Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height

Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to retrieve cloud base height (CBH) and its diurnal cycle from Himawari-8 geostationary satellite observations. Validations have been conducted using...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Atmospheric chemistry and physics Ročník 24; číslo 24; s. 14239 - 14256
Hlavní autori: Wang, Mengyuan, Min, Min, Li, Jun, Lin, Han, Liang, Yongen, Chen, Binlong, Yao, Zhigang, Xu, Na, Zhang, Miao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 20.12.2024
Copernicus Publications
Predmet:
ISSN:1680-7324, 1680-7316, 1680-7324
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to retrieve cloud base height (CBH) and its diurnal cycle from Himawari-8 geostationary satellite observations. Validations have been conducted using the joint CloudSat/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) CBH products in 2017, ensuring independent assessments. Results show that the two ML-based algorithms exhibit markedly superior performance (the optimal method is with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8 km) compared to the two physics-based algorithms. However, validations based on CBH data from the ground-based lidar at the Lijiang station in Yunnan Province and the cloud radar at the Nanjiao station in Beijing, China, explicitly present contradictory outcomes (R < 0.60). An identifiable issue arises with significant underestimations in the retrieved CBH by both ML-based algorithms, leading to an inability to capture the diurnal cycle characteristics of CBH. The strong consistence observed between CBH derived from ML-based algorithms and the spaceborne active sensors of CloudSat/CALIOP may be attributed to utilizing the same dataset for training and validation, sourced from the CloudSat/CALIOP products. In contrast, the CBH derived from the optimal physics-based algorithm demonstrates good agreement in diurnal variations in CBH with ground-based lidar/cloud radar observations during the daytime (with an R value of approximately 0.7). Therefore, the findings in this investigation from ground-based observations advocate for the more reliable and adaptable nature of physics-based algorithms in retrieving CBH from geostationary satellite measurements. Nevertheless, under ideal conditions, with an ample dataset of spaceborne cloud profiling radar observations encompassing the entire day for training purposes, the ML-based algorithms may hold promise for still delivering accurate CBH outputs.
AbstractList Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to retrieve cloud base height (CBH) and its diurnal cycle from Himawari-8 geostationary satellite observations. Validations have been conducted using the joint CloudSat/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) CBH products in 2017, ensuring independent assessments. Results show that the two ML-based algorithms exhibit markedly superior performance (the optimal method is with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8 km) compared to the two physics-based algorithms. However, validations based on CBH data from the ground-based lidar at the Lijiang station in Yunnan Province and the cloud radar at the Nanjiao station in Beijing, China, explicitly present contradictory outcomes (R < 0.60). An identifiable issue arises with significant underestimations in the retrieved CBH by both ML-based algorithms, leading to an inability to capture the diurnal cycle characteristics of CBH. The strong consistence observed between CBH derived from ML-based algorithms and the spaceborne active sensors of CloudSat/CALIOP may be attributed to utilizing the same dataset for training and validation, sourced from the CloudSat/CALIOP products. In contrast, the CBH derived from the optimal physics-based algorithm demonstrates good agreement in diurnal variations in CBH with ground-based lidar/cloud radar observations during the daytime (with an R value of approximately 0.7). Therefore, the findings in this investigation from ground-based observations advocate for the more reliable and adaptable nature of physics-based algorithms in retrieving CBH from geostationary satellite measurements. Nevertheless, under ideal conditions, with an ample dataset of spaceborne cloud profiling radar observations encompassing the entire day for training purposes, the ML-based algorithms may hold promise for still delivering accurate CBH outputs.
Audience Academic
Author Li, Jun
Zhang, Miao
Chen, Binlong
Liang, Yongen
Wang, Mengyuan
Min, Min
Lin, Han
Yao, Zhigang
Xu, Na
Author_xml – sequence: 1
  givenname: Mengyuan
  surname: Wang
  fullname: Wang, Mengyuan
– sequence: 2
  givenname: Min
  orcidid: 0000-0003-1519-5069
  surname: Min
  fullname: Min, Min
– sequence: 3
  givenname: Jun
  orcidid: 0000-0001-5504-9627
  surname: Li
  fullname: Li, Jun
– sequence: 4
  givenname: Han
  surname: Lin
  fullname: Lin, Han
– sequence: 5
  givenname: Yongen
  surname: Liang
  fullname: Liang, Yongen
– sequence: 6
  givenname: Binlong
  orcidid: 0000-0002-2986-668X
  surname: Chen
  fullname: Chen, Binlong
– sequence: 7
  givenname: Zhigang
  surname: Yao
  fullname: Yao, Zhigang
– sequence: 8
  givenname: Na
  surname: Xu
  fullname: Xu, Na
– sequence: 9
  givenname: Miao
  surname: Zhang
  fullname: Zhang, Miao
BookMark eNptUl2L1DAULbKCu6s_wLeATz50zVenHd-GxY-BBUHX55De3rQZ2qQmGdn5Q_5O0xnXdUAuJDcn5xzuhXNVXDjvsCheM3pTsbV8p2EuuSyZ5GJdcsrls-KSrRpa1oLLi3_6F8VVjDtKeUWZvCx-3SMMzoIeifMJ35PNPI_52drRpgPxhszDIVqIZasjdkS7jkwaBuuwHFEHZ13_-DX2Ptg0THGRadKjj0kn650OBxJ1wjF7IrGOBEzB4s-sJWlA0tl9cHkCOMCIixhGv-_IYksGtP2QXhbPjR4jvvpzXxffP364v_1c3n35tL3d3JUgRZVKXqEE2hlkRtRrZkCyOkMttGuzaiUyYGusG6ACWGcoq7VsOAoA2rQVb6m4LrYn387rnZqDnfLsymurjoAPvdIh2TymooLRupWUNSBlS6sGaVM1ou4oVEKuIHu9OXnNwf_YY0xq5497RiWYrKt8NOyJ1etsap3xKWiYbAS1aTitcwmRWTf_YeXqcLKQo2Bsxs8Eb88EmZPwIfV6H6Pafvt6zmUnLgQfY0Dzd3FG1ZIuldOluFTHdKklXeI3APfElw
Cites_doi 10.1016/j.atmosenv.2022.119065
10.1109/TGRS.2023.3256365
10.1175/JTECH-D-16-0110.1
10.1016/j.atmosenv.2019.01.012
10.1016/j.solener.2017.11.049
10.1175/2009JTECHA1223.1
10.1175/JCLI-D-13-00352.1
10.1109/TGRS.2018.2882803
10.1109/TGRS.2019.2923247
10.1175/2007WAF2006017.1
10.5194/acp-23-8959-2023
10.5194/acp-22-1453-2022
10.1007/s11222-016-9646-1
10.1007/s00376-017-7096-0
10.1016/j.jqsrt.2014.03.014
10.5194/amt-11-3177-2018
10.1175/2008JTECHA1221.1
10.1175/JTECH-D-16-0109.1
10.1080/01431161.2020.1854891
10.1007/s13351-017-6161-z
10.5194/acp-9-1767-2009
10.1073/pnas.1514044113
10.1175/BAMS-D-12-00117.1
10.5194/amt-9-711-2016
10.1002/qj.3803
10.2151/jmsj.2016-009
10.1007/s00376-019-8272-1
10.1175/JTECH-D-18-0079.1
10.1175/BAMS-83-12-1771
10.1175/JAMC-D-11-0203.1
10.1175/JTECH1671.1
10.1175/JAMC-D-14-0082.1
10.1002/2015GL064809
10.1002/jgrd.50579
10.1109/TGRS.2022.3140348
10.1016/j.isprsjprs.2020.01.011
10.1080/01431160110117391
10.1016/j.rse.2021.112305
10.1029/2007GL031361
10.5194/amt-4-117-2011
10.1109/TGRS.2022.3160450
10.1029/2011JD015970
10.1175/2009JTECHA1281.1
10.1175/2009JTECHA1231.1
10.1175/2008JAMC1882.1
10.1080/01431160500296800
10.5194/acp-21-11979-2021
10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2
10.2151/jmsj.2018-001
10.1002/2014JD022310
10.1029/2002GL015835
10.1002/2013GL058970
10.1023/A:1010933404324
10.1109/TGRS.2016.2610522
10.1016/j.rse.2019.111616
10.1175/JAS-D-19-0301.1
10.1029/2007GL032591
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1016/j.rse.2022.112970
ContentType Journal Article
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-24-14239-2024
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Physics
EISSN 1680-7324
EndPage 14256
ExternalDocumentID oai_doaj_org_article_03107b4018c44b058e085837d0c5346c
A820707033
10_5194_acp_24_14239_2024
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c435t-25e4c0dfe1f3791fc4175e4bcb9f6b4e1c19e78c03c1df017a482e3cc08b52b03
IEDL.DBID RKB
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381546700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1680-7324
1680-7316
IngestDate Fri Oct 03 12:53:31 EDT 2025
Fri Jul 25 22:06:07 EDT 2025
Sat Nov 29 13:51:33 EST 2025
Sat Nov 29 10:33:37 EST 2025
Wed Nov 26 10:48:20 EST 2025
Sat Nov 29 06:04:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-25e4c0dfe1f3791fc4175e4bcb9f6b4e1c19e78c03c1df017a482e3cc08b52b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1519-5069
0000-0001-5504-9627
0000-0002-2986-668X
OpenAccessLink https://doaj.org/article/03107b4018c44b058e085837d0c5346c
PQID 3147531481
PQPubID 105744
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_03107b4018c44b058e085837d0c5346c
proquest_journals_3147531481
gale_infotracmisc_A820707033
gale_infotracacademiconefile_A820707033
gale_incontextgauss_ISR_A820707033
crossref_primary_10_5194_acp_24_14239_2024
PublicationCentury 2000
PublicationDate 2024-12-20
PublicationDateYYYYMMDD 2024-12-20
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-20
  day: 20
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref68
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref28
  doi: 10.1016/j.atmosenv.2022.119065
– ident: ref29
  doi: 10.1109/TGRS.2023.3256365
– ident: ref39
  doi: 10.1175/JTECH-D-16-0110.1
– ident: ref66
  doi: 10.1016/j.atmosenv.2019.01.012
– ident: ref34
  doi: 10.1016/j.solener.2017.11.049
– ident: ref19
  doi: 10.1175/2009JTECHA1223.1
– ident: ref59
  doi: 10.1175/JCLI-D-13-00352.1
– ident: ref24
– ident: ref27
  doi: 10.1109/TGRS.2018.2882803
– ident: ref57
  doi: 10.1109/TGRS.2019.2923247
– ident: ref11
  doi: 10.1175/2007WAF2006017.1
– ident: ref33
  doi: 10.5194/acp-23-8959-2023
– ident: ref50
  doi: 10.5194/acp-22-1453-2022
– ident: ref9
  doi: 10.1007/s11222-016-9646-1
– ident: ref63
  doi: 10.1007/s00376-017-7096-0
– ident: ref35
  doi: 10.1016/j.jqsrt.2014.03.014
– ident: ref53
– ident: ref10
  doi: 10.5194/amt-11-3177-2018
– ident: ref62
  doi: 10.1175/2008JTECHA1221.1
– ident: ref2
– ident: ref46
  doi: 10.1175/JTECH-D-16-0109.1
– ident: ref51
  doi: 10.1080/01431161.2020.1854891
– ident: ref36
  doi: 10.1007/s13351-017-6161-z
– ident: ref32
  doi: 10.5194/acp-9-1767-2009
– ident: ref40
– ident: ref44
  doi: 10.1073/pnas.1514044113
– ident: ref49
  doi: 10.1175/BAMS-D-12-00117.1
– ident: ref47
  doi: 10.5194/amt-9-711-2016
– ident: ref16
  doi: 10.1002/qj.3803
– ident: ref4
  doi: 10.2151/jmsj.2016-009
– ident: ref20
  doi: 10.1007/s00376-019-8272-1
– ident: ref15
  doi: 10.1175/JTECH-D-18-0079.1
– ident: ref48
  doi: 10.1175/BAMS-83-12-1771
– ident: ref3
  doi: 10.1175/JAMC-D-11-0203.1
– ident: ref1
  doi: 10.1175/JTECH1671.1
– ident: ref58
– ident: ref7
– ident: ref26
  doi: 10.1175/JAMC-D-14-0082.1
– ident: ref64
  doi: 10.1002/2015GL064809
– ident: ref6
  doi: 10.1002/jgrd.50579
– ident: ref55
  doi: 10.1109/TGRS.2022.3140348
– ident: ref56
  doi: 10.1016/j.isprsjprs.2020.01.011
– ident: ref22
  doi: 10.1080/01431160110117391
– ident: ref61
  doi: 10.1016/j.rse.2021.112305
– ident: ref17
  doi: 10.1029/2007GL031361
– ident: ref18
  doi: 10.5194/amt-4-117-2011
– ident: ref38
  doi: 10.1109/TGRS.2022.3160450
– ident: ref52
  doi: 10.1029/2011JD015970
– ident: ref60
  doi: 10.1175/2009JTECHA1281.1
– ident: ref41
  doi: 10.1175/2009JTECHA1231.1
– ident: ref13
  doi: 10.1175/2008JAMC1882.1
– ident: ref21
  doi: 10.1080/01431160500296800
– ident: ref31
  doi: 10.5194/acp-21-11979-2021
– ident: ref8
  doi: 10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2
– ident: ref23
  doi: 10.2151/jmsj.2018-001
– ident: ref54
  doi: 10.1002/2014JD022310
– ident: ref12
  doi: 10.1029/2002GL015835
– ident: ref67
– ident: ref68
  doi: 10.1002/2013GL058970
– ident: ref42
– ident: ref5
  doi: 10.1023/A:1010933404324
– ident: ref43
  doi: 10.1109/TGRS.2016.2610522
– ident: ref37
  doi: 10.1016/j.rse.2019.111616
– ident: ref65
  doi: 10.1175/JAS-D-19-0301.1
– ident: ref45
  doi: 10.1029/2007GL032591
– ident: ref25
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: ref14
– ident: ref30
  doi: 10.1016/j.rse.2022.112970
SSID ssj0025014
Score 2.4634275
Snippet Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 14239
SubjectTerms Algorithms
Artificial satellites
Aviation
CALIPSO (Pathfinder satellite)
Climate change
Clouds
Comparative analysis
Correlation coefficient
Correlation coefficients
Datasets
Diurnal cycle
Diurnal variations
Geostationary satellites
Ground-based observation
Height
Learning algorithms
Lidar
Machine learning
Meteorological satellites
Physics
Radar
Remote sensing
Satellite observation
Satellites
Synchronous satellites
Training
Weather forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5y-OCLqKdYPSXIoSCES5N0m_q2Hh4e6CH-gHsL7STdK-y1R9sV9h-6v9OZtCvug_jiY7dpSTOT5Psms98wdoygzRpbBZEGT6Ebr0WhMitw70bqZotFUUed2U_5xYW9vCy-_FHqi3LCJnngaeBOSLoyr5AFWDCmkpkNCBKQVXkJmTYLoNVX5sWOTM1Ui07LiGotrBRUm2k6z0S0Yk5KuBHKiJSU79BHlNnbkaJw_9-W57jnnD1g92ewyJdTJx-yO6F9xJLPiHO7PobD-Wt-um4QdMarQ3YbI-U07rztxvCOL6fz6ZgBu-VdzadIxiBo9_K8bD2_jumUQcz1I1a7W-tV1zfj1fVAj5V8FbphOrYv-y0fyqjkOQbetLyPVbkoMsERTnLfTN2GLXaaHoZ1t_GcXsuvYiT2Mftx9uH76UcxV2IQgHBqFCoLBqSvQ1rrvEhrMIg6gqmgKupFZUIKaRFyC1JD6muc5KWxKmgAaatMVVI_YQdt14anjKM7mErrWgHZk-gWWtUEaw0o70Em7O3OGu5mEtxwSFTIdA5N55Rx0XSOTJew92Sv3w1JKzv-gB7kZg9y__KghL0iaztSw2gp3WZVbobBnX_76paIj3JaFHXC3syN6m7sSyjnfy_gR5GA1l7Lo72WOF1h__bOqdy8XAxOpwZpIzLT9Nn_-KLn7B6NDmXdKHnEDsZ-E16wu_BzbIb-ZZwpvwB3mxU6
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA56Kvjij1OxekoQURDCtU26TX2R9fBQ0OPwBxy-hGaS9hb22rXtCvsP-Xc6k3ZP9kFffNxNupuQL5NvJtNvGHuOpE0rbb1IvKPQjZOiSDMt8OxG100Xs6IKOrMf85MTfXZWnE4Bt35Kq9zaxGCoXQsUIz-UiUJmjeQ9ebP6IahqFN2uTiU0rrJrpJJApRtOs--XDhfdmZHDNdOxoApN460mchZ1WMJKpEokpH-HSEnVzrkU5Pv_ZqTDyXN8-3_HfIfdmjgnn48gucuu-GafRZ-QLrddiKrzF_xouUDuGj7tsxshLxT6e-xXCL3TQvKmHfxrPh8vvENK7Ya3FR9DI72g49DxsnH8IuRnejEVpKi3TcsaxzacX_T0WMlr3_ZjHkDZbXhfBmnQwfNFw7tQ5otCHRz5KXeLcQKwweHTw7Bs147Tz_LzENq9z74dv_t69F5MpR0EID8bRJp5BbGrfFLJvEgqUEhjvLJgi2pmlU8gKXyuIZaQuAqtRql06iVArG2W2lg-YHtN2_iHjCO-lJWySgGUsuS_KRsrr7WC1DmII_Zqu7BmNSp4GPR8CAUGUWBSZQIKDKEgYm9p6S87kvh2-KLtajPtZUNqqrlFx1TTP8aZ9shb0dF3MWRSzSBizwg4huQ1Gsrfqct135sPXz6bORKunKysjNjLqVPVDl0J5fQ6BE6KFLl2eh7s9MT9D7vNW_CZyf705g_yHv27-TG7SfOmBJ00PmB7Q7f2T9h1-Dks-u5p2E6_Aex5KDA
  priority: 102
  providerName: ProQuest
Title Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height
URI https://www.proquest.com/docview/3147531481
https://doaj.org/article/03107b4018c44b058e085837d0c5346c
Volume 24
WOSCitedRecordID wos001381546700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: RKB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: P5Z
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PCBAR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PATMY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PIMPY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yevDib3HWdQkiCkLYtkmnqbfZZRcXnKGsK6xeQvuSzhZm26XtCPMP-Xf6XtoR5yAe9DJl2qSk-dLkey-v32PsDZI2rXThROgsuW6sFGkUa4FrN5puOp2mpdeZ_ZQsFvrqKs1-S_VFMWGDPPDQcUckXZkUaAVoUKoIYu2QJKBVZQOIpZoCfbeOUy3Z6ZTDbTS1aLeMTK2pDgTlZhr2M5GtqKMcbkWkREjKdzhGIrWzInnh_j9Nz37NOXv4D619xB6MRJPPhiqP2R1XP2GTOXLkpvWudP6Wn6wqJKz-31P2w3vZCTNeN737wGfD3raPnt3wpuSDF6QTtPJZnteW3_hQTCfG3BPL7aXVsmmr_vqmo2o5X7qmG7b883bDu9yrgPaOVzVvfUYv8mpwpKLcVkOzYYONpsqwataW0235tffiPmNfzk4vTz6KMYuDAKRivYhipyCwpQtLmaRhCQoZi1MFFGk5LZQLIUxdoiGQENoSJ4hc6chJgEAXcVQE8jnbq5vavWAch5IqpCwjoN4lUw37WDmtFUTWQjBh77dImttBrMOgkUOwG4TdRMp42A3BPmHHBN-vgqSz7U8gnmbE0_wNzwl7TSPFkJJGTaE6y3zddeb884WZIbdKaEKVE_ZuLFQ2fZtDPn75gA9F4ls7JQ92SuKrDruXtwPSjFNNZ2So0OREqzbc_x9P9JLdp96hiJ0oOGB7fbt2r9g9-N5XXXvI7h6fLrKLQ--6wN8s_obnstnl_Csdz-cZHulN_AlP_S1g
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4IXLgNEYYCFuEhI1hLHbRwkhMpgWrW2qmCTxpNJbKer1CUlSUH9QzzyGznHSYb6AG974LGxkybO53O-c8k5hDwH0iaFTCzzrUHXjQlYxHuSge4G001G_Sh1dWZH4WQiT0-j6Rb51X4Lg2mVrUx0gtrkGn3ke4EvgFkDefffLb8x7BqF0dW2hUYNiyO7_gEmW_l2-AHe7wvODz4e7x-ypqsA00ANKsZ7VmjPpNZPgzDyUy1Ag1qR6CRK-4mwvvYjG0rtBdo3KQA2FpLbQGtPJj2eeAFc9wrZFgj2DtmeDsfTLxcmHkbp0MTrS49hT6g6jgosSezFesm4YD5W3ANscrGhCV3DgL-pBafrDm79b6t0m9xsWDUd1NvgDtmy2Q7pjsEgyAsXN6Av6f5iDuzc_doh11zmqy7vkp8uuIBQpVle2Td0UIf0XdLwmuYprZ0_JUOFb2icGXruMlAta1puzNqhxQzWojo7L_G0mM5sXtaZDnGxpmXsip9Wls4zWrhGZujMocDAqZnXD6DXcPt4sl7kK0PxsvTMOa_vkZNLWcD7pJPlmX1AKOwgkQRByrUWIkELVSSesFIKzY3RXpe8boGklnWNEgW2HaJOAeoUF8qhTiHquuQ9Qu1iIpYXdwfyYqYaaaWwXmyYgOkt8R-9nrTAzGUQGk_3AtHXXfIMgaqwgEiGGUqzeFWWavj5kxoApQxRjwRd8qqZlOZVEeu4-eADHgprjm3M3N2YCRJObw63YFeNhC3VH6Q__PfwU3L98Hg8UqPh5OgRuYFrgOlI3NslnapY2cfkqv5ezcviSbOZKfl62TvjN7V7h7o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGBxMvXAYThQEW4iIhWU0ct3GQEOo2Kqpt1biJvZnEdrpKXVKSFNQ_xI_g13GOkwz1Ad72wGNjJ02c7_h855JzCHkKpE0KmVjmW4OuGxOwiPclA90NppuMBlHq6swehZOJPD2NTjbIr_ZbGEyrbPdEt1GbXKOPvBf4Apg1kHe_lzZpEScHozeLbww7SGGktW2nUUPk0K5-gPlWvh4fwLt-xvno7af9d6zpMMA00ISK8b4V2jOp9dMgjPxUC9CmViQ6idJBIqyv_ciGUnuB9k0K4I2F5DbQ2pNJnydeANe9QjblYCC9DtncGx2__3Jh7mHEDs09GGPYH6qOqQJjEr1YLxgXzMfqe4BTLta0omse8DcV4fTe6Ob_vGK3yI2GbdNhLR63yYbNtkn3GAyFvHDxBPqc7s9nwNrdr21yzWXE6vIO-emCDghhmuWVfUWHdajfJROvaJ7S2ilUMiQChsaZoecuM9WyphXHtB2aT2EtqrPzEk-L6dTmZZ0BERcrWsauKGpl6SyjhWtwhk4eCsycmln9AHoFt48n63m-NBQvS8-cU_su-XwpC7hDOlme2XuEgmSJJAhSrrUQCVquIvGElVJoboz2uuRlCyq1qGuXKLD5EIEKEKi4UA6BChHYJXsIu4uJWHbcHciLqWp2MYV1ZMMETHKJ_-j1pQXGLoPQeLofiIHukicIWoWFRTIE3DRelqUaf_yghkA1Q9QvQZe8aCaleVXEOm4-BIGHwlpkazN312bCzqfXh1vgq2bnLdUf1N__9_BjsgXioI7Gk8MH5DouAWYpcW-XdKpiaR-Sq_p7NSuLR41cU_L1sgXjN7WBkFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+Applicability+of+physics-based+and+machine-learning-based+algorithms+of+a+geostationary+satellite+in+retrieving+the+diurnal+cycle+of+cloud+base+height&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Wang%2C+Mengyuan&rft.au=Min%2C+Min&rft.au=Li%2C+Jun&rft.au=Lin%2C+Han&rft.date=2024-12-20&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=24&rft.issue=24&rft.spage=14239&rft.epage=14256&rft_id=info:doi/10.5194%2Facp-24-14239-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_24_14239_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon