-page: 139
  volume-title: Computational Modeling Methods for Neuroscientists
  year: 2009
  ident: 10.7717/peerj-cs.159/ref-55
  article-title: Modeling synapses
  doi: 10.7551/mitpress/9780262013277.003.0007
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.7717/peerj-cs.159/ref-45
  article-title: Computationally efficient bio-realistic reconstructions of cerebellar neuron spiking patterns
– volume: 269
  start-page: 363
  issue: 1–2
  year: 2001
  ident: 10.7717/peerj-cs.159/ref-39
  article-title: A declarative framework for object-oriented programming with genetic inheritance
  publication-title: Theoretical Computer Science
  doi: 10.1016/S0304-3975(01)00013-5
– volume: 2
  start-page: 11
  year: 2009
  ident: 10.7717/peerj-cs.159/ref-12
  article-title: PyNN: a common interface for neuronal network simulators
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.011.2008
– volume-title: Siri: A Constrained-Object Language for Reactive Program Implementation
  year: 1991
  ident: 10.7717/peerj-cs.159/ref-28
– volume: 821
  volume-title: Object-Oriented Programming. ECOOP 1994
  year: 1994
  ident: 10.7717/peerj-cs.159/ref-42
  article-title: Constraints and object identity
– volume: 49
  start-page: 82
  year: 2017
  ident: 10.7717/peerj-cs.159/ref-37
  article-title: Temporal constrained objects: application and implementation
  publication-title: Computer Languages, Systems & Structures
  doi: 10.1016/j.cl.2017.03.002
– volume: 19
  start-page: 524
  issue: 4
  year: 2003
  ident: 10.7717/peerj-cs.159/ref-30
  article-title: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg015
– volume: 14
  start-page: 1569
  issue: 6
  year: 2003
  ident: 10.7717/peerj-cs.159/ref-32
  article-title: Simple model of spiking neurons
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/tnn.2003.820440
– volume: 7
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.7717/peerj-cs.159/ref-43
  article-title: The blue brain project
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1848
– volume: 99
  start-page: 335
  issue: 4–5
  year: 2008
  ident: 10.7717/peerj-cs.159/ref-47
  article-title: Firing patterns in the adaptive exponential integrate-and-fire model
  publication-title: Biological Cybernetics
  doi: 10.1007/s00422-008-0264-7
– start-page: 91
  volume-title: Symposium on Principles of Programming Languages
  year: 1996
  ident: 10.7717/peerj-cs.159/ref-22
  article-title: Optimization and relaxation in constraint logic languages
– volume: 3
  start-page: 353
  issue: 4
  year: 1981
  ident: 10.7717/peerj-cs.159/ref-4
  article-title: The Programming Language Aspects of ThingLab, a constraint-oriented simulation laboratory
  publication-title: ACM Transactions on Programming Languages and Systems
  doi: 10.1145/357146.357147
– year: 2018
  ident: 10.7717/peerj-cs.159/ref-36
  article-title: Declarative modeling and verification of firewall rules with temporal constrained objects
– volume: 94
  start-page: 3637
  issue: 5
  year: 2005
  ident: 10.7717/peerj-cs.159/ref-5
  article-title: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00686.2005
– volume: 2
  start-page: 5
  year: 2008
  ident: 10.7717/peerj-cs.159/ref-21
  article-title: Brian: a simulator for spiking neural networks in python
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.005.2008
– volume-title: Trends in Constraint Programming
  year: 2007
  ident: 10.7717/peerj-cs.159/ref-2
  doi: 10.1002/9780470612309
– volume-title: Kinetic Models of Synaptic Transmission
  year: 1998
  ident: 10.7717/peerj-cs.159/ref-13
– start-page: 43
  volume-title: Forschung und wisschenschaftliches Rechnen
  year: 2001
  ident: 10.7717/peerj-cs.159/ref-14
  article-title: NEST: an environment for neural systems simulations
– volume: 97
  start-page: 209
  issue: 2–3
  year: 2003
  ident: 10.7717/peerj-cs.159/ref-24
  article-title: Mathematical neuroscience: from neurons to circuits to systems
  publication-title: Journal of Physiology
  doi: 10.1016/j.jphysparis.2003.09.005
– volume: 12
  start-page: 307
  issue: 2
  year: 2014
  ident: 10.7717/peerj-cs.159/ref-52
  article-title: From model specification to simulation of biologically constrained networks of spiking neurons
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9208-z
– year: 1987
  ident: 10.7717/peerj-cs.159/ref-40
  article-title: Specification and generation of constraint satisfaction systems
– start-page: 555
  year: 1999
  ident: 10.7717/peerj-cs.159/ref-1
  article-title: Constraint programming: in pursuit of the holy grail
  publication-title: Proceedings of the Week of Doctoral Students
– volume-title: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1
  year: 2004
  ident: 10.7717/peerj-cs.159/ref-18
– volume: 11
  start-page: P66
  issue: Suppl 1
  year: 2010
  ident: 10.7717/peerj-cs.159/ref-49
  article-title: NineML—a description language for spiking neuron network modeling: the abstraction layer
  publication-title: BMC Neuroscience
  doi: 10.1186/1471-2202-11-S1-P66
– volume: 9
  start-page: 1179
  issue: 6
  year: 1997
  ident: 10.7717/peerj-cs.159/ref-25
  article-title: The NEURON simulation environment
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.6.1179
– year: 2003
  ident: 10.7717/peerj-cs.159/ref-57
  article-title: Constrained objects for modeling complex systems
– start-page: 349
  volume-title: The Book of Genesis
  year: 1998
  ident: 10.7717/peerj-cs.159/ref-20
  article-title: Large scale simulation using parallel GENESIS
  doi: 10.1007/978-1-4612-1634-6_21
– year: 1999
  ident: 10.7717/peerj-cs.159/ref-27
  article-title: Constraint programming in Java with JSolver
– volume: 8324
  start-page: 152
  year: 2014
  ident: 10.7717/peerj-cs.159/ref-6
  article-title: Exploring the use of GPUs in constraint solving
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-319-04132-2_11
– volume: 4
  start-page: 12
  year: 2010
  ident: 10.7717/peerj-cs.159/ref-56
  article-title: A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties
  publication-title: Frontiers in Cellular Neuroscience
  doi: 10.3389/fncel.2010.00012
– year: 1993
  ident: 10.7717/peerj-cs.159/ref-29
  article-title: Constrained objects
– volume: 3
  start-page: 387
  issue: 5
  year: 1993
  ident: 10.7717/peerj-cs.159/ref-44
  article-title: Neurotransmitter control of neocortical neuronal activity and excitability
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/3.5.387
– volume: 2257
  start-page: 28
  year: 2002
  ident: 10.7717/peerj-cs.159/ref-33
  article-title: Modeling engineering structures with constrained objects
  publication-title: Lecture Notes in Computer Science: Practical Aspects of Declarative Languages
  doi: 10.1007/3-540-45587-6_4
– start-page: 1
  year: 2014
  ident: 10.7717/peerj-cs.159/ref-46
  article-title: Parameter optimization and nonlinear fitting for computational models in neuroscience on GPGPUs
– volume-title: Methods in Neuronal Modeling: From Ions to Networks
  year: 1998
  ident: 10.7717/peerj-cs.159/ref-38
– volume: 2
  start-page: 6
  year: 2008
  ident: 10.7717/peerj-cs.159/ref-50
  article-title: PyMOOSE: interoperable scripting in Python for MOOSE
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.006.2008
SSID ssj0001511119
Score 2.0421
Snippet Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems. Modelling the...
Background Several new programming languages and technologies have emerged in the past few decades in order to ease the task of modelling complex systems....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e159
SubjectTerms Brain
Complex systems
Computation
Computational Biology
Computer science
Computer simulation
Constraint modelling
Constraint programming
Declarative modelling
Microprocessors
Neural networks
Neuron models
Neurons
Neurosciences
Object-oriented languages
Ordinary differential equations
Parallel computers
Partial differential equations
Programming Languages
Scientific Computing and Simulation
Synapses
Temporal constrained objects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KyKGXJunTSVpcaI9uZEteSZBLUhp6KEsP25Kb0JMmBG9Yb_L7M2N5l90Q6CVXSxh5xjPzjTT6BuCL8l559I5V7ZOthE4JTUpOKnKYmlmMKEMfsr-_5HSqLi_1741WX1QTlumBs-BOasmkc0k41XjhUrJBce5EmChbu5Fsm0m9kUzl-8HkCnSudJeYspzcxri4rnz_rSZa0o0YNFD1P4UvH5dJbsSdi314NQLG8iwv9ABexO417K2aMZSjbb6B01kmmbopPUE-6vwQQzl3tM_SlwhNy6HpDd0-LwcSS3pryP3o-7fw5-LH7PvPamyNUHnEN8sKUYtvPYZfWyvbctFalkJqJcZ7h2JWPmo0VumDZiG4IFhqE3O8TXJilUgNfwc73byLH6BMEcN4jE3LNWInHEed1ilJ2hUJSfMCvq6EZW4zA4bBzIGEagahGt8bFGoB5yTJ9RzirR4eoDbNqE3zP20WcLzSgxmNqTcNnSYKRCaigM_rYTQDOtuwXZzf4RwCmnqCHqWA91lt65VwOhxFIFOA3FLo1lK3R7qrfwPVtsT0VDJ2-BzfdgQvEW0p2hhu-DHsLBd38SPs-vvlVb_4NPy_D353-Mk
  priority: 102
  providerName: Directory of Open Access Journals
Title Temporal constrained objects for modelling neuronal dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/33816812
https://www.proquest.com/docview/2073945124
https://www.proquest.com/docview/2508896531
https://pubmed.ncbi.nlm.nih.gov/PMC7924700
https://doaj.org/article/1707bbf4b82c4bffad833b4d68a1b006
Volume 4
WOSCitedRecordID wos000454680600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXyrMEyipIcAwka3ttS0iIoq1A0FWEClq4RPELilCybLYc-e3MONltFyEuXHyIrWiUeX0eO_MBPFbWKovRMStsqDOuQ0CXkpOMAqbOa8wokYfs4zs5m6n5XJdDwa0brlWuY2IM1K61VCOnSgjTHNMTf7H4kRFrFJ2uDhQaO7BHXRKIuqEUny9qLIICgu7vu0vcuDxbeL_8ltnuaUHNSS9lotiw_28o88_Lkpeyz_H-_8p9A64PuDN92RvKTbjim1uwv-Z0SAcXvw3PT_teVd9TS8iRCCS8S1tD5ZouRYSbRu4c-ok9jb0w6a2up7Xv7sCH4-npq9fZwLCQWYRJqwzBjxUWs3hdqFowLuo8uCAkwgaD2lLWa_R5aZ3OnTOO50GE3DAR5KRWPIzZXdht2sbfgzR4RAPejwXTCMFwHk2jCEFSccUFzRJ4sv7a1aJvpFHhBoS0UkWtVLarUCsJHJEqNmuo_XV80C6_VIM3VYXMpTGBGzW23IRQO8WY4W6i6oLiSAKHa2VUg0921YUmEni0mUZvoiOSuvHtOa4hvKonGJgSOOj1vpGE0Rkr4qEE5JZFbIm6PdOcfY0duyXucmWe3_-3WA_gGsIxRZXjMTuE3dXy3D-Eq_bn6qxbjmBHztUI9o6ms_L9KNYOcHwrMxxPfk1H0fRxvnxzUn76DUdODV0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkulGcJFAgSPQaS2FnbEgjxqlrtsuKwoN6M4wcsosl2swX1T_EbmUk22y5C3HrgGluRk_n8zeexPQPwRForLbJjktlgEq5CwCklBgkRpkoNepS2DtmnkRiP5eGh-rABv_q7MHSssufElqhdbSlGTpEQpji6J_5ydpxQ1SjaXe1LaHSwGPrTn7hka14cvEX77ub53rvJm_1kWVUgsSgNFgk6fFtY9Fwmk6ZgvDBpcKEQ6CpLHKG0XiHOhXUqda50PA1FSEtWBDEwkgdKdICUf4kzKWheDUVyFtMpiIBUd75e4ELp2cz7-bfENk8zSoZ6zvO1BQL-pmr_PJx5ztvtbf1v_-k6XFvq6vhVNxFuwIavbsJWX7MiXlLYLXg-6XJxfY8tKWMqkOFdXJcUjmpiVPBxWxuILunHba5Peqs7rczR1Da34eOFfMMd2Kzqyt-FOHhUO97nBVMoMbEdoZ-FICh45IJiEez21tWzLlGIxgUWoUC3KNC20YiCCF6T6Vd9KL13-6Cef9FLttCZSEVZBl7K3PIyBOMkYyV3A2ky4skIdnrj6yXnNPrM8hE8XjUjW9AWkKl8fYJ9SI-rARJvBNsdzlYjYbSHjHovArGGwLWhrrdU069tRnKBq3iRpvf-PaxHcGV_8n6kRwfj4X24itJTUpQ8ZzuwuZif-Adw2f5YTJv5w3ZaxfD5ovH5G-1CYew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSEulGcJLRAkegzNw1nbEqgqlBVVq9UeCqq4GMcPWEST7WZb1L_Gr2Mmj20XIW49cI2jyIk_f_PNeDID8FIYIwyyY5QYryMmvcctxQcREaaMNVqUpg_Zp0M-GonjYzlegV_9vzCUVtlzYkPUtjIUI6dISCYZmie27bu0iPHecGd6GlEHKTpp7dtptBA5cBc_0X2r3-zv4Vpvpenw_dG7D1HXYSAyKBPmERp_kxu0YjoROs9YrmNvfc7RbBY4W2GcRMxzY2VsbWFZ7HMfF1nu-UAL5qnoAdL_DY4-JqUTjvPPl_GdnMhItrn2HJ2m7alzs--RqV8lVBj1ihVsmgX8TeH-mah5xfIN1_7nb3YX7nR6O9xtN8g9WHHlfVjre1mEHbU9gNdHbY2uH6EhxUyNM5wNq4LCVHWIyj5segbRz_thUwOUnmovSn0yMfVD-Hgt7_AIVsuqdI8h9A5VkHNpnkmUnjiOWyLxnlNQyXqZBbDVr7SatgVEFDpehAjVIEKZWiEiAnhLMFjcQ2W_mwvV7KvqWEQlPOZF4VkhUsMK77UVWVYwOxA6If4MYLMHguq4qFaXKAjgxWIYWYSOhnTpqjO8h3S6HCAhB7DeYm4xk4zOllEHBsCX0Lg01eWRcvKtqVTO0bvncfzk39N6DrcQlupwf3SwAbdRkQoKnqfZJqzOZ2fuKdw05_NJPXvW7LAQvlw3PH8DCQZrEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+constrained+objects+for+modelling+neuronal+dynamics&rft.jtitle=PeerJ.+Computer+science&rft.au=Nair%2C+Manjusha&rft.au=Manchan+Kannimoola%2C+Jinesh&rft.au=Jayaraman%2C+Bharat&rft.au=Nair%2C+Bipin&rft.date=2018-07-23&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=4&rft.spage=e159&rft_id=info:doi/10.7717%2Fpeerj-cs.159&rft.externalDBID=n%2Fa&rft.externalDocID=10_7717_peerj_cs_159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon