Emotional state classification from EEG data using machine learning approach

Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning algorithms, and various real-world applications of brain–computer interface for normal people. Until now, however, researchers had little understanding...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 129; s. 94 - 106
Hlavní autoři: Wang, Xiao-Wei, Nie, Dan, Lu, Bao-Liang
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 10.04.2014
Elsevier
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning algorithms, and various real-world applications of brain–computer interface for normal people. Until now, however, researchers had little understanding of the details of relationship between different emotional states and various EEG features. To improve the accuracy of EEG-based emotion classification and visualize the changes of emotional states with time, this paper systematically compares three kinds of existing EEG features for emotion classification, introduces an efficient feature smoothing method for removing the noise unrelated to emotion task, and proposes a simple approach to tracking the trajectory of emotion changes with manifold learning. To examine the effectiveness of these methods introduced in this paper, we design a movie induction experiment that spontaneously leads subjects to real emotional states and collect an EEG data set of six subjects. From experimental results on our EEG data set, we found that (a) power spectrum feature is superior to other two kinds of features; (b) a linear dynamic system based feature smoothing method can significantly improve emotion classification accuracy; and (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning.
AbstractList Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning algorithms, and various real-world applications of brain-computer interface for normal people. Until now, however, researchers had little understanding of the details of relationship between different emotional states and various EEG features. To improve the accuracy of EEG-based emotion classification and visualize the changes of emotional states with time, this paper systematically compares three kinds of existing EEG features for emotion classification, introduces an efficient feature smoothing method for removing the noise unrelated to emotion task, and proposes a simple approach to tracking the trajectory of emotion changes with manifold learning. To examine the effectiveness of these methods introduced in this paper, we design a movie induction experiment that spontaneously leads subjects to real emotional states and collect an EEG data set of six subjects. From experimental results on our EEG data set, we found that (a) power spectrum feature is superior to other two kinds of features; (b) a linear dynamic system based feature smoothing method can significantly improve emotion classification accuracy; and (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning.
Author Lu, Bao-Liang
Nie, Dan
Wang, Xiao-Wei
Author_xml – sequence: 1
  givenname: Xiao-Wei
  surname: Wang
  fullname: Wang, Xiao-Wei
  organization: Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
– sequence: 2
  givenname: Dan
  surname: Nie
  fullname: Nie, Dan
  organization: Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
– sequence: 3
  givenname: Bao-Liang
  surname: Lu
  fullname: Lu, Bao-Liang
  email: bllu@sjtu.edu.cn, blu@cs.sjtu.edu.cn
  organization: Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28284372$$DView record in Pascal Francis
BookMark eNqFkEuLFDEUhYOMYM_oP3BRG8FN1eRReZQLQYZ2FBrc6DrcvnVL01QlbZIW_PdTbY8bF87qwuF858J3za5iisTYa8E7wYW5PXSRTpiWTnKhOm463ptnbCOcla2TzlyxDR-kbqUS8gW7LuXAubBCDhu22y6phhRhbkqFSg3OUEqYAsI5bqaclma7vW9GqNCcSojfmwXwR4jUzAQ5ngM4HnNaw5fs-QRzoVeP94Z9-7j9evep3X25_3z3Yddir3RtlUM3WNR6lKOaQCpth0HuSe-NAQe9c3ZEdDAZS-PYS5B2b6WTWhnOuSV1w95edte3P09Uql9CQZpniJROxQutBOe9HuxaffNYhYIwTxkihuKPOSyQf_t11fXKyrX37tLDnErJNHkM9Y-CmiHMXnB_Vu0P_qLan1V7bvyqeoX7f-C_-09g7y8Yra5-Bcq-YKCINIZMWP2Ywv8HHgB-Lpwu
CitedBy_id crossref_primary_10_3390_app15052742
crossref_primary_10_3390_s21051678
crossref_primary_10_1057_s41599_024_03691_1
crossref_primary_10_1145_3617503
crossref_primary_10_1002_ibra_70002
crossref_primary_10_1016_j_bspc_2014_07_005
crossref_primary_10_1016_j_chb_2016_08_029
crossref_primary_10_3390_s21051792
crossref_primary_10_1016_j_compbiomed_2024_108788
crossref_primary_10_1016_j_eswa_2022_118025
crossref_primary_10_1016_j_compbiomed_2021_104696
crossref_primary_10_1007_s11042_023_14489_9
crossref_primary_10_1007_s11227_022_05026_w
crossref_primary_10_1007_s11633_022_1352_1
crossref_primary_10_1016_j_inffus_2018_10_009
crossref_primary_10_1016_j_neucom_2015_05_126
crossref_primary_10_1186_s13673_019_0201_x
crossref_primary_10_1016_j_gpb_2018_11_005
crossref_primary_10_1016_j_bspc_2023_104661
crossref_primary_10_1109_TAFFC_2025_3561439
crossref_primary_10_1007_s10548_016_0524_0
crossref_primary_10_1109_TAFFC_2017_2712143
crossref_primary_10_1080_00038628_2020_1749980
crossref_primary_10_1109_TAFFC_2020_2994159
crossref_primary_10_1109_TIM_2021_3090164
crossref_primary_10_1109_ACCESS_2020_2974009
crossref_primary_10_3390_mi14030702
crossref_primary_10_1007_s11063_018_9845_1
crossref_primary_10_1038_s41598_025_06364_4
crossref_primary_10_1109_TIM_2022_3168927
crossref_primary_10_1371_journal_pone_0189367
crossref_primary_10_3390_app14178071
crossref_primary_10_1007_s13042_016_0601_4
crossref_primary_10_1016_j_compbiomed_2024_108445
crossref_primary_10_3389_fnhum_2016_00235
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1007_s42486_021_00078_y
crossref_primary_10_1016_j_neucom_2015_06_076
crossref_primary_10_1016_j_engappai_2025_112144
crossref_primary_10_1016_j_knosys_2025_113559
crossref_primary_10_1016_j_jcbs_2022_07_006
crossref_primary_10_3389_fnins_2021_693468
crossref_primary_10_1016_j_neuroimage_2024_120848
crossref_primary_10_1109_TAFFC_2017_2714671
crossref_primary_10_3390_s23041917
crossref_primary_10_1088_1741_2552_abda0c
crossref_primary_10_1055_a_2207_6117
crossref_primary_10_1109_ACCESS_2021_3089358
crossref_primary_10_1016_j_compbiomed_2022_105718
crossref_primary_10_1007_s13042_018_0880_z
crossref_primary_10_1016_j_bspc_2025_108248
crossref_primary_10_1038_s41598_025_87414_9
crossref_primary_10_1007_s42452_025_06692_0
crossref_primary_10_1109_ACCESS_2019_2941251
crossref_primary_10_1109_TETCI_2025_3543307
crossref_primary_10_1007_s00521_018_3925_z
crossref_primary_10_1016_j_cmpb_2016_08_010
crossref_primary_10_1016_j_bspc_2024_106812
crossref_primary_10_1109_JSEN_2023_3303441
crossref_primary_10_1007_s11571_020_09601_w
crossref_primary_10_3390_app9163355
crossref_primary_10_3390_s20123482
crossref_primary_10_1007_s11517_022_02670_5
crossref_primary_10_3389_fnagi_2022_945024
crossref_primary_10_1016_j_cmpb_2024_108446
crossref_primary_10_1038_s41598_023_37829_z
crossref_primary_10_3389_fnins_2017_00325
crossref_primary_10_1007_s00221_025_07002_1
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_1016_j_bbr_2015_10_036
crossref_primary_10_3390_app142311323
crossref_primary_10_1016_j_bspc_2023_105312
crossref_primary_10_3390_electronics12143188
crossref_primary_10_3390_s20123491
crossref_primary_10_1007_s12517_019_4597_4
crossref_primary_10_1038_s41598_022_09578_y
crossref_primary_10_3390_math10040582
crossref_primary_10_1016_j_engappai_2025_111122
crossref_primary_10_1016_j_apacoust_2020_107840
crossref_primary_10_1109_COMST_2022_3232576
crossref_primary_10_1016_j_bbe_2020_04_005
crossref_primary_10_1007_s10339_019_00924_z
crossref_primary_10_1016_j_neuroimage_2023_120452
crossref_primary_10_1016_j_bspc_2023_105422
crossref_primary_10_3390_s20010059
crossref_primary_10_1155_2021_6631616
crossref_primary_10_1109_TAFFC_2019_2936198
crossref_primary_10_3390_s24030877
crossref_primary_10_1109_ACCESS_2024_3497160
crossref_primary_10_3390_math12081180
crossref_primary_10_1109_JBHI_2019_2893324
crossref_primary_10_1109_ACCESS_2025_3574515
crossref_primary_10_1016_j_cogsys_2025_101394
crossref_primary_10_1016_j_neucom_2017_09_081
crossref_primary_10_1109_TAFFC_2021_3130387
crossref_primary_10_1109_JSEN_2020_3020828
crossref_primary_10_1080_0144929X_2018_1485745
crossref_primary_10_1111_jcal_12284
crossref_primary_10_1155_2016_6734720
crossref_primary_10_1109_TAFFC_2021_3093923
crossref_primary_10_1371_journal_pone_0222276
crossref_primary_10_1016_j_compbiomed_2020_103927
crossref_primary_10_1155_2018_3050214
crossref_primary_10_1007_s40708_016_0051_5
crossref_primary_10_3389_fnins_2025_1487175
crossref_primary_10_1109_TCDS_2020_2976112
crossref_primary_10_1371_journal_pone_0186916
crossref_primary_10_1016_j_inffus_2021_07_007
crossref_primary_10_1109_JSEN_2022_3144317
crossref_primary_10_1109_TAFFC_2020_3025777
crossref_primary_10_1631_FITEE_2300781
crossref_primary_10_1016_j_brainres_2024_149039
crossref_primary_10_1016_j_compbiomed_2022_105303
crossref_primary_10_1016_j_patcog_2018_01_035
crossref_primary_10_1080_10255842_2023_2286918
crossref_primary_10_3390_brainsci15070714
crossref_primary_10_1016_j_bspc_2021_103291
crossref_primary_10_1007_s42979_022_01155_4
crossref_primary_10_1016_j_bspc_2024_106189
crossref_primary_10_1088_1741_2552_abf609
crossref_primary_10_1016_j_jvcir_2019_102672
crossref_primary_10_1016_j_ifacol_2020_12_2753
crossref_primary_10_1016_j_neunet_2025_107853
crossref_primary_10_3389_fnhum_2018_00267
crossref_primary_10_1016_j_neunet_2024_106148
crossref_primary_10_1088_1741_2552_abb580
crossref_primary_10_1088_1741_2552_ad7060
crossref_primary_10_1016_j_medengphy_2018_07_009
crossref_primary_10_1109_TCYB_2018_2797176
crossref_primary_10_1515_bmt_2022_0479
crossref_primary_10_3389_fnins_2018_00992
crossref_primary_10_1016_j_jce_2019_07_002
crossref_primary_10_1016_j_ijpsycho_2014_07_014
crossref_primary_10_1016_j_knosys_2025_114364
crossref_primary_10_1155_2020_6925107
crossref_primary_10_1109_TCDS_2017_2726083
crossref_primary_10_1109_ACCESS_2023_3270977
crossref_primary_10_1109_TCDS_2023_3293321
crossref_primary_10_1080_10255842_2022_2143714
crossref_primary_10_1109_ACCESS_2021_3051281
crossref_primary_10_1109_TIM_2022_3165280
crossref_primary_10_3390_ijerph19042158
crossref_primary_10_1016_j_bspc_2017_12_003
crossref_primary_10_1155_2015_720450
crossref_primary_10_3390_bioengineering10091040
crossref_primary_10_1016_j_inffus_2025_103368
crossref_primary_10_1007_s12559_017_9533_x
crossref_primary_10_3390_s21072338
crossref_primary_10_1016_j_cities_2018_09_009
crossref_primary_10_1109_TAFFC_2018_2790939
crossref_primary_10_3389_fpsyg_2021_771591
crossref_primary_10_1016_j_eswa_2020_114011
crossref_primary_10_31083_j_jin_2019_03_601
crossref_primary_10_1109_TNNLS_2020_3008938
crossref_primary_10_1088_1741_2552_abf2e4
crossref_primary_10_1109_ACCESS_2018_2876162
crossref_primary_10_1109_LRA_2020_3036372
crossref_primary_10_13105_wjma_v11_i4_79
crossref_primary_10_3390_s23020915
crossref_primary_10_3389_fnhum_2018_00198
crossref_primary_10_1088_1741_2552_ac6d7d
crossref_primary_10_1002_cpe_5199
crossref_primary_10_1109_ACCESS_2020_3030680
crossref_primary_10_1038_s41562_022_01310_0
crossref_primary_10_1007_s40708_017_0069_3
crossref_primary_10_1016_j_neucom_2016_06_093
crossref_primary_10_3390_app14020726
crossref_primary_10_1109_TOH_2021_3055842
crossref_primary_10_1016_j_engappai_2022_105349
crossref_primary_10_1016_j_jksuci_2019_11_003
crossref_primary_10_1080_10255842_2023_2252952
crossref_primary_10_1016_j_inffus_2023_101847
crossref_primary_10_1109_TIM_2022_3147882
crossref_primary_10_1016_j_sigpro_2016_07_026
crossref_primary_10_3390_brainsci12091159
crossref_primary_10_1007_s00521_024_09479_3
crossref_primary_10_1109_TBCAS_2020_2974154
crossref_primary_10_1109_TCDS_2024_3357547
crossref_primary_10_1109_JSEN_2015_2423152
crossref_primary_10_1016_j_cogsys_2018_06_009
crossref_primary_10_1109_TAFFC_2025_3555226
crossref_primary_10_3390_brainsci12081106
crossref_primary_10_3390_s19132999
crossref_primary_10_3233_THC_174836
crossref_primary_10_3389_fncom_2016_00055
crossref_primary_10_1038_s41598_024_74475_5
crossref_primary_10_1007_s11277_019_06328_8
crossref_primary_10_1016_j_cviu_2024_104121
crossref_primary_10_1016_j_procs_2018_04_056
crossref_primary_10_1017_dsj_2020_28
crossref_primary_10_3389_fnbot_2019_00046
crossref_primary_10_3389_fnhum_2022_1051463
crossref_primary_10_1109_TCDS_2020_3001642
crossref_primary_10_1016_j_ifacol_2023_10_486
crossref_primary_10_1109_JBHI_2024_3404146
crossref_primary_10_1016_j_neucom_2015_02_034
crossref_primary_10_1016_j_cosrev_2021_100399
crossref_primary_10_1007_s40815_018_0567_3
crossref_primary_10_1109_JSEN_2021_3108471
crossref_primary_10_1016_j_compbiomed_2023_106860
crossref_primary_10_1016_j_heliyon_2024_e31485
crossref_primary_10_1109_MC_2017_84
crossref_primary_10_1177_15500594231192817
crossref_primary_10_1186_s12911_017_0562_x
crossref_primary_10_1016_j_neucom_2025_130185
crossref_primary_10_1109_ACCESS_2020_2978163
crossref_primary_10_1016_j_jnca_2019_102423
crossref_primary_10_1016_j_bspc_2024_106217
crossref_primary_10_3389_fnins_2025_1541062
crossref_primary_10_1109_ACCESS_2019_2914872
crossref_primary_10_3390_math11234776
crossref_primary_10_1016_j_dt_2023_12_001
crossref_primary_10_3390_app14020702
crossref_primary_10_1007_s11280_018_0632_8
crossref_primary_10_3389_fncom_2016_00085
crossref_primary_10_3390_bioengineering10101200
crossref_primary_10_1007_s11760_019_01448_x
crossref_primary_10_1109_TAFFC_2025_3557873
crossref_primary_10_3390_en14010232
crossref_primary_10_1016_j_compbiomed_2020_103875
crossref_primary_10_1016_j_aei_2024_102522
crossref_primary_10_1109_JSEN_2023_3265688
crossref_primary_10_1007_s12243_019_00740_8
crossref_primary_10_1016_j_bspc_2022_103742
crossref_primary_10_1016_j_compbiomed_2022_106344
crossref_primary_10_1016_j_neucom_2016_03_108
crossref_primary_10_1016_j_bspc_2021_103361
crossref_primary_10_1038_s41598_023_33734_7
crossref_primary_10_1007_s11517_021_02452_5
crossref_primary_10_1007_s10209_019_00678_7
crossref_primary_10_1109_JSEN_2021_3049247
crossref_primary_10_1109_JBHI_2024_3416944
crossref_primary_10_1007_s12559_018_9590_9
crossref_primary_10_3390_s24061979
crossref_primary_10_1016_j_jobe_2024_108707
crossref_primary_10_1109_TOH_2023_3308059
crossref_primary_10_1016_j_neucom_2023_126260
crossref_primary_10_3390_s21103414
crossref_primary_10_1016_j_compind_2017_04_005
crossref_primary_10_1016_j_bspc_2019_101756
crossref_primary_10_3390_brainsci11030293
crossref_primary_10_1080_10447318_2023_2254644
crossref_primary_10_1155_2020_6929546
crossref_primary_10_1109_TCDS_2021_3090217
crossref_primary_10_1109_ACCESS_2021_3096430
crossref_primary_10_1145_3666002
crossref_primary_10_3389_fnhum_2017_00577
crossref_primary_10_1186_s40708_024_00242_x
crossref_primary_10_1080_00207454_2019_1634070
crossref_primary_10_1111_tops_12669
crossref_primary_10_1016_j_eswa_2014_02_043
crossref_primary_10_3390_s22062101
crossref_primary_10_1109_TVT_2019_2903299
crossref_primary_10_1016_j_bspc_2022_103818
crossref_primary_10_1016_j_ins_2018_09_061
crossref_primary_10_1080_17455030_2023_2226246
crossref_primary_10_1016_j_neucom_2025_130254
crossref_primary_10_1109_JBHI_2024_3395622
crossref_primary_10_1016_j_jisa_2024_103832
crossref_primary_10_1002_adfm_202200457
crossref_primary_10_1155_2016_7431012
crossref_primary_10_1371_journal_pone_0287513
crossref_primary_10_1016_j_jksuci_2020_10_007
crossref_primary_10_1109_JBHI_2020_3032678
crossref_primary_10_1016_j_eswa_2018_03_011
crossref_primary_10_1109_ACCESS_2019_2927768
crossref_primary_10_26634_jpr_3_4_13538
crossref_primary_10_3390_s23177350
crossref_primary_10_1186_s12938_023_01124_9
crossref_primary_10_1016_j_engappai_2024_108011
crossref_primary_10_1016_j_neuroimage_2018_10_073
crossref_primary_10_1016_j_neuroscience_2025_01_049
crossref_primary_10_3389_fdgth_2024_1335289
crossref_primary_10_1088_1741_2552_ac49a7
crossref_primary_10_1016_j_inffus_2019_06_006
crossref_primary_10_1007_s12559_019_09699_z
crossref_primary_10_1155_2020_6816502
crossref_primary_10_1016_j_neucom_2019_10_096
crossref_primary_10_1016_j_heliyon_2023_e23611
crossref_primary_10_1016_j_knosys_2020_106243
crossref_primary_10_1109_TAFFC_2021_3134183
crossref_primary_10_1155_2018_9750904
crossref_primary_10_1109_TBME_2024_3408279
crossref_primary_10_3390_s19030522
crossref_primary_10_3389_fnins_2023_1251677
crossref_primary_10_3390_diagnostics12102508
crossref_primary_10_3390_electronics11050770
crossref_primary_10_1016_j_neuropsychologia_2020_107506
crossref_primary_10_1587_transinf_2015EDP7251
crossref_primary_10_1186_s40708_023_00201_y
crossref_primary_10_3389_fphy_2020_629620
crossref_primary_10_1007_s11042_020_09354_y
crossref_primary_10_3233_JIFS_191923
crossref_primary_10_1088_1741_2552_14_1_016009
crossref_primary_10_1109_TIM_2022_3216829
crossref_primary_10_1007_s11042_023_16412_8
crossref_primary_10_1007_s13534_025_00475_7
crossref_primary_10_3390_s23084026
crossref_primary_10_1088_1741_2552_acae06
crossref_primary_10_1016_j_bspc_2020_102251
crossref_primary_10_1109_ACCESS_2022_3155647
crossref_primary_10_1155_2021_8537000
crossref_primary_10_1109_JBHI_2020_2995767
crossref_primary_10_1016_j_jsr_2019_12_022
crossref_primary_10_3389_fnhum_2022_936393
crossref_primary_10_1109_ACCESS_2019_2901950
crossref_primary_10_1016_j_bica_2018_04_012
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1088_1757_899X_341_1_012016
crossref_primary_10_1007_s10044_019_00860_w
crossref_primary_10_3390_e22050511
crossref_primary_10_1016_j_ijpsycho_2015_02_023
crossref_primary_10_1109_TSMC_2021_3073216
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1109_THMS_2023_3275626
crossref_primary_10_20965_jrm_2023_p0788
crossref_primary_10_1109_TAFFC_2018_2890636
crossref_primary_10_1109_ACCESS_2020_2979898
crossref_primary_10_3389_fnsys_2023_1123221
crossref_primary_10_3389_fnbot_2022_873239
crossref_primary_10_3389_fnhum_2020_589001
crossref_primary_10_1016_j_eswa_2020_114516
crossref_primary_10_1007_s10044_016_0567_6
crossref_primary_10_1145_3524499
crossref_primary_10_3389_frobt_2021_755150
crossref_primary_10_3390_s20236810
crossref_primary_10_1007_s12021_022_09568_5
crossref_primary_10_3389_fpsyg_2022_889427
crossref_primary_10_1109_TCDS_2021_3071170
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1016_j_bspc_2023_105690
crossref_primary_10_1109_LSP_2022_3179946
crossref_primary_10_1007_s10489_023_04561_0
crossref_primary_10_3390_s21092910
crossref_primary_10_1016_j_neucom_2015_09_085
crossref_primary_10_1016_j_compbiomed_2023_107595
crossref_primary_10_1016_j_compbiomed_2022_106088
crossref_primary_10_1016_j_knosys_2022_108819
crossref_primary_10_1088_1741_2552_abea62
crossref_primary_10_3390_s23208643
crossref_primary_10_3390_s24227377
crossref_primary_10_1155_2024_6091523
crossref_primary_10_3390_make3040042
crossref_primary_10_1109_JSEN_2024_3514094
crossref_primary_10_1111_psyp_14526
crossref_primary_10_1016_j_bspc_2018_05_039
crossref_primary_10_1109_TAMD_2015_2431497
crossref_primary_10_1109_ACCESS_2020_2981418
crossref_primary_10_3390_e24121735
crossref_primary_10_1016_j_bspc_2024_106648
crossref_primary_10_1145_3712259
crossref_primary_10_1109_ACCESS_2019_2944008
crossref_primary_10_3389_fnins_2021_689791
crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_1017_S0263574721000382
crossref_primary_10_1007_s11571_024_10108_x
crossref_primary_10_1016_j_medengphy_2020_05_006
crossref_primary_10_1145_3152128
crossref_primary_10_3389_fphys_2021_733264
crossref_primary_10_3758_s13415_017_0533_9
crossref_primary_10_1016_j_eswa_2022_118694
crossref_primary_10_3390_app7121239
crossref_primary_10_1016_j_bspc_2021_102711
crossref_primary_10_1109_TCDS_2017_2685338
crossref_primary_10_1109_ACCESS_2019_2949707
crossref_primary_10_1007_s10489_022_04366_7
crossref_primary_10_1088_1741_2552_ac7ba8
crossref_primary_10_1016_j_bspc_2024_106877
crossref_primary_10_1088_2632_2153_add4bb
crossref_primary_10_1016_j_bspc_2021_102743
crossref_primary_10_1007_s11063_022_11120_0
crossref_primary_10_3390_s22239282
crossref_primary_10_3390_s20020496
crossref_primary_10_3390_brainsci11111392
crossref_primary_10_1016_j_measurement_2019_107003
crossref_primary_10_1016_j_jksuci_2021_03_009
crossref_primary_10_3390_math8030413
crossref_primary_10_3390_s18124477
crossref_primary_10_1109_ACCESS_2020_2980893
crossref_primary_10_26599_BSA_2022_9050013
crossref_primary_10_1016_j_inffus_2020_01_011
crossref_primary_10_1007_s11042_021_11059_9
crossref_primary_10_1016_j_neuri_2022_100039
crossref_primary_10_1109_JBHI_2023_3303494
crossref_primary_10_1016_j_bspc_2021_102979
Cites_doi 10.3115/1220575.1220648
10.1145/1631111.1631118
10.1016/j.biopsycho.2008.04.005
10.1097/00001756-199909090-00001
10.4236/jbise.2010.34054
10.1016/0005-7916(94)90063-9
10.1109/IEMBS.2010.5627125
10.1016/j.eswa.2006.02.005
10.1109/IEMBS.2009.5334139
10.1080/02699930541000084
10.1109/TITB.2009.2034649
10.1063/1.166092
10.1016/j.ijpsycho.2006.07.003
10.1109/TITB.2011.2157933
10.1016/j.neucom.2008.11.007
10.1017/S0048577298000134
10.1037/0021-843X.106.1.159
10.1097/00001756-200103260-00019
10.1080/02699939308409183
10.1023/A:1007977618277
10.1016/S0167-8760(03)00146-6
10.1109/NER.2011.5910636
10.1109/IEMBS.2011.6091616
10.1016/0167-8760(87)90006-7
10.1016/j.ijpsycho.2005.04.007
10.1080/02699939508408966
10.1111/1469-8986.3720257
10.1016/S0167-8760(00)00195-1
10.1111/j.1469-8986.2007.00497.x
10.1109/TBME.2010.2048568
10.1016/S0304-3940(01)02246-7
10.1097/00001756-200203250-00013
10.1080/0929821042000317822
10.1016/j.biopsycho.2004.03.002
10.1111/j.1469-8986.1992.tb02034.x
10.5815/ijigsp.2011.05.05
10.1007/11848035_70
10.1016/j.cmpb.2005.06.011
10.1103/PhysRevLett.54.1325
10.1016/0167-8760(91)90005-I
10.1111/j.1469-8986.1985.tb01615.x
10.1016/0028-3932(85)90081-8
10.1109/ICT4M.2010.5971942
10.1109/TSMCB.2005.854502
10.1016/0301-0511(90)90079-C
10.1007/BF02344719
10.1016/j.cmpb.2005.06.005
10.1037/0021-843X.100.4.535
10.1126/science.7146906
10.1016/S0304-3940(97)00232-2
10.1126/science.295.5552.7a
10.1126/science.3992243
10.1109/ICME.2005.1521579
10.1016/S0165-0173(98)00056-3
10.1037/0022-3514.74.5.1310
ContentType Journal Article
Conference Proceeding
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QO
8FD
FR3
P64
DOI 10.1016/j.neucom.2013.06.046
DatabaseName CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-8286
EndPage 106
ExternalDocumentID 28284372
10_1016_j_neucom_2013_06_046
S0925231213009867
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c435t-38c897c55d2d3fa2357992be5b66a8a4887dcc8af67edd42a27b72825360007e3
ISICitedReferencesCount 564
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332132400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Oct 07 09:35:40 EDT 2025
Mon Jul 21 09:12:52 EDT 2025
Sat Nov 29 07:57:43 EST 2025
Tue Nov 18 20:53:25 EST 2025
Fri Feb 23 02:27:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalograph
Support vector machine
Manifold learning
Emotion classification
Feature reduction
Brain–computer interface
Brain
Smoothing methods
Electroencephalography
Emotion emotionality
Dynamical system
Dynamic method
Data reduction
Electrodes
Brain-computer interface
Dimension reduction
Experimental result
Multidimensional analysis
User interface
Vector support machine
Selection criterion
Reduced order model
Artificial intelligence
Power spectrum
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-38c897c55d2d3fa2357992be5b66a8a4887dcc8af67edd42a27b72825360007e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1531004597
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1531004597
pascalfrancis_primary_28284372
crossref_citationtrail_10_1016_j_neucom_2013_06_046
crossref_primary_10_1016_j_neucom_2013_06_046
elsevier_sciencedirect_doi_10_1016_j_neucom_2013_06_046
PublicationCentury 2000
PublicationDate 2014-04-10
PublicationDateYYYYMMDD 2014-04-10
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-10
  day: 10
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lin, Wang, Jung, Wu, Jeng, Duann, Chen (bib48) 2010; 57
J. Wagner, J. Kim, From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification, in: Proceedings of IEEE International Conference on Multimedia and Expo, 2005, pp. 940–943.
Hubert, de Jong-Meyer (bib28) 1990; 31
Schupp, Cuthbert, Bradley, Cacioppo, Ito, Lang (bib15) 2000; 37
D. Nie, Emotion recognition based on EEG (Master's thesis), Shanghai Jiao Tong University, Shanghai, 2012 (in Chinese).
Aftanas, Lotova, Koshkarov, Pokrovskaja, Popov, Makhnev (bib51) 1997; 226
G. Chanel, J. Kronegg, D. Grandjean, T. Pun, Emotion assessment: arousal evaluation using EEGs and peripheral physiological signals, in: Proceedings of Multimedia Content Representation, Classification and Security, 2006, pp. 530–537.
M. Li, B. Lu, Emotion classification based on gamma-band EEG, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 1223–1226.
Davidson, Schwartz, Saron, Bennett, Goleman (bib20) 1979; 16
Ahern, Schwartz (bib22) 1985; 23
2001.
Mandelbrot (bib57) 1983
Coan, Allen (bib8) 2004; 67
C. Chang, C. Lin, Libsvm: A Library for Support Vector Machines, Software Available at
Schutter, Putman, Hermans, van Honk (bib70) 2001; 314
X. Li, B. Hu, T. Zhu, J. Yan, F. Zheng, Towards affective learning with an EEG feedback approach, in: Proceedings of the 1st ACM International Workshop on Multimedia Technologies for Distance Learning, 2009, pp. 33–38.
Weiner (bib18) 1986; 1
Murugappan, Ramachandran, Sazali (bib44) 2010; 3
Murugappan, Rizon, Nagarajan, Yaacob, Zunaidi, Hazry (bib49) 2007; 1
Tomarken, Davidson, Wheeler, Kinney (bib14) 1992; 29
Petrantonakis, Hadjileontiadis (bib45) 2010; 14
Brosschot, Thayer (bib7) 2003; 50
Hurst (bib54) 1950; 76
Pizzagalli, Regard, Lehmann (bib16) 1999; 10
Davidson (bib35) 1998; 35
J. Estepp, S. Klosterman, J. Christensen, An assessment of non-stationarity in physiological cognitive state assessment using artificial neural networks, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 6552–6555.
Guntekin, Basar (bib69) 2007; 64
Hubert, de Jong-Meyer (bib26) 1991; 11
Bradley, Lang (bib46) 1994; 25
Carretie, Mercado, Tapia, Hinojosa (bib40) 2001; 41
Petrantonakis, Hadjileontiadis (bib9) 2011; 15
V. Petrushin, Emotion in speech: recognition and application to call centers, in: Proceedings of the Artificial Networks in Engineering Conference, 1999, pp. 7–10.
Ray, Cole (bib67) 1985; 228
Lazarus (bib27) 1962
Eimer, Holmes (bib17) 2002; 13
Henriques, Davidson (bib36) 1991; 100
Balasubramanian, Schwartz (bib63) 2002; 295
Scherer (bib25) 2004; 33
Zhang, Lee (bib43) 2009; 72
Pincus (bib52) 1995; 5
R. Khosrowabadi, A. Wahab bin Abdul Rahman, Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram, in: Proceedings of International Conference on Information and Communication Technology for the Muslim World, 2010, pp. 102–107.
Davidson, Schaffer, Saron (bib68) 1985; 22
L. Shi, B. Lu, Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, pp. 6587–6590.
Black, Yacoob (bib3) 1997; 25
Vanderploeg, Brown, Marsh (bib38) 1987; 5
Jolliffe (bib61) 2002
Davidson, Fox (bib11) 1982; 218
Kemper (bib19) 1978
Oathes, Ray, Yamasaki, Borkovec, Castonguay, Newman, Nitschke (bib66) 2008; 79
Harmon-Jones, Allen (bib12) 1998; 74
Harmon-Jones, Allen (bib13) 1997; 106
Subasi (bib50) 2007; 32
Klimesch (bib65) 1999; 29
C. Alm, D. Roth, R. Sproat, Emotions from text: machine learning for text-based emotion prediction, in: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, 2005, pp. 579–586.
Kannathal, Acharya, Lim, Sadasivan (bib55) 2005; 80
Lang, Ohman, Vaitl (bib23) 1988
Sammler, Grigutsch, Fritz, Koelsch (bib47) 2007; 44
Kim, Bang, Kim (bib6) 2004; 42
Picard (bib1) 2000
Katz, Thompson (bib58) 1985; 54
Acharya U, Faust, Kannathal, Chua, Laxminarayan (bib59) 2005; 80
Philippot (bib29) 1993; 7
Gross, Levenson (bib31) 1995; 9
D. Nie, X. Wang, L. Shi, B. Lu, EEG-based emotion recognition during watching movies, in: Proceedings of International IEEE/EMBS Conference on Neural Engineering, 2011, pp. 667–670.
Sato, Kochiyama, Yoshikawa, Matsumura (bib39) 2001; 12
Anderson, McOwan (bib4) 2006; 36
Ekman, Davidson (bib21) 1994
Hewig, Hagemann, Seifert, Gollwitzer, Naumann, Bartussek (bib30) 2005; 19
Vapnik (bib62) 1998
Baumgartner, Esslen, Jancke (bib37) 2006; 60
Hosseini, Naghibi-Sistani (bib53) 2011; 3
Petrantonakis (10.1016/j.neucom.2013.06.046_bib45) 2010; 14
Ray (10.1016/j.neucom.2013.06.046_bib67) 1985; 228
Henriques (10.1016/j.neucom.2013.06.046_bib36) 1991; 100
Kannathal (10.1016/j.neucom.2013.06.046_bib55) 2005; 80
Zhang (10.1016/j.neucom.2013.06.046_bib43) 2009; 72
Vanderploeg (10.1016/j.neucom.2013.06.046_bib38) 1987; 5
Davidson (10.1016/j.neucom.2013.06.046_bib68) 1985; 22
Black (10.1016/j.neucom.2013.06.046_bib3) 1997; 25
Kim (10.1016/j.neucom.2013.06.046_bib6) 2004; 42
Weiner (10.1016/j.neucom.2013.06.046_bib18) 1986; 1
Hubert (10.1016/j.neucom.2013.06.046_bib28) 1990; 31
Balasubramanian (10.1016/j.neucom.2013.06.046_bib63) 2002; 295
Vapnik (10.1016/j.neucom.2013.06.046_bib62) 1998
Hubert (10.1016/j.neucom.2013.06.046_bib26) 1991; 11
Hewig (10.1016/j.neucom.2013.06.046_bib30) 2005; 19
10.1016/j.neucom.2013.06.046_bib33
10.1016/j.neucom.2013.06.046_bib32
Picard (10.1016/j.neucom.2013.06.046_bib1) 2000
Carretie (10.1016/j.neucom.2013.06.046_bib40) 2001; 41
10.1016/j.neucom.2013.06.046_bib34
Katz (10.1016/j.neucom.2013.06.046_bib58) 1985; 54
Ekman (10.1016/j.neucom.2013.06.046_bib21) 1994
Tomarken (10.1016/j.neucom.2013.06.046_bib14) 1992; 29
Oathes (10.1016/j.neucom.2013.06.046_bib66) 2008; 79
Murugappan (10.1016/j.neucom.2013.06.046_bib49) 2007; 1
Davidson (10.1016/j.neucom.2013.06.046_bib11) 1982; 218
Davidson (10.1016/j.neucom.2013.06.046_bib35) 1998; 35
Mandelbrot (10.1016/j.neucom.2013.06.046_bib57) 1983
Petrantonakis (10.1016/j.neucom.2013.06.046_bib9) 2011; 15
10.1016/j.neucom.2013.06.046_bib42
10.1016/j.neucom.2013.06.046_bib41
Aftanas (10.1016/j.neucom.2013.06.046_bib51) 1997; 226
Coan (10.1016/j.neucom.2013.06.046_bib8) 2004; 67
Eimer (10.1016/j.neucom.2013.06.046_bib17) 2002; 13
Harmon-Jones (10.1016/j.neucom.2013.06.046_bib13) 1997; 106
Acharya U (10.1016/j.neucom.2013.06.046_bib59) 2005; 80
Scherer (10.1016/j.neucom.2013.06.046_bib25) 2004; 33
Hurst (10.1016/j.neucom.2013.06.046_bib54) 1950; 76
Pincus (10.1016/j.neucom.2013.06.046_bib52) 1995; 5
Schutter (10.1016/j.neucom.2013.06.046_bib70) 2001; 314
Davidson (10.1016/j.neucom.2013.06.046_bib20) 1979; 16
Lazarus (10.1016/j.neucom.2013.06.046_bib27) 1962
Gross (10.1016/j.neucom.2013.06.046_bib31) 1995; 9
Anderson (10.1016/j.neucom.2013.06.046_bib4) 2006; 36
10.1016/j.neucom.2013.06.046_bib2
Pizzagalli (10.1016/j.neucom.2013.06.046_bib16) 1999; 10
Bradley (10.1016/j.neucom.2013.06.046_bib46) 1994; 25
10.1016/j.neucom.2013.06.046_bib5
Ahern (10.1016/j.neucom.2013.06.046_bib22) 1985; 23
Guntekin (10.1016/j.neucom.2013.06.046_bib69) 2007; 64
Sammler (10.1016/j.neucom.2013.06.046_bib47) 2007; 44
Subasi (10.1016/j.neucom.2013.06.046_bib50) 2007; 32
Jolliffe (10.1016/j.neucom.2013.06.046_bib61) 2002
Sato (10.1016/j.neucom.2013.06.046_bib39) 2001; 12
Harmon-Jones (10.1016/j.neucom.2013.06.046_bib12) 1998; 74
Hosseini (10.1016/j.neucom.2013.06.046_bib53) 2011; 3
10.1016/j.neucom.2013.06.046_bib10
Murugappan (10.1016/j.neucom.2013.06.046_bib44) 2010; 3
10.1016/j.neucom.2013.06.046_bib56
Philippot (10.1016/j.neucom.2013.06.046_bib29) 1993; 7
Lin (10.1016/j.neucom.2013.06.046_bib48) 2010; 57
Baumgartner (10.1016/j.neucom.2013.06.046_bib37) 2006; 60
Lang (10.1016/j.neucom.2013.06.046_bib23) 1988
10.1016/j.neucom.2013.06.046_bib64
Klimesch (10.1016/j.neucom.2013.06.046_bib65) 1999; 29
Schupp (10.1016/j.neucom.2013.06.046_bib15) 2000; 37
Brosschot (10.1016/j.neucom.2013.06.046_bib7) 2003; 50
10.1016/j.neucom.2013.06.046_bib60
Kemper (10.1016/j.neucom.2013.06.046_bib19) 1978
10.1016/j.neucom.2013.06.046_bib24
References_xml – volume: 106
  start-page: 159
  year: 1997
  end-page: 163
  ident: bib13
  article-title: Behavioral activation sensitivity and resting frontal EEG asymmetry
  publication-title: J. Abnorm. Psychol.
– volume: 10
  start-page: 2691
  year: 1999
  end-page: 2698
  ident: bib16
  article-title: Rapid emotional face processing in the human right and left brain hemispheres: an ERP study
  publication-title: Neuroreport
– reference: C. Alm, D. Roth, R. Sproat, Emotions from text: machine learning for text-based emotion prediction, in: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, 2005, pp. 579–586.
– volume: 64
  start-page: 91
  year: 2007
  end-page: 100
  ident: bib69
  article-title: Emotional face expressions are differentiated with brain oscillations
  publication-title: Int. J. Psychophysiol.
– volume: 22
  start-page: 353
  year: 1985
  end-page: 364
  ident: bib68
  article-title: Effects of lateralized presentations of faces on self-reports of emotion and EEG asymmetry in depressed and non-depressed subjects
  publication-title: Psychophysiology
– volume: 13
  start-page: 427
  year: 2002
  end-page: 431
  ident: bib17
  article-title: An ERP study on the time course of emotional face processing
  publication-title: Neuroreport
– volume: 60
  start-page: 34
  year: 2006
  end-page: 43
  ident: bib37
  article-title: From emotion perception to emotion experience
  publication-title: Int. J. Psychophysiol.
– volume: 35
  start-page: 607
  year: 1998
  end-page: 614
  ident: bib35
  article-title: Anterior electrophysiological asymmetries, emotion, and depression
  publication-title: Psychophysiology
– volume: 11
  start-page: 131
  year: 1991
  end-page: 140
  ident: bib26
  article-title: Autonomic, neuroendocrine, and subjective responses to emotion-inducing film stimuli
  publication-title: Int. J. Psychophysiol.
– reference: J. Estepp, S. Klosterman, J. Christensen, An assessment of non-stationarity in physiological cognitive state assessment using artificial neural networks, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 6552–6555.
– volume: 25
  start-page: 23
  year: 1997
  end-page: 48
  ident: bib3
  article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion
  publication-title: Int. J. Comput. Vis.
– reference: J. Wagner, J. Kim, From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification, in: Proceedings of IEEE International Conference on Multimedia and Expo, 2005, pp. 940–943.
– reference: V. Petrushin, Emotion in speech: recognition and application to call centers, in: Proceedings of the Artificial Networks in Engineering Conference, 1999, pp. 7–10.
– volume: 7
  start-page: 171
  year: 1993
  end-page: 193
  ident: bib29
  article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory
  publication-title: Cogn. Emot.
– volume: 226
  start-page: 13
  year: 1997
  end-page: 16
  ident: bib51
  article-title: Non-linear analysis of emotion EEG
  publication-title: Neurosci. Lett.
– volume: 9
  start-page: 87
  year: 1995
  end-page: 108
  ident: bib31
  article-title: Emotion elicitation using films
  publication-title: Cogn. Emot.
– volume: 5
  start-page: 110
  year: 1995
  end-page: 117
  ident: bib52
  article-title: Approximate entropy (apen) as a complexity measure
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
– volume: 228
  start-page: 750
  year: 1985
  end-page: 752
  ident: bib67
  article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes
  publication-title: Science
– volume: 57
  start-page: 1798
  year: 2010
  end-page: 1806
  ident: bib48
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 50
  start-page: 181
  year: 2003
  end-page: 187
  ident: bib7
  article-title: Heart rate response is longer after negative emotions than after positive emotions
  publication-title: Int. J. Psychophysiol.
– year: 1983
  ident: bib57
  article-title: The Fractal Geometry of Nature
– year: 1962
  ident: bib27
  article-title: A Laboratory Study of Psychological Stress Produced by a Motion Picture Film
– volume: 3
  start-page: 30
  year: 2011
  ident: bib53
  article-title: Emotion recognition method using entropy analysis of EEG signals
  publication-title: Int. J. Image Graph. Signal Process.
– volume: 42
  start-page: 419
  year: 2004
  end-page: 427
  ident: bib6
  article-title: Emotion recognition system using short-term monitoring of physiological signals
  publication-title: Med. Biol. Eng. Comput.
– volume: 23
  start-page: 745
  year: 1985
  end-page: 755
  ident: bib22
  article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis
  publication-title: Neuropsychologia
– reference: X. Li, B. Hu, T. Zhu, J. Yan, F. Zheng, Towards affective learning with an EEG feedback approach, in: Proceedings of the 1st ACM International Workshop on Multimedia Technologies for Distance Learning, 2009, pp. 33–38.
– volume: 14
  start-page: 186
  year: 2010
  end-page: 197
  ident: bib45
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 31
  start-page: 73
  year: 1990
  end-page: 93
  ident: bib28
  article-title: Psychophysiological response patterns to positive and negative film stimuli
  publication-title: Biol. Psychol.
– volume: 80
  start-page: 37
  year: 2005
  end-page: 45
  ident: bib59
  article-title: Non-linear analysis of EEG signals at various sleep stages
  publication-title: Comput. Methods Progr. Biomed.
– reference: D. Nie, X. Wang, L. Shi, B. Lu, EEG-based emotion recognition during watching movies, in: Proceedings of International IEEE/EMBS Conference on Neural Engineering, 2011, pp. 667–670.
– volume: 29
  start-page: 576
  year: 1992
  end-page: 592
  ident: bib14
  article-title: Psychometric properties of resting anterior EEG asymmetry
  publication-title: Psychophysiology
– volume: 100
  start-page: 535
  year: 1991
  ident: bib36
  article-title: Left frontal hypoactivation in depression
  publication-title: J. Abnorm. Psychol.
– volume: 37
  start-page: 257
  year: 2000
  end-page: 261
  ident: bib15
  article-title: Affective picture processing
  publication-title: Psychophysiology
– volume: 25
  start-page: 49
  year: 1994
  end-page: 59
  ident: bib46
  article-title: Measuring emotion
  publication-title: J. Behav. Ther. Exp. Psychiatry
– volume: 29
  start-page: 169
  year: 1999
  end-page: 195
  ident: bib65
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance
  publication-title: Brain Res. Rev.
– volume: 3
  start-page: 390
  year: 2010
  end-page: 396
  ident: bib44
  article-title: Classification of human emotion from EEG using discrete wavelet transform
  publication-title: J. Biomed. Sci. Eng.
– volume: 218
  start-page: 1235
  year: 1982
  ident: bib11
  article-title: Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants
  publication-title: Science
– volume: 79
  start-page: 165
  year: 2008
  end-page: 170
  ident: bib66
  article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band
  publication-title: Biol. Psychol.
– reference: 〉, 2001.
– reference: L. Shi, B. Lu, Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, pp. 6587–6590.
– volume: 16
  start-page: 202
  year: 1979
  end-page: 203
  ident: bib20
  article-title: Frontal versus parietal EEG asymmetry during positive and negative affect
  publication-title: Psychophysiology
– volume: 1
  start-page: 21
  year: 2007
  end-page: 25
  ident: bib49
  article-title: EEG feature extraction for classifying emotions using FCM and FKM
  publication-title: Int. J. Comput. Commun.
– volume: 32
  start-page: 1084
  year: 2007
  end-page: 1093
  ident: bib50
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl.
– volume: 54
  start-page: 1325
  year: 1985
  end-page: 1328
  ident: bib58
  article-title: Fractal sandstone pores
  publication-title: Phys. Rev. Lett.
– volume: 33
  start-page: 239
  year: 2004
  end-page: 251
  ident: bib25
  article-title: Which emotions can be induced by music? what are the underlying mechanisms? and how can we measure them?
  publication-title: J. New Music Res.
– volume: 80
  start-page: 17
  year: 2005
  end-page: 23
  ident: bib55
  article-title: Characterization of eegła comparative study
  publication-title: Comput. Methods Progr. Biomed.
– volume: 15
  start-page: 737
  year: 2011
  end-page: 746
  ident: bib9
  article-title: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 41
  start-page: 75
  year: 2001
  end-page: 85
  ident: bib40
  article-title: Emotion, attention and the” negativity bias”, studied through event-related potentials
  publication-title: Int. J. Psychophysiol.
– volume: 36
  start-page: 96
  year: 2006
  end-page: 105
  ident: bib4
  article-title: A real-time automated system for the recognition of human facial expressions
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– reference: C. Chang, C. Lin, Libsvm: A Library for Support Vector Machines, Software Available at 〈
– reference: M. Li, B. Lu, Emotion classification based on gamma-band EEG, in: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 1223–1226.
– volume: 19
  start-page: 1095
  year: 2005
  ident: bib30
  article-title: A revised film set for the induction of basic emotions
  publication-title: Cogn. Emot.
– year: 2000
  ident: bib1
  article-title: Affective Computing
– volume: 314
  start-page: 13
  year: 2001
  end-page: 16
  ident: bib70
  article-title: Parietal electroencephalogram beta asymmetry and selective attention to angry facial expressions in healthy human subjects
  publication-title: Neurosci. Lett.
– volume: 67
  start-page: 7
  year: 2004
  end-page: 50
  ident: bib8
  article-title: Frontal EEG asymmetry as a moderator and mediator of emotion
  publication-title: Biol. Psychol.
– year: 1994
  ident: bib21
  article-title: The Nature of Emotion
– year: 1978
  ident: bib19
  article-title: A Social Interactional Theory of Emotions
– year: 2002
  ident: bib61
  article-title: MyiLibrary, Principal Component Analysis, vol. 2
– volume: 72
  start-page: 1302
  year: 2009
  end-page: 1306
  ident: bib43
  article-title: Analysis of positive and negative emotions in natural scene using brain activity and gist
  publication-title: Neurocomputing
– volume: 5
  start-page: 193
  year: 1987
  end-page: 205
  ident: bib38
  article-title: Judgements of emotion in words and faces
  publication-title: Int. J. Psychophysiol.
– volume: 12
  start-page: 709
  year: 2001
  end-page: 714
  ident: bib39
  article-title: Emotional expression boosts early visual processing of the face
  publication-title: Neuroreport
– volume: 1
  start-page: 281
  year: 1986
  end-page: 312
  ident: bib18
  article-title: Attribution, emotion, and action
  publication-title: Handbook of Motivation and Cognition
– reference: R. Khosrowabadi, A. Wahab bin Abdul Rahman, Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram, in: Proceedings of International Conference on Information and Communication Technology for the Muslim World, 2010, pp. 102–107.
– volume: 74
  start-page: 1310
  year: 1998
  end-page: 1316
  ident: bib12
  article-title: Anger and frontal brain activity
  publication-title: J. Personal. Soc. Psychol.
– year: 1988
  ident: bib23
  article-title: The International Affective Picture System (Photographic Slides)
– volume: 44
  start-page: 293
  year: 2007
  end-page: 304
  ident: bib47
  article-title: Music and emotion
  publication-title: Psychophysiology
– year: 1998
  ident: bib62
  article-title: Statistical Learning Theory
– reference: D. Nie, Emotion recognition based on EEG (Master's thesis), Shanghai Jiao Tong University, Shanghai, 2012 (in Chinese).
– volume: 76
  year: 1950
  ident: bib54
  article-title: Long-term storage capacity of reservoirs
  publication-title: American Society of Civil Engineering
– reference: G. Chanel, J. Kronegg, D. Grandjean, T. Pun, Emotion assessment: arousal evaluation using EEGs and peripheral physiological signals, in: Proceedings of Multimedia Content Representation, Classification and Security, 2006, pp. 530–537.
– volume: 295
  start-page: 7
  year: 2002
  ident: bib63
  article-title: The isomap algorithm and topological stability
  publication-title: Science
– ident: 10.1016/j.neucom.2013.06.046_bib24
  doi: 10.3115/1220575.1220648
– ident: 10.1016/j.neucom.2013.06.046_bib10
  doi: 10.1145/1631111.1631118
– volume: 79
  start-page: 165
  year: 2008
  ident: 10.1016/j.neucom.2013.06.046_bib66
  article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2008.04.005
– year: 1988
  ident: 10.1016/j.neucom.2013.06.046_bib23
– volume: 10
  start-page: 2691
  year: 1999
  ident: 10.1016/j.neucom.2013.06.046_bib16
  article-title: Rapid emotional face processing in the human right and left brain hemispheres: an ERP study
  publication-title: Neuroreport
  doi: 10.1097/00001756-199909090-00001
– year: 1983
  ident: 10.1016/j.neucom.2013.06.046_bib57
– volume: 3
  start-page: 390
  year: 2010
  ident: 10.1016/j.neucom.2013.06.046_bib44
  article-title: Classification of human emotion from EEG using discrete wavelet transform
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2010.34054
– volume: 25
  start-page: 49
  year: 1994
  ident: 10.1016/j.neucom.2013.06.046_bib46
  article-title: Measuring emotion
  publication-title: J. Behav. Ther. Exp. Psychiatry
  doi: 10.1016/0005-7916(94)90063-9
– ident: 10.1016/j.neucom.2013.06.046_bib60
  doi: 10.1109/IEMBS.2010.5627125
– volume: 1
  start-page: 281
  year: 1986
  ident: 10.1016/j.neucom.2013.06.046_bib18
  article-title: Attribution, emotion, and action
  publication-title: Handbook of Motivation and Cognition
– year: 1962
  ident: 10.1016/j.neucom.2013.06.046_bib27
– ident: 10.1016/j.neucom.2013.06.046_bib64
– volume: 32
  start-page: 1084
  year: 2007
  ident: 10.1016/j.neucom.2013.06.046_bib50
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.02.005
– ident: 10.1016/j.neucom.2013.06.046_bib42
  doi: 10.1109/IEMBS.2009.5334139
– year: 1978
  ident: 10.1016/j.neucom.2013.06.046_bib19
– volume: 19
  start-page: 1095
  year: 2005
  ident: 10.1016/j.neucom.2013.06.046_bib30
  article-title: A revised film set for the induction of basic emotions
  publication-title: Cogn. Emot.
  doi: 10.1080/02699930541000084
– volume: 14
  start-page: 186
  year: 2010
  ident: 10.1016/j.neucom.2013.06.046_bib45
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2034649
– year: 2002
  ident: 10.1016/j.neucom.2013.06.046_bib61
– ident: 10.1016/j.neucom.2013.06.046_bib34
– volume: 5
  start-page: 110
  year: 1995
  ident: 10.1016/j.neucom.2013.06.046_bib52
  article-title: Approximate entropy (apen) as a complexity measure
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.166092
– volume: 64
  start-page: 91
  year: 2007
  ident: 10.1016/j.neucom.2013.06.046_bib69
  article-title: Emotional face expressions are differentiated with brain oscillations
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2006.07.003
– volume: 15
  start-page: 737
  year: 2011
  ident: 10.1016/j.neucom.2013.06.046_bib9
  article-title: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2157933
– volume: 72
  start-page: 1302
  year: 2009
  ident: 10.1016/j.neucom.2013.06.046_bib43
  article-title: Analysis of positive and negative emotions in natural scene using brain activity and gist
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.11.007
– volume: 35
  start-page: 607
  year: 1998
  ident: 10.1016/j.neucom.2013.06.046_bib35
  article-title: Anterior electrophysiological asymmetries, emotion, and depression
  publication-title: Psychophysiology
  doi: 10.1017/S0048577298000134
– volume: 106
  start-page: 159
  year: 1997
  ident: 10.1016/j.neucom.2013.06.046_bib13
  article-title: Behavioral activation sensitivity and resting frontal EEG asymmetry
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/0021-843X.106.1.159
– ident: 10.1016/j.neucom.2013.06.046_bib2
– volume: 12
  start-page: 709
  year: 2001
  ident: 10.1016/j.neucom.2013.06.046_bib39
  article-title: Emotional expression boosts early visual processing of the face
  publication-title: Neuroreport
  doi: 10.1097/00001756-200103260-00019
– volume: 7
  start-page: 171
  year: 1993
  ident: 10.1016/j.neucom.2013.06.046_bib29
  article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939308409183
– volume: 25
  start-page: 23
  year: 1997
  ident: 10.1016/j.neucom.2013.06.046_bib3
  article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1007977618277
– volume: 16
  start-page: 202
  year: 1979
  ident: 10.1016/j.neucom.2013.06.046_bib20
  article-title: Frontal versus parietal EEG asymmetry during positive and negative affect
  publication-title: Psychophysiology
– volume: 50
  start-page: 181
  year: 2003
  ident: 10.1016/j.neucom.2013.06.046_bib7
  article-title: Heart rate response is longer after negative emotions than after positive emotions
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(03)00146-6
– ident: 10.1016/j.neucom.2013.06.046_bib33
  doi: 10.1109/NER.2011.5910636
– ident: 10.1016/j.neucom.2013.06.046_bib32
  doi: 10.1109/IEMBS.2011.6091616
– volume: 5
  start-page: 193
  year: 1987
  ident: 10.1016/j.neucom.2013.06.046_bib38
  article-title: Judgements of emotion in words and faces
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(87)90006-7
– year: 1994
  ident: 10.1016/j.neucom.2013.06.046_bib21
– volume: 60
  start-page: 34
  year: 2006
  ident: 10.1016/j.neucom.2013.06.046_bib37
  article-title: From emotion perception to emotion experience
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2005.04.007
– year: 1998
  ident: 10.1016/j.neucom.2013.06.046_bib62
– volume: 9
  start-page: 87
  year: 1995
  ident: 10.1016/j.neucom.2013.06.046_bib31
  article-title: Emotion elicitation using films
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939508408966
– volume: 37
  start-page: 257
  year: 2000
  ident: 10.1016/j.neucom.2013.06.046_bib15
  article-title: Affective picture processing
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720257
– volume: 41
  start-page: 75
  year: 2001
  ident: 10.1016/j.neucom.2013.06.046_bib40
  article-title: Emotion, attention and the” negativity bias”, studied through event-related potentials
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(00)00195-1
– volume: 44
  start-page: 293
  year: 2007
  ident: 10.1016/j.neucom.2013.06.046_bib47
  article-title: Music and emotion
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00497.x
– volume: 57
  start-page: 1798
  year: 2010
  ident: 10.1016/j.neucom.2013.06.046_bib48
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 314
  start-page: 13
  year: 2001
  ident: 10.1016/j.neucom.2013.06.046_bib70
  article-title: Parietal electroencephalogram beta asymmetry and selective attention to angry facial expressions in healthy human subjects
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(01)02246-7
– volume: 13
  start-page: 427
  year: 2002
  ident: 10.1016/j.neucom.2013.06.046_bib17
  article-title: An ERP study on the time course of emotional face processing
  publication-title: Neuroreport
  doi: 10.1097/00001756-200203250-00013
– volume: 33
  start-page: 239
  year: 2004
  ident: 10.1016/j.neucom.2013.06.046_bib25
  article-title: Which emotions can be induced by music? what are the underlying mechanisms? and how can we measure them?
  publication-title: J. New Music Res.
  doi: 10.1080/0929821042000317822
– volume: 67
  start-page: 7
  year: 2004
  ident: 10.1016/j.neucom.2013.06.046_bib8
  article-title: Frontal EEG asymmetry as a moderator and mediator of emotion
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2004.03.002
– volume: 29
  start-page: 576
  year: 1992
  ident: 10.1016/j.neucom.2013.06.046_bib14
  article-title: Psychometric properties of resting anterior EEG asymmetry
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1992.tb02034.x
– volume: 3
  start-page: 30
  year: 2011
  ident: 10.1016/j.neucom.2013.06.046_bib53
  article-title: Emotion recognition method using entropy analysis of EEG signals
  publication-title: Int. J. Image Graph. Signal Process.
  doi: 10.5815/ijigsp.2011.05.05
– volume: 76
  year: 1950
  ident: 10.1016/j.neucom.2013.06.046_bib54
  article-title: Long-term storage capacity of reservoirs
  publication-title: American Society of Civil Engineering
– ident: 10.1016/j.neucom.2013.06.046_bib41
  doi: 10.1007/11848035_70
– volume: 80
  start-page: 37
  year: 2005
  ident: 10.1016/j.neucom.2013.06.046_bib59
  article-title: Non-linear analysis of EEG signals at various sleep stages
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2005.06.011
– volume: 54
  start-page: 1325
  year: 1985
  ident: 10.1016/j.neucom.2013.06.046_bib58
  article-title: Fractal sandstone pores
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1325
– year: 2000
  ident: 10.1016/j.neucom.2013.06.046_bib1
– volume: 11
  start-page: 131
  year: 1991
  ident: 10.1016/j.neucom.2013.06.046_bib26
  article-title: Autonomic, neuroendocrine, and subjective responses to emotion-inducing film stimuli
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(91)90005-I
– volume: 22
  start-page: 353
  year: 1985
  ident: 10.1016/j.neucom.2013.06.046_bib68
  article-title: Effects of lateralized presentations of faces on self-reports of emotion and EEG asymmetry in depressed and non-depressed subjects
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1985.tb01615.x
– volume: 23
  start-page: 745
  year: 1985
  ident: 10.1016/j.neucom.2013.06.046_bib22
  article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(85)90081-8
– ident: 10.1016/j.neucom.2013.06.046_bib56
  doi: 10.1109/ICT4M.2010.5971942
– volume: 36
  start-page: 96
  year: 2006
  ident: 10.1016/j.neucom.2013.06.046_bib4
  article-title: A real-time automated system for the recognition of human facial expressions
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2005.854502
– volume: 31
  start-page: 73
  year: 1990
  ident: 10.1016/j.neucom.2013.06.046_bib28
  article-title: Psychophysiological response patterns to positive and negative film stimuli
  publication-title: Biol. Psychol.
  doi: 10.1016/0301-0511(90)90079-C
– volume: 1
  start-page: 21
  year: 2007
  ident: 10.1016/j.neucom.2013.06.046_bib49
  article-title: EEG feature extraction for classifying emotions using FCM and FKM
  publication-title: Int. J. Comput. Commun.
– volume: 42
  start-page: 419
  year: 2004
  ident: 10.1016/j.neucom.2013.06.046_bib6
  article-title: Emotion recognition system using short-term monitoring of physiological signals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344719
– volume: 80
  start-page: 17
  year: 2005
  ident: 10.1016/j.neucom.2013.06.046_bib55
  article-title: Characterization of eegła comparative study
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2005.06.005
– volume: 100
  start-page: 535
  year: 1991
  ident: 10.1016/j.neucom.2013.06.046_bib36
  article-title: Left frontal hypoactivation in depression
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/0021-843X.100.4.535
– volume: 218
  start-page: 1235
  year: 1982
  ident: 10.1016/j.neucom.2013.06.046_bib11
  article-title: Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants
  publication-title: Science
  doi: 10.1126/science.7146906
– volume: 226
  start-page: 13
  year: 1997
  ident: 10.1016/j.neucom.2013.06.046_bib51
  article-title: Non-linear analysis of emotion EEG
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(97)00232-2
– volume: 295
  start-page: 7
  year: 2002
  ident: 10.1016/j.neucom.2013.06.046_bib63
  article-title: The isomap algorithm and topological stability
  publication-title: Science
  doi: 10.1126/science.295.5552.7a
– volume: 228
  start-page: 750
  year: 1985
  ident: 10.1016/j.neucom.2013.06.046_bib67
  article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes
  publication-title: Science
  doi: 10.1126/science.3992243
– ident: 10.1016/j.neucom.2013.06.046_bib5
  doi: 10.1109/ICME.2005.1521579
– volume: 29
  start-page: 169
  year: 1999
  ident: 10.1016/j.neucom.2013.06.046_bib65
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 74
  start-page: 1310
  year: 1998
  ident: 10.1016/j.neucom.2013.06.046_bib12
  article-title: Anger and frontal brain activity
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/0022-3514.74.5.1310
SSID ssj0017129
Score 2.6065276
Snippet Recently, emotion classification from EEG data has attracted much attention with the rapid development of dry electrode techniques, machine learning...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 94
SubjectTerms Applied sciences
Artificial intelligence
Biological and medical sciences
Brain–computer interface
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Electrodiagnosis. Electric activity recording
Electroencephalograph
Emotion classification
Exact sciences and technology
Feature reduction
Investigative techniques, diagnostic techniques (general aspects)
Manifold learning
Medical sciences
Memory organisation. Data processing
Nervous system
Software
Support vector machine
Title Emotional state classification from EEG data using machine learning approach
URI https://dx.doi.org/10.1016/j.neucom.2013.06.046
https://www.proquest.com/docview/1531004597
Volume 129
WOSCitedRecordID wos000332132400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZt0kMhkD5S6qYNKvRmtmS1D2mPpmzbFGNySKhvi1arDQ7N2mTtkJ_fGb1i1ymmh16EEd6H_X0azYzmQcinQoDSLbkG20QmMDRFJGN1GoHBkmZCcTCza9Nsgk8mYjotzl0ob2_aCfCuE_f3xeK_Qg1zADamzv4D3OGmMAGfAXQYAXYYt4F_dP8xBTeUadfgHAGjG6yH0CD4xTpJStvEx-SMgNI5VKhLY_CQC0HE3JOy_DbEONLhyrgVbkz0pfbtJq5CVfIg3kc2DWo6k_Pop54FVXk0GU7OQuLD-NIed8yjMTD0at37EJugFReHalxibv9e9yuyLAKlcVPEuh9nhaTtauy229gUHNiW5NapcP250ysM64FnJ6bQavpI4ew_NrQQZojmJJ5LPiX7LMkF2Ob7o7Ny-iMcM_GY2WKM7p19bqUJANx-8t90l4OF7GFFtbYVytaublSVixfk6CGJk54HerwkT3T3ihw6q4M6md7DlG_s4edek3HgBTW8oJu8oMgLCrygyAtqeEEdL6jnBfW8OCKXX8uLL98j13YjUqA7L6NEKFFwlWUNa5JWYj2komC1zuo8l0KCxOeNUkK2OddNkzLJeM0xBTrJUePUyRuy1807_ZbQNG5ZIRoZtzWY-bD4Y4k2s-Yt12l7ygYk8X9opVxNemyN8qvywYfXlYWhQhgqjMFM8wGJwlULW5Nlx_e5x6pyeqXVFysg244rTzagDY_zzBqQjx7rCuQyHrbJTs9XfQWaBBZjBHv93a6bHJPnD0vrPdlb3q70B_JM3S1n_e2J4-xvhzGspg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Neurocomputing+%28Amsterdam%29&rft.atitle=Emotional+state+classification+from+EEG+data+using+machine+learning+approach&rft.au=WANG%2C+Xiao-Wei&rft.au=DAN+NIE&rft.au=LU%2C+Bao-Liang&rft.date=2014-04-10&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=129&rft.spage=94&rft.epage=106&rft_id=info:doi/10.1016%2Fj.neucom.2013.06.046&rft.externalDBID=n%2Fa&rft.externalDocID=28284372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon