Emotional state classification from EEG data using machine learning approach
Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning algorithms, and various real-world applications of brain–computer interface for normal people. Until now, however, researchers had little understanding...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 129; S. 94 - 106 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
10.04.2014
Elsevier |
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning algorithms, and various real-world applications of brain–computer interface for normal people. Until now, however, researchers had little understanding of the details of relationship between different emotional states and various EEG features. To improve the accuracy of EEG-based emotion classification and visualize the changes of emotional states with time, this paper systematically compares three kinds of existing EEG features for emotion classification, introduces an efficient feature smoothing method for removing the noise unrelated to emotion task, and proposes a simple approach to tracking the trajectory of emotion changes with manifold learning. To examine the effectiveness of these methods introduced in this paper, we design a movie induction experiment that spontaneously leads subjects to real emotional states and collect an EEG data set of six subjects. From experimental results on our EEG data set, we found that (a) power spectrum feature is superior to other two kinds of features; (b) a linear dynamic system based feature smoothing method can significantly improve emotion classification accuracy; and (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. |
|---|---|
| AbstractList | Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning algorithms, and various real-world applications of brain-computer interface for normal people. Until now, however, researchers had little understanding of the details of relationship between different emotional states and various EEG features. To improve the accuracy of EEG-based emotion classification and visualize the changes of emotional states with time, this paper systematically compares three kinds of existing EEG features for emotion classification, introduces an efficient feature smoothing method for removing the noise unrelated to emotion task, and proposes a simple approach to tracking the trajectory of emotion changes with manifold learning. To examine the effectiveness of these methods introduced in this paper, we design a movie induction experiment that spontaneously leads subjects to real emotional states and collect an EEG data set of six subjects. From experimental results on our EEG data set, we found that (a) power spectrum feature is superior to other two kinds of features; (b) a linear dynamic system based feature smoothing method can significantly improve emotion classification accuracy; and (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. |
| Author | Lu, Bao-Liang Nie, Dan Wang, Xiao-Wei |
| Author_xml | – sequence: 1 givenname: Xiao-Wei surname: Wang fullname: Wang, Xiao-Wei organization: Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China – sequence: 2 givenname: Dan surname: Nie fullname: Nie, Dan organization: Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China – sequence: 3 givenname: Bao-Liang surname: Lu fullname: Lu, Bao-Liang email: bllu@sjtu.edu.cn, blu@cs.sjtu.edu.cn organization: Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28284372$$DView record in Pascal Francis |
| BookMark | eNqFkEuLFDEUhYOMYM_oP3BRG8FN1eRReZQLQYZ2FBrc6DrcvnVL01QlbZIW_PdTbY8bF87qwuF858J3za5iisTYa8E7wYW5PXSRTpiWTnKhOm463ptnbCOcla2TzlyxDR-kbqUS8gW7LuXAubBCDhu22y6phhRhbkqFSg3OUEqYAsI5bqaclma7vW9GqNCcSojfmwXwR4jUzAQ5ngM4HnNaw5fs-QRzoVeP94Z9-7j9evep3X25_3z3Yddir3RtlUM3WNR6lKOaQCpth0HuSe-NAQe9c3ZEdDAZS-PYS5B2b6WTWhnOuSV1w95edte3P09Uql9CQZpniJROxQutBOe9HuxaffNYhYIwTxkihuKPOSyQf_t11fXKyrX37tLDnErJNHkM9Y-CmiHMXnB_Vu0P_qLan1V7bvyqeoX7f-C_-09g7y8Yra5-Bcq-YKCINIZMWP2Ywv8HHgB-Lpwu |
| CitedBy_id | crossref_primary_10_3390_app15052742 crossref_primary_10_3390_s21051678 crossref_primary_10_1057_s41599_024_03691_1 crossref_primary_10_1145_3617503 crossref_primary_10_1002_ibra_70002 crossref_primary_10_1016_j_bspc_2014_07_005 crossref_primary_10_1016_j_chb_2016_08_029 crossref_primary_10_3390_s21051792 crossref_primary_10_1016_j_compbiomed_2024_108788 crossref_primary_10_1016_j_eswa_2022_118025 crossref_primary_10_1016_j_compbiomed_2021_104696 crossref_primary_10_1007_s11042_023_14489_9 crossref_primary_10_1007_s11227_022_05026_w crossref_primary_10_1007_s11633_022_1352_1 crossref_primary_10_1016_j_inffus_2018_10_009 crossref_primary_10_1016_j_neucom_2015_05_126 crossref_primary_10_1186_s13673_019_0201_x crossref_primary_10_1016_j_gpb_2018_11_005 crossref_primary_10_1016_j_bspc_2023_104661 crossref_primary_10_1109_TAFFC_2025_3561439 crossref_primary_10_1007_s10548_016_0524_0 crossref_primary_10_1109_TAFFC_2017_2712143 crossref_primary_10_1080_00038628_2020_1749980 crossref_primary_10_1109_TAFFC_2020_2994159 crossref_primary_10_1109_TIM_2021_3090164 crossref_primary_10_1109_ACCESS_2020_2974009 crossref_primary_10_3390_mi14030702 crossref_primary_10_1007_s11063_018_9845_1 crossref_primary_10_1038_s41598_025_06364_4 crossref_primary_10_1109_TIM_2022_3168927 crossref_primary_10_1371_journal_pone_0189367 crossref_primary_10_3390_app14178071 crossref_primary_10_1007_s13042_016_0601_4 crossref_primary_10_1016_j_compbiomed_2024_108445 crossref_primary_10_3389_fnhum_2016_00235 crossref_primary_10_1016_j_compbiomed_2024_108329 crossref_primary_10_1007_s42486_021_00078_y crossref_primary_10_1016_j_neucom_2015_06_076 crossref_primary_10_1016_j_engappai_2025_112144 crossref_primary_10_1016_j_knosys_2025_113559 crossref_primary_10_1016_j_jcbs_2022_07_006 crossref_primary_10_3389_fnins_2021_693468 crossref_primary_10_1016_j_neuroimage_2024_120848 crossref_primary_10_1109_TAFFC_2017_2714671 crossref_primary_10_3390_s23041917 crossref_primary_10_1088_1741_2552_abda0c crossref_primary_10_1055_a_2207_6117 crossref_primary_10_1109_ACCESS_2021_3089358 crossref_primary_10_1016_j_compbiomed_2022_105718 crossref_primary_10_1007_s13042_018_0880_z crossref_primary_10_1016_j_bspc_2025_108248 crossref_primary_10_1038_s41598_025_87414_9 crossref_primary_10_1007_s42452_025_06692_0 crossref_primary_10_1109_ACCESS_2019_2941251 crossref_primary_10_1109_TETCI_2025_3543307 crossref_primary_10_1007_s00521_018_3925_z crossref_primary_10_1016_j_cmpb_2016_08_010 crossref_primary_10_1016_j_bspc_2024_106812 crossref_primary_10_1109_JSEN_2023_3303441 crossref_primary_10_1007_s11571_020_09601_w crossref_primary_10_3390_app9163355 crossref_primary_10_3390_s20123482 crossref_primary_10_1007_s11517_022_02670_5 crossref_primary_10_3389_fnagi_2022_945024 crossref_primary_10_1016_j_cmpb_2024_108446 crossref_primary_10_1038_s41598_023_37829_z crossref_primary_10_3389_fnins_2017_00325 crossref_primary_10_1007_s00221_025_07002_1 crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_1016_j_bbr_2015_10_036 crossref_primary_10_3390_app142311323 crossref_primary_10_1016_j_bspc_2023_105312 crossref_primary_10_3390_electronics12143188 crossref_primary_10_3390_s20123491 crossref_primary_10_1007_s12517_019_4597_4 crossref_primary_10_1038_s41598_022_09578_y crossref_primary_10_3390_math10040582 crossref_primary_10_1016_j_engappai_2025_111122 crossref_primary_10_1016_j_apacoust_2020_107840 crossref_primary_10_1109_COMST_2022_3232576 crossref_primary_10_1016_j_bbe_2020_04_005 crossref_primary_10_1007_s10339_019_00924_z crossref_primary_10_1016_j_neuroimage_2023_120452 crossref_primary_10_1016_j_bspc_2023_105422 crossref_primary_10_3390_s20010059 crossref_primary_10_1155_2021_6631616 crossref_primary_10_1109_TAFFC_2019_2936198 crossref_primary_10_3390_s24030877 crossref_primary_10_1109_ACCESS_2024_3497160 crossref_primary_10_3390_math12081180 crossref_primary_10_1109_JBHI_2019_2893324 crossref_primary_10_1109_ACCESS_2025_3574515 crossref_primary_10_1016_j_cogsys_2025_101394 crossref_primary_10_1016_j_neucom_2017_09_081 crossref_primary_10_1109_TAFFC_2021_3130387 crossref_primary_10_1109_JSEN_2020_3020828 crossref_primary_10_1080_0144929X_2018_1485745 crossref_primary_10_1111_jcal_12284 crossref_primary_10_1155_2016_6734720 crossref_primary_10_1109_TAFFC_2021_3093923 crossref_primary_10_1371_journal_pone_0222276 crossref_primary_10_1016_j_compbiomed_2020_103927 crossref_primary_10_1155_2018_3050214 crossref_primary_10_1007_s40708_016_0051_5 crossref_primary_10_3389_fnins_2025_1487175 crossref_primary_10_1109_TCDS_2020_2976112 crossref_primary_10_1371_journal_pone_0186916 crossref_primary_10_1016_j_inffus_2021_07_007 crossref_primary_10_1109_JSEN_2022_3144317 crossref_primary_10_1109_TAFFC_2020_3025777 crossref_primary_10_1631_FITEE_2300781 crossref_primary_10_1016_j_brainres_2024_149039 crossref_primary_10_1016_j_compbiomed_2022_105303 crossref_primary_10_1016_j_patcog_2018_01_035 crossref_primary_10_1080_10255842_2023_2286918 crossref_primary_10_3390_brainsci15070714 crossref_primary_10_1016_j_bspc_2021_103291 crossref_primary_10_1007_s42979_022_01155_4 crossref_primary_10_1016_j_bspc_2024_106189 crossref_primary_10_1088_1741_2552_abf609 crossref_primary_10_1016_j_jvcir_2019_102672 crossref_primary_10_1016_j_ifacol_2020_12_2753 crossref_primary_10_1016_j_neunet_2025_107853 crossref_primary_10_3389_fnhum_2018_00267 crossref_primary_10_1016_j_neunet_2024_106148 crossref_primary_10_1088_1741_2552_abb580 crossref_primary_10_1088_1741_2552_ad7060 crossref_primary_10_1016_j_medengphy_2018_07_009 crossref_primary_10_1109_TCYB_2018_2797176 crossref_primary_10_1515_bmt_2022_0479 crossref_primary_10_3389_fnins_2018_00992 crossref_primary_10_1016_j_jce_2019_07_002 crossref_primary_10_1016_j_ijpsycho_2014_07_014 crossref_primary_10_1016_j_knosys_2025_114364 crossref_primary_10_1155_2020_6925107 crossref_primary_10_1109_TCDS_2017_2726083 crossref_primary_10_1109_ACCESS_2023_3270977 crossref_primary_10_1109_TCDS_2023_3293321 crossref_primary_10_1080_10255842_2022_2143714 crossref_primary_10_1109_ACCESS_2021_3051281 crossref_primary_10_1109_TIM_2022_3165280 crossref_primary_10_3390_ijerph19042158 crossref_primary_10_1016_j_bspc_2017_12_003 crossref_primary_10_1155_2015_720450 crossref_primary_10_3390_bioengineering10091040 crossref_primary_10_1016_j_inffus_2025_103368 crossref_primary_10_1007_s12559_017_9533_x crossref_primary_10_3390_s21072338 crossref_primary_10_1016_j_cities_2018_09_009 crossref_primary_10_1109_TAFFC_2018_2790939 crossref_primary_10_3389_fpsyg_2021_771591 crossref_primary_10_1016_j_eswa_2020_114011 crossref_primary_10_31083_j_jin_2019_03_601 crossref_primary_10_1109_TNNLS_2020_3008938 crossref_primary_10_1088_1741_2552_abf2e4 crossref_primary_10_1109_ACCESS_2018_2876162 crossref_primary_10_1109_LRA_2020_3036372 crossref_primary_10_13105_wjma_v11_i4_79 crossref_primary_10_3390_s23020915 crossref_primary_10_3389_fnhum_2018_00198 crossref_primary_10_1088_1741_2552_ac6d7d crossref_primary_10_1002_cpe_5199 crossref_primary_10_1109_ACCESS_2020_3030680 crossref_primary_10_1038_s41562_022_01310_0 crossref_primary_10_1007_s40708_017_0069_3 crossref_primary_10_1016_j_neucom_2016_06_093 crossref_primary_10_3390_app14020726 crossref_primary_10_1109_TOH_2021_3055842 crossref_primary_10_1016_j_engappai_2022_105349 crossref_primary_10_1016_j_jksuci_2019_11_003 crossref_primary_10_1080_10255842_2023_2252952 crossref_primary_10_1016_j_inffus_2023_101847 crossref_primary_10_1109_TIM_2022_3147882 crossref_primary_10_1016_j_sigpro_2016_07_026 crossref_primary_10_3390_brainsci12091159 crossref_primary_10_1007_s00521_024_09479_3 crossref_primary_10_1109_TBCAS_2020_2974154 crossref_primary_10_1109_TCDS_2024_3357547 crossref_primary_10_1109_JSEN_2015_2423152 crossref_primary_10_1016_j_cogsys_2018_06_009 crossref_primary_10_1109_TAFFC_2025_3555226 crossref_primary_10_3390_brainsci12081106 crossref_primary_10_3390_s19132999 crossref_primary_10_3233_THC_174836 crossref_primary_10_3389_fncom_2016_00055 crossref_primary_10_1038_s41598_024_74475_5 crossref_primary_10_1007_s11277_019_06328_8 crossref_primary_10_1016_j_cviu_2024_104121 crossref_primary_10_1016_j_procs_2018_04_056 crossref_primary_10_1017_dsj_2020_28 crossref_primary_10_3389_fnbot_2019_00046 crossref_primary_10_3389_fnhum_2022_1051463 crossref_primary_10_1109_TCDS_2020_3001642 crossref_primary_10_1016_j_ifacol_2023_10_486 crossref_primary_10_1109_JBHI_2024_3404146 crossref_primary_10_1016_j_neucom_2015_02_034 crossref_primary_10_1016_j_cosrev_2021_100399 crossref_primary_10_1007_s40815_018_0567_3 crossref_primary_10_1109_JSEN_2021_3108471 crossref_primary_10_1016_j_compbiomed_2023_106860 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1109_MC_2017_84 crossref_primary_10_1177_15500594231192817 crossref_primary_10_1186_s12911_017_0562_x crossref_primary_10_1016_j_neucom_2025_130185 crossref_primary_10_1109_ACCESS_2020_2978163 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_1016_j_bspc_2024_106217 crossref_primary_10_3389_fnins_2025_1541062 crossref_primary_10_1109_ACCESS_2019_2914872 crossref_primary_10_3390_math11234776 crossref_primary_10_1016_j_dt_2023_12_001 crossref_primary_10_3390_app14020702 crossref_primary_10_1007_s11280_018_0632_8 crossref_primary_10_3389_fncom_2016_00085 crossref_primary_10_3390_bioengineering10101200 crossref_primary_10_1007_s11760_019_01448_x crossref_primary_10_1109_TAFFC_2025_3557873 crossref_primary_10_3390_en14010232 crossref_primary_10_1016_j_compbiomed_2020_103875 crossref_primary_10_1016_j_aei_2024_102522 crossref_primary_10_1109_JSEN_2023_3265688 crossref_primary_10_1007_s12243_019_00740_8 crossref_primary_10_1016_j_bspc_2022_103742 crossref_primary_10_1016_j_compbiomed_2022_106344 crossref_primary_10_1016_j_neucom_2016_03_108 crossref_primary_10_1016_j_bspc_2021_103361 crossref_primary_10_1038_s41598_023_33734_7 crossref_primary_10_1007_s11517_021_02452_5 crossref_primary_10_1007_s10209_019_00678_7 crossref_primary_10_1109_JSEN_2021_3049247 crossref_primary_10_1109_JBHI_2024_3416944 crossref_primary_10_1007_s12559_018_9590_9 crossref_primary_10_3390_s24061979 crossref_primary_10_1016_j_jobe_2024_108707 crossref_primary_10_1109_TOH_2023_3308059 crossref_primary_10_1016_j_neucom_2023_126260 crossref_primary_10_3390_s21103414 crossref_primary_10_1016_j_compind_2017_04_005 crossref_primary_10_1016_j_bspc_2019_101756 crossref_primary_10_3390_brainsci11030293 crossref_primary_10_1080_10447318_2023_2254644 crossref_primary_10_1155_2020_6929546 crossref_primary_10_1109_TCDS_2021_3090217 crossref_primary_10_1109_ACCESS_2021_3096430 crossref_primary_10_1145_3666002 crossref_primary_10_3389_fnhum_2017_00577 crossref_primary_10_1186_s40708_024_00242_x crossref_primary_10_1080_00207454_2019_1634070 crossref_primary_10_1111_tops_12669 crossref_primary_10_1016_j_eswa_2014_02_043 crossref_primary_10_3390_s22062101 crossref_primary_10_1109_TVT_2019_2903299 crossref_primary_10_1016_j_bspc_2022_103818 crossref_primary_10_1016_j_ins_2018_09_061 crossref_primary_10_1080_17455030_2023_2226246 crossref_primary_10_1016_j_neucom_2025_130254 crossref_primary_10_1109_JBHI_2024_3395622 crossref_primary_10_1016_j_jisa_2024_103832 crossref_primary_10_1002_adfm_202200457 crossref_primary_10_1155_2016_7431012 crossref_primary_10_1371_journal_pone_0287513 crossref_primary_10_1016_j_jksuci_2020_10_007 crossref_primary_10_1109_JBHI_2020_3032678 crossref_primary_10_1016_j_eswa_2018_03_011 crossref_primary_10_1109_ACCESS_2019_2927768 crossref_primary_10_26634_jpr_3_4_13538 crossref_primary_10_3390_s23177350 crossref_primary_10_1186_s12938_023_01124_9 crossref_primary_10_1016_j_engappai_2024_108011 crossref_primary_10_1016_j_neuroimage_2018_10_073 crossref_primary_10_1016_j_neuroscience_2025_01_049 crossref_primary_10_3389_fdgth_2024_1335289 crossref_primary_10_1088_1741_2552_ac49a7 crossref_primary_10_1016_j_inffus_2019_06_006 crossref_primary_10_1007_s12559_019_09699_z crossref_primary_10_1155_2020_6816502 crossref_primary_10_1016_j_neucom_2019_10_096 crossref_primary_10_1016_j_heliyon_2023_e23611 crossref_primary_10_1016_j_knosys_2020_106243 crossref_primary_10_1109_TAFFC_2021_3134183 crossref_primary_10_1155_2018_9750904 crossref_primary_10_1109_TBME_2024_3408279 crossref_primary_10_3390_s19030522 crossref_primary_10_3389_fnins_2023_1251677 crossref_primary_10_3390_diagnostics12102508 crossref_primary_10_3390_electronics11050770 crossref_primary_10_1016_j_neuropsychologia_2020_107506 crossref_primary_10_1587_transinf_2015EDP7251 crossref_primary_10_1186_s40708_023_00201_y crossref_primary_10_3389_fphy_2020_629620 crossref_primary_10_1007_s11042_020_09354_y crossref_primary_10_3233_JIFS_191923 crossref_primary_10_1088_1741_2552_14_1_016009 crossref_primary_10_1109_TIM_2022_3216829 crossref_primary_10_1007_s11042_023_16412_8 crossref_primary_10_1007_s13534_025_00475_7 crossref_primary_10_3390_s23084026 crossref_primary_10_1088_1741_2552_acae06 crossref_primary_10_1016_j_bspc_2020_102251 crossref_primary_10_1109_ACCESS_2022_3155647 crossref_primary_10_1155_2021_8537000 crossref_primary_10_1109_JBHI_2020_2995767 crossref_primary_10_1016_j_jsr_2019_12_022 crossref_primary_10_3389_fnhum_2022_936393 crossref_primary_10_1109_ACCESS_2019_2901950 crossref_primary_10_1016_j_bica_2018_04_012 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1088_1757_899X_341_1_012016 crossref_primary_10_1007_s10044_019_00860_w crossref_primary_10_3390_e22050511 crossref_primary_10_1016_j_ijpsycho_2015_02_023 crossref_primary_10_1109_TSMC_2021_3073216 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1109_THMS_2023_3275626 crossref_primary_10_20965_jrm_2023_p0788 crossref_primary_10_1109_TAFFC_2018_2890636 crossref_primary_10_1109_ACCESS_2020_2979898 crossref_primary_10_3389_fnsys_2023_1123221 crossref_primary_10_3389_fnbot_2022_873239 crossref_primary_10_3389_fnhum_2020_589001 crossref_primary_10_1016_j_eswa_2020_114516 crossref_primary_10_1007_s10044_016_0567_6 crossref_primary_10_1145_3524499 crossref_primary_10_3389_frobt_2021_755150 crossref_primary_10_3390_s20236810 crossref_primary_10_1007_s12021_022_09568_5 crossref_primary_10_3389_fpsyg_2022_889427 crossref_primary_10_1109_TCDS_2021_3071170 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1016_j_bspc_2023_105690 crossref_primary_10_1109_LSP_2022_3179946 crossref_primary_10_1007_s10489_023_04561_0 crossref_primary_10_3390_s21092910 crossref_primary_10_1016_j_neucom_2015_09_085 crossref_primary_10_1016_j_compbiomed_2023_107595 crossref_primary_10_1016_j_compbiomed_2022_106088 crossref_primary_10_1016_j_knosys_2022_108819 crossref_primary_10_1088_1741_2552_abea62 crossref_primary_10_3390_s23208643 crossref_primary_10_3390_s24227377 crossref_primary_10_1155_2024_6091523 crossref_primary_10_3390_make3040042 crossref_primary_10_1109_JSEN_2024_3514094 crossref_primary_10_1111_psyp_14526 crossref_primary_10_1016_j_bspc_2018_05_039 crossref_primary_10_1109_TAMD_2015_2431497 crossref_primary_10_1109_ACCESS_2020_2981418 crossref_primary_10_3390_e24121735 crossref_primary_10_1016_j_bspc_2024_106648 crossref_primary_10_1145_3712259 crossref_primary_10_1109_ACCESS_2019_2944008 crossref_primary_10_3389_fnins_2021_689791 crossref_primary_10_3389_fnins_2021_611300 crossref_primary_10_1017_S0263574721000382 crossref_primary_10_1007_s11571_024_10108_x crossref_primary_10_1016_j_medengphy_2020_05_006 crossref_primary_10_1145_3152128 crossref_primary_10_3389_fphys_2021_733264 crossref_primary_10_3758_s13415_017_0533_9 crossref_primary_10_1016_j_eswa_2022_118694 crossref_primary_10_3390_app7121239 crossref_primary_10_1016_j_bspc_2021_102711 crossref_primary_10_1109_TCDS_2017_2685338 crossref_primary_10_1109_ACCESS_2019_2949707 crossref_primary_10_1007_s10489_022_04366_7 crossref_primary_10_1088_1741_2552_ac7ba8 crossref_primary_10_1016_j_bspc_2024_106877 crossref_primary_10_1088_2632_2153_add4bb crossref_primary_10_1016_j_bspc_2021_102743 crossref_primary_10_1007_s11063_022_11120_0 crossref_primary_10_3390_s22239282 crossref_primary_10_3390_s20020496 crossref_primary_10_3390_brainsci11111392 crossref_primary_10_1016_j_measurement_2019_107003 crossref_primary_10_1016_j_jksuci_2021_03_009 crossref_primary_10_3390_math8030413 crossref_primary_10_3390_s18124477 crossref_primary_10_1109_ACCESS_2020_2980893 crossref_primary_10_26599_BSA_2022_9050013 crossref_primary_10_1016_j_inffus_2020_01_011 crossref_primary_10_1007_s11042_021_11059_9 crossref_primary_10_1016_j_neuri_2022_100039 crossref_primary_10_1109_JBHI_2023_3303494 crossref_primary_10_1016_j_bspc_2021_102979 |
| Cites_doi | 10.3115/1220575.1220648 10.1145/1631111.1631118 10.1016/j.biopsycho.2008.04.005 10.1097/00001756-199909090-00001 10.4236/jbise.2010.34054 10.1016/0005-7916(94)90063-9 10.1109/IEMBS.2010.5627125 10.1016/j.eswa.2006.02.005 10.1109/IEMBS.2009.5334139 10.1080/02699930541000084 10.1109/TITB.2009.2034649 10.1063/1.166092 10.1016/j.ijpsycho.2006.07.003 10.1109/TITB.2011.2157933 10.1016/j.neucom.2008.11.007 10.1017/S0048577298000134 10.1037/0021-843X.106.1.159 10.1097/00001756-200103260-00019 10.1080/02699939308409183 10.1023/A:1007977618277 10.1016/S0167-8760(03)00146-6 10.1109/NER.2011.5910636 10.1109/IEMBS.2011.6091616 10.1016/0167-8760(87)90006-7 10.1016/j.ijpsycho.2005.04.007 10.1080/02699939508408966 10.1111/1469-8986.3720257 10.1016/S0167-8760(00)00195-1 10.1111/j.1469-8986.2007.00497.x 10.1109/TBME.2010.2048568 10.1016/S0304-3940(01)02246-7 10.1097/00001756-200203250-00013 10.1080/0929821042000317822 10.1016/j.biopsycho.2004.03.002 10.1111/j.1469-8986.1992.tb02034.x 10.5815/ijigsp.2011.05.05 10.1007/11848035_70 10.1016/j.cmpb.2005.06.011 10.1103/PhysRevLett.54.1325 10.1016/0167-8760(91)90005-I 10.1111/j.1469-8986.1985.tb01615.x 10.1016/0028-3932(85)90081-8 10.1109/ICT4M.2010.5971942 10.1109/TSMCB.2005.854502 10.1016/0301-0511(90)90079-C 10.1007/BF02344719 10.1016/j.cmpb.2005.06.005 10.1037/0021-843X.100.4.535 10.1126/science.7146906 10.1016/S0304-3940(97)00232-2 10.1126/science.295.5552.7a 10.1126/science.3992243 10.1109/ICME.2005.1521579 10.1016/S0165-0173(98)00056-3 10.1037/0022-3514.74.5.1310 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7QO 8FD FR3 P64 |
| DOI | 10.1016/j.neucom.2013.06.046 |
| DatabaseName | CrossRef Pascal-Francis Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1872-8286 |
| EndPage | 106 |
| ExternalDocumentID | 28284372 10_1016_j_neucom_2013_06_046 S0925231213009867 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD AGCQF AGRNS BNPGV IQODW SSH 7QO 8FD FR3 P64 |
| ID | FETCH-LOGICAL-c435t-38c897c55d2d3fa2357992be5b66a8a4887dcc8af67edd42a27b72825360007e3 |
| ISICitedReferencesCount | 564 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332132400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Oct 07 09:35:40 EDT 2025 Mon Jul 21 09:12:52 EDT 2025 Sat Nov 29 07:57:43 EST 2025 Tue Nov 18 20:53:25 EST 2025 Fri Feb 23 02:27:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electroencephalograph Support vector machine Manifold learning Emotion classification Feature reduction Brain–computer interface Brain Smoothing methods Electroencephalography Emotion emotionality Dynamical system Dynamic method Data reduction Electrodes Brain-computer interface Dimension reduction Experimental result Multidimensional analysis User interface Vector support machine Selection criterion Reduced order model Artificial intelligence Power spectrum |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c435t-38c897c55d2d3fa2357992be5b66a8a4887dcc8af67edd42a27b72825360007e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1531004597 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1531004597 pascalfrancis_primary_28284372 crossref_citationtrail_10_1016_j_neucom_2013_06_046 crossref_primary_10_1016_j_neucom_2013_06_046 elsevier_sciencedirect_doi_10_1016_j_neucom_2013_06_046 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-10 |
| PublicationDateYYYYMMDD | 2014-04-10 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Lin, Wang, Jung, Wu, Jeng, Duann, Chen (bib48) 2010; 57 J. Wagner, J. Kim, From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification, in: Proceedings of IEEE International Conference on Multimedia and Expo, 2005, pp. 940–943. Hubert, de Jong-Meyer (bib28) 1990; 31 Schupp, Cuthbert, Bradley, Cacioppo, Ito, Lang (bib15) 2000; 37 D. Nie, Emotion recognition based on EEG (Master's thesis), Shanghai Jiao Tong University, Shanghai, 2012 (in Chinese). Aftanas, Lotova, Koshkarov, Pokrovskaja, Popov, Makhnev (bib51) 1997; 226 G. Chanel, J. Kronegg, D. Grandjean, T. Pun, Emotion assessment: arousal evaluation using EEGs and peripheral physiological signals, in: Proceedings of Multimedia Content Representation, Classification and Security, 2006, pp. 530–537. M. Li, B. Lu, Emotion classification based on gamma-band EEG, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 1223–1226. Davidson, Schwartz, Saron, Bennett, Goleman (bib20) 1979; 16 Ahern, Schwartz (bib22) 1985; 23 2001. Mandelbrot (bib57) 1983 Coan, Allen (bib8) 2004; 67 C. Chang, C. Lin, Libsvm: A Library for Support Vector Machines, Software Available at Schutter, Putman, Hermans, van Honk (bib70) 2001; 314 X. Li, B. Hu, T. Zhu, J. Yan, F. Zheng, Towards affective learning with an EEG feedback approach, in: Proceedings of the 1st ACM International Workshop on Multimedia Technologies for Distance Learning, 2009, pp. 33–38. Weiner (bib18) 1986; 1 Murugappan, Ramachandran, Sazali (bib44) 2010; 3 Murugappan, Rizon, Nagarajan, Yaacob, Zunaidi, Hazry (bib49) 2007; 1 Tomarken, Davidson, Wheeler, Kinney (bib14) 1992; 29 Petrantonakis, Hadjileontiadis (bib45) 2010; 14 Brosschot, Thayer (bib7) 2003; 50 Hurst (bib54) 1950; 76 Pizzagalli, Regard, Lehmann (bib16) 1999; 10 Davidson (bib35) 1998; 35 J. Estepp, S. Klosterman, J. Christensen, An assessment of non-stationarity in physiological cognitive state assessment using artificial neural networks, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 6552–6555. Guntekin, Basar (bib69) 2007; 64 Hubert, de Jong-Meyer (bib26) 1991; 11 Bradley, Lang (bib46) 1994; 25 Carretie, Mercado, Tapia, Hinojosa (bib40) 2001; 41 Petrantonakis, Hadjileontiadis (bib9) 2011; 15 V. Petrushin, Emotion in speech: recognition and application to call centers, in: Proceedings of the Artificial Networks in Engineering Conference, 1999, pp. 7–10. Ray, Cole (bib67) 1985; 228 Lazarus (bib27) 1962 Eimer, Holmes (bib17) 2002; 13 Henriques, Davidson (bib36) 1991; 100 Balasubramanian, Schwartz (bib63) 2002; 295 Scherer (bib25) 2004; 33 Zhang, Lee (bib43) 2009; 72 Pincus (bib52) 1995; 5 R. Khosrowabadi, A. Wahab bin Abdul Rahman, Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram, in: Proceedings of International Conference on Information and Communication Technology for the Muslim World, 2010, pp. 102–107. Davidson, Schaffer, Saron (bib68) 1985; 22 L. Shi, B. Lu, Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, pp. 6587–6590. Black, Yacoob (bib3) 1997; 25 Vanderploeg, Brown, Marsh (bib38) 1987; 5 Jolliffe (bib61) 2002 Davidson, Fox (bib11) 1982; 218 Kemper (bib19) 1978 Oathes, Ray, Yamasaki, Borkovec, Castonguay, Newman, Nitschke (bib66) 2008; 79 Harmon-Jones, Allen (bib12) 1998; 74 Harmon-Jones, Allen (bib13) 1997; 106 Subasi (bib50) 2007; 32 Klimesch (bib65) 1999; 29 C. Alm, D. Roth, R. Sproat, Emotions from text: machine learning for text-based emotion prediction, in: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, 2005, pp. 579–586. Kannathal, Acharya, Lim, Sadasivan (bib55) 2005; 80 Lang, Ohman, Vaitl (bib23) 1988 Sammler, Grigutsch, Fritz, Koelsch (bib47) 2007; 44 Kim, Bang, Kim (bib6) 2004; 42 Picard (bib1) 2000 Katz, Thompson (bib58) 1985; 54 Acharya U, Faust, Kannathal, Chua, Laxminarayan (bib59) 2005; 80 Philippot (bib29) 1993; 7 Gross, Levenson (bib31) 1995; 9 D. Nie, X. Wang, L. Shi, B. Lu, EEG-based emotion recognition during watching movies, in: Proceedings of International IEEE/EMBS Conference on Neural Engineering, 2011, pp. 667–670. Sato, Kochiyama, Yoshikawa, Matsumura (bib39) 2001; 12 Anderson, McOwan (bib4) 2006; 36 Ekman, Davidson (bib21) 1994 Hewig, Hagemann, Seifert, Gollwitzer, Naumann, Bartussek (bib30) 2005; 19 Vapnik (bib62) 1998 Baumgartner, Esslen, Jancke (bib37) 2006; 60 Hosseini, Naghibi-Sistani (bib53) 2011; 3 Petrantonakis (10.1016/j.neucom.2013.06.046_bib45) 2010; 14 Ray (10.1016/j.neucom.2013.06.046_bib67) 1985; 228 Henriques (10.1016/j.neucom.2013.06.046_bib36) 1991; 100 Kannathal (10.1016/j.neucom.2013.06.046_bib55) 2005; 80 Zhang (10.1016/j.neucom.2013.06.046_bib43) 2009; 72 Vanderploeg (10.1016/j.neucom.2013.06.046_bib38) 1987; 5 Davidson (10.1016/j.neucom.2013.06.046_bib68) 1985; 22 Black (10.1016/j.neucom.2013.06.046_bib3) 1997; 25 Kim (10.1016/j.neucom.2013.06.046_bib6) 2004; 42 Weiner (10.1016/j.neucom.2013.06.046_bib18) 1986; 1 Hubert (10.1016/j.neucom.2013.06.046_bib28) 1990; 31 Balasubramanian (10.1016/j.neucom.2013.06.046_bib63) 2002; 295 Vapnik (10.1016/j.neucom.2013.06.046_bib62) 1998 Hubert (10.1016/j.neucom.2013.06.046_bib26) 1991; 11 Hewig (10.1016/j.neucom.2013.06.046_bib30) 2005; 19 10.1016/j.neucom.2013.06.046_bib33 10.1016/j.neucom.2013.06.046_bib32 Picard (10.1016/j.neucom.2013.06.046_bib1) 2000 Carretie (10.1016/j.neucom.2013.06.046_bib40) 2001; 41 10.1016/j.neucom.2013.06.046_bib34 Katz (10.1016/j.neucom.2013.06.046_bib58) 1985; 54 Ekman (10.1016/j.neucom.2013.06.046_bib21) 1994 Tomarken (10.1016/j.neucom.2013.06.046_bib14) 1992; 29 Oathes (10.1016/j.neucom.2013.06.046_bib66) 2008; 79 Murugappan (10.1016/j.neucom.2013.06.046_bib49) 2007; 1 Davidson (10.1016/j.neucom.2013.06.046_bib11) 1982; 218 Davidson (10.1016/j.neucom.2013.06.046_bib35) 1998; 35 Mandelbrot (10.1016/j.neucom.2013.06.046_bib57) 1983 Petrantonakis (10.1016/j.neucom.2013.06.046_bib9) 2011; 15 10.1016/j.neucom.2013.06.046_bib42 10.1016/j.neucom.2013.06.046_bib41 Aftanas (10.1016/j.neucom.2013.06.046_bib51) 1997; 226 Coan (10.1016/j.neucom.2013.06.046_bib8) 2004; 67 Eimer (10.1016/j.neucom.2013.06.046_bib17) 2002; 13 Harmon-Jones (10.1016/j.neucom.2013.06.046_bib13) 1997; 106 Acharya U (10.1016/j.neucom.2013.06.046_bib59) 2005; 80 Scherer (10.1016/j.neucom.2013.06.046_bib25) 2004; 33 Hurst (10.1016/j.neucom.2013.06.046_bib54) 1950; 76 Pincus (10.1016/j.neucom.2013.06.046_bib52) 1995; 5 Schutter (10.1016/j.neucom.2013.06.046_bib70) 2001; 314 Davidson (10.1016/j.neucom.2013.06.046_bib20) 1979; 16 Lazarus (10.1016/j.neucom.2013.06.046_bib27) 1962 Gross (10.1016/j.neucom.2013.06.046_bib31) 1995; 9 Anderson (10.1016/j.neucom.2013.06.046_bib4) 2006; 36 10.1016/j.neucom.2013.06.046_bib2 Pizzagalli (10.1016/j.neucom.2013.06.046_bib16) 1999; 10 Bradley (10.1016/j.neucom.2013.06.046_bib46) 1994; 25 10.1016/j.neucom.2013.06.046_bib5 Ahern (10.1016/j.neucom.2013.06.046_bib22) 1985; 23 Guntekin (10.1016/j.neucom.2013.06.046_bib69) 2007; 64 Sammler (10.1016/j.neucom.2013.06.046_bib47) 2007; 44 Subasi (10.1016/j.neucom.2013.06.046_bib50) 2007; 32 Jolliffe (10.1016/j.neucom.2013.06.046_bib61) 2002 Sato (10.1016/j.neucom.2013.06.046_bib39) 2001; 12 Harmon-Jones (10.1016/j.neucom.2013.06.046_bib12) 1998; 74 Hosseini (10.1016/j.neucom.2013.06.046_bib53) 2011; 3 10.1016/j.neucom.2013.06.046_bib10 Murugappan (10.1016/j.neucom.2013.06.046_bib44) 2010; 3 10.1016/j.neucom.2013.06.046_bib56 Philippot (10.1016/j.neucom.2013.06.046_bib29) 1993; 7 Lin (10.1016/j.neucom.2013.06.046_bib48) 2010; 57 Baumgartner (10.1016/j.neucom.2013.06.046_bib37) 2006; 60 Lang (10.1016/j.neucom.2013.06.046_bib23) 1988 10.1016/j.neucom.2013.06.046_bib64 Klimesch (10.1016/j.neucom.2013.06.046_bib65) 1999; 29 Schupp (10.1016/j.neucom.2013.06.046_bib15) 2000; 37 Brosschot (10.1016/j.neucom.2013.06.046_bib7) 2003; 50 10.1016/j.neucom.2013.06.046_bib60 Kemper (10.1016/j.neucom.2013.06.046_bib19) 1978 10.1016/j.neucom.2013.06.046_bib24 |
| References_xml | – volume: 106 start-page: 159 year: 1997 end-page: 163 ident: bib13 article-title: Behavioral activation sensitivity and resting frontal EEG asymmetry publication-title: J. Abnorm. Psychol. – volume: 10 start-page: 2691 year: 1999 end-page: 2698 ident: bib16 article-title: Rapid emotional face processing in the human right and left brain hemispheres: an ERP study publication-title: Neuroreport – reference: C. Alm, D. Roth, R. Sproat, Emotions from text: machine learning for text-based emotion prediction, in: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, 2005, pp. 579–586. – volume: 64 start-page: 91 year: 2007 end-page: 100 ident: bib69 article-title: Emotional face expressions are differentiated with brain oscillations publication-title: Int. J. Psychophysiol. – volume: 22 start-page: 353 year: 1985 end-page: 364 ident: bib68 article-title: Effects of lateralized presentations of faces on self-reports of emotion and EEG asymmetry in depressed and non-depressed subjects publication-title: Psychophysiology – volume: 13 start-page: 427 year: 2002 end-page: 431 ident: bib17 article-title: An ERP study on the time course of emotional face processing publication-title: Neuroreport – volume: 60 start-page: 34 year: 2006 end-page: 43 ident: bib37 article-title: From emotion perception to emotion experience publication-title: Int. J. Psychophysiol. – volume: 35 start-page: 607 year: 1998 end-page: 614 ident: bib35 article-title: Anterior electrophysiological asymmetries, emotion, and depression publication-title: Psychophysiology – volume: 11 start-page: 131 year: 1991 end-page: 140 ident: bib26 article-title: Autonomic, neuroendocrine, and subjective responses to emotion-inducing film stimuli publication-title: Int. J. Psychophysiol. – reference: J. Estepp, S. Klosterman, J. Christensen, An assessment of non-stationarity in physiological cognitive state assessment using artificial neural networks, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 6552–6555. – volume: 25 start-page: 23 year: 1997 end-page: 48 ident: bib3 article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion publication-title: Int. J. Comput. Vis. – reference: J. Wagner, J. Kim, From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification, in: Proceedings of IEEE International Conference on Multimedia and Expo, 2005, pp. 940–943. – reference: V. Petrushin, Emotion in speech: recognition and application to call centers, in: Proceedings of the Artificial Networks in Engineering Conference, 1999, pp. 7–10. – volume: 7 start-page: 171 year: 1993 end-page: 193 ident: bib29 article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory publication-title: Cogn. Emot. – volume: 226 start-page: 13 year: 1997 end-page: 16 ident: bib51 article-title: Non-linear analysis of emotion EEG publication-title: Neurosci. Lett. – volume: 9 start-page: 87 year: 1995 end-page: 108 ident: bib31 article-title: Emotion elicitation using films publication-title: Cogn. Emot. – volume: 5 start-page: 110 year: 1995 end-page: 117 ident: bib52 article-title: Approximate entropy (apen) as a complexity measure publication-title: Chaos Interdiscip. J. Nonlinear Sci. – volume: 228 start-page: 750 year: 1985 end-page: 752 ident: bib67 article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes publication-title: Science – volume: 57 start-page: 1798 year: 2010 end-page: 1806 ident: bib48 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. – volume: 50 start-page: 181 year: 2003 end-page: 187 ident: bib7 article-title: Heart rate response is longer after negative emotions than after positive emotions publication-title: Int. J. Psychophysiol. – year: 1983 ident: bib57 article-title: The Fractal Geometry of Nature – year: 1962 ident: bib27 article-title: A Laboratory Study of Psychological Stress Produced by a Motion Picture Film – volume: 3 start-page: 30 year: 2011 ident: bib53 article-title: Emotion recognition method using entropy analysis of EEG signals publication-title: Int. J. Image Graph. Signal Process. – volume: 42 start-page: 419 year: 2004 end-page: 427 ident: bib6 article-title: Emotion recognition system using short-term monitoring of physiological signals publication-title: Med. Biol. Eng. Comput. – volume: 23 start-page: 745 year: 1985 end-page: 755 ident: bib22 article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis publication-title: Neuropsychologia – reference: X. Li, B. Hu, T. Zhu, J. Yan, F. Zheng, Towards affective learning with an EEG feedback approach, in: Proceedings of the 1st ACM International Workshop on Multimedia Technologies for Distance Learning, 2009, pp. 33–38. – volume: 14 start-page: 186 year: 2010 end-page: 197 ident: bib45 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 31 start-page: 73 year: 1990 end-page: 93 ident: bib28 article-title: Psychophysiological response patterns to positive and negative film stimuli publication-title: Biol. Psychol. – volume: 80 start-page: 37 year: 2005 end-page: 45 ident: bib59 article-title: Non-linear analysis of EEG signals at various sleep stages publication-title: Comput. Methods Progr. Biomed. – reference: D. Nie, X. Wang, L. Shi, B. Lu, EEG-based emotion recognition during watching movies, in: Proceedings of International IEEE/EMBS Conference on Neural Engineering, 2011, pp. 667–670. – volume: 29 start-page: 576 year: 1992 end-page: 592 ident: bib14 article-title: Psychometric properties of resting anterior EEG asymmetry publication-title: Psychophysiology – volume: 100 start-page: 535 year: 1991 ident: bib36 article-title: Left frontal hypoactivation in depression publication-title: J. Abnorm. Psychol. – volume: 37 start-page: 257 year: 2000 end-page: 261 ident: bib15 article-title: Affective picture processing publication-title: Psychophysiology – volume: 25 start-page: 49 year: 1994 end-page: 59 ident: bib46 article-title: Measuring emotion publication-title: J. Behav. Ther. Exp. Psychiatry – volume: 29 start-page: 169 year: 1999 end-page: 195 ident: bib65 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance publication-title: Brain Res. Rev. – volume: 3 start-page: 390 year: 2010 end-page: 396 ident: bib44 article-title: Classification of human emotion from EEG using discrete wavelet transform publication-title: J. Biomed. Sci. Eng. – volume: 218 start-page: 1235 year: 1982 ident: bib11 article-title: Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants publication-title: Science – volume: 79 start-page: 165 year: 2008 end-page: 170 ident: bib66 article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band publication-title: Biol. Psychol. – reference: 〉, 2001. – reference: L. Shi, B. Lu, Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, pp. 6587–6590. – volume: 16 start-page: 202 year: 1979 end-page: 203 ident: bib20 article-title: Frontal versus parietal EEG asymmetry during positive and negative affect publication-title: Psychophysiology – volume: 1 start-page: 21 year: 2007 end-page: 25 ident: bib49 article-title: EEG feature extraction for classifying emotions using FCM and FKM publication-title: Int. J. Comput. Commun. – volume: 32 start-page: 1084 year: 2007 end-page: 1093 ident: bib50 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. – volume: 54 start-page: 1325 year: 1985 end-page: 1328 ident: bib58 article-title: Fractal sandstone pores publication-title: Phys. Rev. Lett. – volume: 33 start-page: 239 year: 2004 end-page: 251 ident: bib25 article-title: Which emotions can be induced by music? what are the underlying mechanisms? and how can we measure them? publication-title: J. New Music Res. – volume: 80 start-page: 17 year: 2005 end-page: 23 ident: bib55 article-title: Characterization of eegła comparative study publication-title: Comput. Methods Progr. Biomed. – volume: 15 start-page: 737 year: 2011 end-page: 746 ident: bib9 article-title: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 41 start-page: 75 year: 2001 end-page: 85 ident: bib40 article-title: Emotion, attention and the” negativity bias”, studied through event-related potentials publication-title: Int. J. Psychophysiol. – volume: 36 start-page: 96 year: 2006 end-page: 105 ident: bib4 article-title: A real-time automated system for the recognition of human facial expressions publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – reference: C. Chang, C. Lin, Libsvm: A Library for Support Vector Machines, Software Available at 〈 – reference: M. Li, B. Lu, Emotion classification based on gamma-band EEG, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 1223–1226. – volume: 19 start-page: 1095 year: 2005 ident: bib30 article-title: A revised film set for the induction of basic emotions publication-title: Cogn. Emot. – year: 2000 ident: bib1 article-title: Affective Computing – volume: 314 start-page: 13 year: 2001 end-page: 16 ident: bib70 article-title: Parietal electroencephalogram beta asymmetry and selective attention to angry facial expressions in healthy human subjects publication-title: Neurosci. Lett. – volume: 67 start-page: 7 year: 2004 end-page: 50 ident: bib8 article-title: Frontal EEG asymmetry as a moderator and mediator of emotion publication-title: Biol. Psychol. – year: 1994 ident: bib21 article-title: The Nature of Emotion – year: 1978 ident: bib19 article-title: A Social Interactional Theory of Emotions – year: 2002 ident: bib61 article-title: MyiLibrary, Principal Component Analysis, vol. 2 – volume: 72 start-page: 1302 year: 2009 end-page: 1306 ident: bib43 article-title: Analysis of positive and negative emotions in natural scene using brain activity and gist publication-title: Neurocomputing – volume: 5 start-page: 193 year: 1987 end-page: 205 ident: bib38 article-title: Judgements of emotion in words and faces publication-title: Int. J. Psychophysiol. – volume: 12 start-page: 709 year: 2001 end-page: 714 ident: bib39 article-title: Emotional expression boosts early visual processing of the face publication-title: Neuroreport – volume: 1 start-page: 281 year: 1986 end-page: 312 ident: bib18 article-title: Attribution, emotion, and action publication-title: Handbook of Motivation and Cognition – reference: R. Khosrowabadi, A. Wahab bin Abdul Rahman, Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram, in: Proceedings of International Conference on Information and Communication Technology for the Muslim World, 2010, pp. 102–107. – volume: 74 start-page: 1310 year: 1998 end-page: 1316 ident: bib12 article-title: Anger and frontal brain activity publication-title: J. Personal. Soc. Psychol. – year: 1988 ident: bib23 article-title: The International Affective Picture System (Photographic Slides) – volume: 44 start-page: 293 year: 2007 end-page: 304 ident: bib47 article-title: Music and emotion publication-title: Psychophysiology – year: 1998 ident: bib62 article-title: Statistical Learning Theory – reference: D. Nie, Emotion recognition based on EEG (Master's thesis), Shanghai Jiao Tong University, Shanghai, 2012 (in Chinese). – volume: 76 year: 1950 ident: bib54 article-title: Long-term storage capacity of reservoirs publication-title: American Society of Civil Engineering – reference: G. Chanel, J. Kronegg, D. Grandjean, T. Pun, Emotion assessment: arousal evaluation using EEGs and peripheral physiological signals, in: Proceedings of Multimedia Content Representation, Classification and Security, 2006, pp. 530–537. – volume: 295 start-page: 7 year: 2002 ident: bib63 article-title: The isomap algorithm and topological stability publication-title: Science – ident: 10.1016/j.neucom.2013.06.046_bib24 doi: 10.3115/1220575.1220648 – ident: 10.1016/j.neucom.2013.06.046_bib10 doi: 10.1145/1631111.1631118 – volume: 79 start-page: 165 year: 2008 ident: 10.1016/j.neucom.2013.06.046_bib66 article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2008.04.005 – year: 1988 ident: 10.1016/j.neucom.2013.06.046_bib23 – volume: 10 start-page: 2691 year: 1999 ident: 10.1016/j.neucom.2013.06.046_bib16 article-title: Rapid emotional face processing in the human right and left brain hemispheres: an ERP study publication-title: Neuroreport doi: 10.1097/00001756-199909090-00001 – year: 1983 ident: 10.1016/j.neucom.2013.06.046_bib57 – volume: 3 start-page: 390 year: 2010 ident: 10.1016/j.neucom.2013.06.046_bib44 article-title: Classification of human emotion from EEG using discrete wavelet transform publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2010.34054 – volume: 25 start-page: 49 year: 1994 ident: 10.1016/j.neucom.2013.06.046_bib46 article-title: Measuring emotion publication-title: J. Behav. Ther. Exp. Psychiatry doi: 10.1016/0005-7916(94)90063-9 – ident: 10.1016/j.neucom.2013.06.046_bib60 doi: 10.1109/IEMBS.2010.5627125 – volume: 1 start-page: 281 year: 1986 ident: 10.1016/j.neucom.2013.06.046_bib18 article-title: Attribution, emotion, and action publication-title: Handbook of Motivation and Cognition – year: 1962 ident: 10.1016/j.neucom.2013.06.046_bib27 – ident: 10.1016/j.neucom.2013.06.046_bib64 – volume: 32 start-page: 1084 year: 2007 ident: 10.1016/j.neucom.2013.06.046_bib50 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.02.005 – ident: 10.1016/j.neucom.2013.06.046_bib42 doi: 10.1109/IEMBS.2009.5334139 – year: 1978 ident: 10.1016/j.neucom.2013.06.046_bib19 – volume: 19 start-page: 1095 year: 2005 ident: 10.1016/j.neucom.2013.06.046_bib30 article-title: A revised film set for the induction of basic emotions publication-title: Cogn. Emot. doi: 10.1080/02699930541000084 – volume: 14 start-page: 186 year: 2010 ident: 10.1016/j.neucom.2013.06.046_bib45 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2034649 – year: 2002 ident: 10.1016/j.neucom.2013.06.046_bib61 – ident: 10.1016/j.neucom.2013.06.046_bib34 – volume: 5 start-page: 110 year: 1995 ident: 10.1016/j.neucom.2013.06.046_bib52 article-title: Approximate entropy (apen) as a complexity measure publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.166092 – volume: 64 start-page: 91 year: 2007 ident: 10.1016/j.neucom.2013.06.046_bib69 article-title: Emotional face expressions are differentiated with brain oscillations publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2006.07.003 – volume: 15 start-page: 737 year: 2011 ident: 10.1016/j.neucom.2013.06.046_bib9 article-title: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2157933 – volume: 72 start-page: 1302 year: 2009 ident: 10.1016/j.neucom.2013.06.046_bib43 article-title: Analysis of positive and negative emotions in natural scene using brain activity and gist publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.11.007 – volume: 35 start-page: 607 year: 1998 ident: 10.1016/j.neucom.2013.06.046_bib35 article-title: Anterior electrophysiological asymmetries, emotion, and depression publication-title: Psychophysiology doi: 10.1017/S0048577298000134 – volume: 106 start-page: 159 year: 1997 ident: 10.1016/j.neucom.2013.06.046_bib13 article-title: Behavioral activation sensitivity and resting frontal EEG asymmetry publication-title: J. Abnorm. Psychol. doi: 10.1037/0021-843X.106.1.159 – ident: 10.1016/j.neucom.2013.06.046_bib2 – volume: 12 start-page: 709 year: 2001 ident: 10.1016/j.neucom.2013.06.046_bib39 article-title: Emotional expression boosts early visual processing of the face publication-title: Neuroreport doi: 10.1097/00001756-200103260-00019 – volume: 7 start-page: 171 year: 1993 ident: 10.1016/j.neucom.2013.06.046_bib29 article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory publication-title: Cogn. Emot. doi: 10.1080/02699939308409183 – volume: 25 start-page: 23 year: 1997 ident: 10.1016/j.neucom.2013.06.046_bib3 article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1007977618277 – volume: 16 start-page: 202 year: 1979 ident: 10.1016/j.neucom.2013.06.046_bib20 article-title: Frontal versus parietal EEG asymmetry during positive and negative affect publication-title: Psychophysiology – volume: 50 start-page: 181 year: 2003 ident: 10.1016/j.neucom.2013.06.046_bib7 article-title: Heart rate response is longer after negative emotions than after positive emotions publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(03)00146-6 – ident: 10.1016/j.neucom.2013.06.046_bib33 doi: 10.1109/NER.2011.5910636 – ident: 10.1016/j.neucom.2013.06.046_bib32 doi: 10.1109/IEMBS.2011.6091616 – volume: 5 start-page: 193 year: 1987 ident: 10.1016/j.neucom.2013.06.046_bib38 article-title: Judgements of emotion in words and faces publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(87)90006-7 – year: 1994 ident: 10.1016/j.neucom.2013.06.046_bib21 – volume: 60 start-page: 34 year: 2006 ident: 10.1016/j.neucom.2013.06.046_bib37 article-title: From emotion perception to emotion experience publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.04.007 – year: 1998 ident: 10.1016/j.neucom.2013.06.046_bib62 – volume: 9 start-page: 87 year: 1995 ident: 10.1016/j.neucom.2013.06.046_bib31 article-title: Emotion elicitation using films publication-title: Cogn. Emot. doi: 10.1080/02699939508408966 – volume: 37 start-page: 257 year: 2000 ident: 10.1016/j.neucom.2013.06.046_bib15 article-title: Affective picture processing publication-title: Psychophysiology doi: 10.1111/1469-8986.3720257 – volume: 41 start-page: 75 year: 2001 ident: 10.1016/j.neucom.2013.06.046_bib40 article-title: Emotion, attention and the” negativity bias”, studied through event-related potentials publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(00)00195-1 – volume: 44 start-page: 293 year: 2007 ident: 10.1016/j.neucom.2013.06.046_bib47 article-title: Music and emotion publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00497.x – volume: 57 start-page: 1798 year: 2010 ident: 10.1016/j.neucom.2013.06.046_bib48 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – volume: 314 start-page: 13 year: 2001 ident: 10.1016/j.neucom.2013.06.046_bib70 article-title: Parietal electroencephalogram beta asymmetry and selective attention to angry facial expressions in healthy human subjects publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(01)02246-7 – volume: 13 start-page: 427 year: 2002 ident: 10.1016/j.neucom.2013.06.046_bib17 article-title: An ERP study on the time course of emotional face processing publication-title: Neuroreport doi: 10.1097/00001756-200203250-00013 – volume: 33 start-page: 239 year: 2004 ident: 10.1016/j.neucom.2013.06.046_bib25 article-title: Which emotions can be induced by music? what are the underlying mechanisms? and how can we measure them? publication-title: J. New Music Res. doi: 10.1080/0929821042000317822 – volume: 67 start-page: 7 year: 2004 ident: 10.1016/j.neucom.2013.06.046_bib8 article-title: Frontal EEG asymmetry as a moderator and mediator of emotion publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2004.03.002 – volume: 29 start-page: 576 year: 1992 ident: 10.1016/j.neucom.2013.06.046_bib14 article-title: Psychometric properties of resting anterior EEG asymmetry publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1992.tb02034.x – volume: 3 start-page: 30 year: 2011 ident: 10.1016/j.neucom.2013.06.046_bib53 article-title: Emotion recognition method using entropy analysis of EEG signals publication-title: Int. J. Image Graph. Signal Process. doi: 10.5815/ijigsp.2011.05.05 – volume: 76 year: 1950 ident: 10.1016/j.neucom.2013.06.046_bib54 article-title: Long-term storage capacity of reservoirs publication-title: American Society of Civil Engineering – ident: 10.1016/j.neucom.2013.06.046_bib41 doi: 10.1007/11848035_70 – volume: 80 start-page: 37 year: 2005 ident: 10.1016/j.neucom.2013.06.046_bib59 article-title: Non-linear analysis of EEG signals at various sleep stages publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2005.06.011 – volume: 54 start-page: 1325 year: 1985 ident: 10.1016/j.neucom.2013.06.046_bib58 article-title: Fractal sandstone pores publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.1325 – year: 2000 ident: 10.1016/j.neucom.2013.06.046_bib1 – volume: 11 start-page: 131 year: 1991 ident: 10.1016/j.neucom.2013.06.046_bib26 article-title: Autonomic, neuroendocrine, and subjective responses to emotion-inducing film stimuli publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(91)90005-I – volume: 22 start-page: 353 year: 1985 ident: 10.1016/j.neucom.2013.06.046_bib68 article-title: Effects of lateralized presentations of faces on self-reports of emotion and EEG asymmetry in depressed and non-depressed subjects publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1985.tb01615.x – volume: 23 start-page: 745 year: 1985 ident: 10.1016/j.neucom.2013.06.046_bib22 article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis publication-title: Neuropsychologia doi: 10.1016/0028-3932(85)90081-8 – ident: 10.1016/j.neucom.2013.06.046_bib56 doi: 10.1109/ICT4M.2010.5971942 – volume: 36 start-page: 96 year: 2006 ident: 10.1016/j.neucom.2013.06.046_bib4 article-title: A real-time automated system for the recognition of human facial expressions publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2005.854502 – volume: 31 start-page: 73 year: 1990 ident: 10.1016/j.neucom.2013.06.046_bib28 article-title: Psychophysiological response patterns to positive and negative film stimuli publication-title: Biol. Psychol. doi: 10.1016/0301-0511(90)90079-C – volume: 1 start-page: 21 year: 2007 ident: 10.1016/j.neucom.2013.06.046_bib49 article-title: EEG feature extraction for classifying emotions using FCM and FKM publication-title: Int. J. Comput. Commun. – volume: 42 start-page: 419 year: 2004 ident: 10.1016/j.neucom.2013.06.046_bib6 article-title: Emotion recognition system using short-term monitoring of physiological signals publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344719 – volume: 80 start-page: 17 year: 2005 ident: 10.1016/j.neucom.2013.06.046_bib55 article-title: Characterization of eegła comparative study publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2005.06.005 – volume: 100 start-page: 535 year: 1991 ident: 10.1016/j.neucom.2013.06.046_bib36 article-title: Left frontal hypoactivation in depression publication-title: J. Abnorm. Psychol. doi: 10.1037/0021-843X.100.4.535 – volume: 218 start-page: 1235 year: 1982 ident: 10.1016/j.neucom.2013.06.046_bib11 article-title: Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants publication-title: Science doi: 10.1126/science.7146906 – volume: 226 start-page: 13 year: 1997 ident: 10.1016/j.neucom.2013.06.046_bib51 article-title: Non-linear analysis of emotion EEG publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(97)00232-2 – volume: 295 start-page: 7 year: 2002 ident: 10.1016/j.neucom.2013.06.046_bib63 article-title: The isomap algorithm and topological stability publication-title: Science doi: 10.1126/science.295.5552.7a – volume: 228 start-page: 750 year: 1985 ident: 10.1016/j.neucom.2013.06.046_bib67 article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes publication-title: Science doi: 10.1126/science.3992243 – ident: 10.1016/j.neucom.2013.06.046_bib5 doi: 10.1109/ICME.2005.1521579 – volume: 29 start-page: 169 year: 1999 ident: 10.1016/j.neucom.2013.06.046_bib65 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(98)00056-3 – volume: 74 start-page: 1310 year: 1998 ident: 10.1016/j.neucom.2013.06.046_bib12 article-title: Anger and frontal brain activity publication-title: J. Personal. Soc. Psychol. doi: 10.1037/0022-3514.74.5.1310 |
| SSID | ssj0017129 |
| Score | 2.6065276 |
| Snippet | Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 94 |
| SubjectTerms | Applied sciences Artificial intelligence Biological and medical sciences Brain–computer interface Computer science; control theory; systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Electrodiagnosis. Electric activity recording Electroencephalograph Emotion classification Exact sciences and technology Feature reduction Investigative techniques, diagnostic techniques (general aspects) Manifold learning Medical sciences Memory organisation. Data processing Nervous system Software Support vector machine |
| Title | Emotional state classification from EEG data using machine learning approach |
| URI | https://dx.doi.org/10.1016/j.neucom.2013.06.046 https://www.proquest.com/docview/1531004597 |
| Volume | 129 |
| WOSCitedRecordID | wos000332132400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg4wEJidsQHTAZibfKqLnaeaxQgKGq2sMm-hY5jjN1Ymm1tGg_f-f4tpYOVTzwklZWE6c5X46P7e98h5BPdROpqGk5g88UU3JaVozygvFEiCxPFaBoZIpN8OlUzGbFmaPy9qacAO86cXtbLP-rqaENjI2ps_9g7nBRaIDvYHQ4gtnhuGv4B8cfI7ihTLkGtxAwvkY9hAaNX2yCpLRFfEzOCASdQ4WxNJKHHAURc0_K8tsQeaTDtVlWuDbsS-3LTVwGVfLg3sc2DWo2lwv2U89DqDyeDqenIfFhcmG3OxZsAgi93Fx9iAxpxfFQzZKYG7831xXjjEHQuO1i3Z-zTtJWNXbDbWQEB3Y9uV1UuPrc6TXSeqDvxAitpg8IZ_8xoAWaIU4ncV_yMTmMk1zA3PxwfFrOfoRtJh7FVozR3bPPrTQEwN2e_xa7PFvKHt6o1pZC2RnVTahy_oIc3Sdx0rMAj5fkke5ekedu1kGdT--hyRf28G2vySTgghpc0G1cUMQFBVxQxAU1uKAOF9TjgnpcHJGLr-X5l-_Mld1gCmLnFUuEEgVXWdbETdJK1EMqirjWWZ3nUkjw-LxRSsg257pp0ljGvOaYAp3kGHHq5A056BadfkuoKMDBw1NGjbO0rkWho0bWo1blI9lGUT0giX-glXKa9Fga5VflyYdXlTVDhWaokIOZ5gPCwllLq8my5_fc26pycaWNFysA254zT7ZMG7rzyBqQj97WFfhl3GyTnV6s-woiCRRjhPn68b6LvCNP71-t9-RgdbPWH8gT9Xs1729OHGbvAMAhrSE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Neurocomputing+%28Amsterdam%29&rft.atitle=Emotional+state+classification+from+EEG+data+using+machine+learning+approach&rft.au=WANG%2C+Xiao-Wei&rft.au=DAN+NIE&rft.au=LU%2C+Bao-Liang&rft.date=2014-04-10&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=129&rft.spage=94&rft.epage=106&rft_id=info:doi/10.1016%2Fj.neucom.2013.06.046&rft.externalDBID=n%2Fa&rft.externalDocID=28284372 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |