Cancer cell adaptation to chemotherapy

Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human...

Full description

Saved in:
Bibliographic Details
Published in:BMC cancer Vol. 5; no. 1; p. 78
Main Authors: Di Nicolantonio, Federica, Mercer, Stuart J, Knight, Louise A, Gabriel, Francis G, Whitehouse, Pauline A, Sharma, Sanjay, Fernando, Augusta, Glaysher, Sharon, Di Palma, Silvana, Johnson, Penny, Somers, Shaw S, Toh, Simon, Higgins, Bernie, Lamont, Alan, Gulliford, Tim, Hurren, Jeremy, Yiangou, Constantinos, Cree, Ian A
Format: Journal Article
Language:English
Published: England BioMed Central 18.07.2005
BMC
Subjects:
ISSN:1471-2407, 1471-2407
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors. This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy.
AbstractList Abstract Background Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Methods Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. Results In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIα (TOPOIIα). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIα in 6/7 colorectal tumors and 8/10 ovarian tumors. Conclusion This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy.
Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors.BACKGROUNDTumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors.Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels.METHODSCells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels.In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors.RESULTSIn 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors.This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy.CONCLUSIONThis study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy.
Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors. This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy.
ArticleNumber 78
Author Mercer, Stuart J
Johnson, Penny
Higgins, Bernie
Fernando, Augusta
Gabriel, Francis G
Lamont, Alan
Somers, Shaw S
Whitehouse, Pauline A
Di Nicolantonio, Federica
Gulliford, Tim
Cree, Ian A
Glaysher, Sharon
Di Palma, Silvana
Sharma, Sanjay
Knight, Louise A
Hurren, Jeremy
Toh, Simon
Yiangou, Constantinos
AuthorAffiliation 1 Translational Oncology Research Centre, Department of Histopathology, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
2 Department of Surgery, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
3 Department of Mathematics and Statistics, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth PO1 3HE, UK
5 Department of Radiotherapy and Oncology, St Mary's Hospital, Milton Road, Portsmouth PO3 6AD, UK
4 Department of Radiotherapy and Oncology, Southend Hospital, Prittlewell Chase, Westcliff-on-Sea, Essex SS0 0RY, UK
AuthorAffiliation_xml – name: 2 Department of Surgery, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
– name: 1 Translational Oncology Research Centre, Department of Histopathology, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
– name: 4 Department of Radiotherapy and Oncology, Southend Hospital, Prittlewell Chase, Westcliff-on-Sea, Essex SS0 0RY, UK
– name: 3 Department of Mathematics and Statistics, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth PO1 3HE, UK
– name: 5 Department of Radiotherapy and Oncology, St Mary's Hospital, Milton Road, Portsmouth PO3 6AD, UK
Author_xml – sequence: 1
  givenname: Federica
  surname: Di Nicolantonio
  fullname: Di Nicolantonio, Federica
– sequence: 2
  givenname: Stuart J
  surname: Mercer
  fullname: Mercer, Stuart J
– sequence: 3
  givenname: Louise A
  surname: Knight
  fullname: Knight, Louise A
– sequence: 4
  givenname: Francis G
  surname: Gabriel
  fullname: Gabriel, Francis G
– sequence: 5
  givenname: Pauline A
  surname: Whitehouse
  fullname: Whitehouse, Pauline A
– sequence: 6
  givenname: Sanjay
  surname: Sharma
  fullname: Sharma, Sanjay
– sequence: 7
  givenname: Augusta
  surname: Fernando
  fullname: Fernando, Augusta
– sequence: 8
  givenname: Sharon
  surname: Glaysher
  fullname: Glaysher, Sharon
– sequence: 9
  givenname: Silvana
  surname: Di Palma
  fullname: Di Palma, Silvana
– sequence: 10
  givenname: Penny
  surname: Johnson
  fullname: Johnson, Penny
– sequence: 11
  givenname: Shaw S
  surname: Somers
  fullname: Somers, Shaw S
– sequence: 12
  givenname: Simon
  surname: Toh
  fullname: Toh, Simon
– sequence: 13
  givenname: Bernie
  surname: Higgins
  fullname: Higgins, Bernie
– sequence: 14
  givenname: Alan
  surname: Lamont
  fullname: Lamont, Alan
– sequence: 15
  givenname: Tim
  surname: Gulliford
  fullname: Gulliford, Tim
– sequence: 16
  givenname: Jeremy
  surname: Hurren
  fullname: Hurren, Jeremy
– sequence: 17
  givenname: Constantinos
  surname: Yiangou
  fullname: Yiangou, Constantinos
– sequence: 18
  givenname: Ian A
  surname: Cree
  fullname: Cree, Ian A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16026610$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LAzEQxYMo2lavHqUnb1uTzfdFkOIXFLzoOUyzE7uy3dTsVuh_767VYsVThsnM7w3vDclhHWsk5JzRCWNGXTGhWZYLqjOZaXNABrvG4a_6hAyb5o1Spg01x-SEKZorxeiAXE6h9pjGHqtqDAWsWmjLWI_bOPYLXMZ2gQlWm1NyFKBq8Oz7HZGXu9vn6UM2e7p_nN7MMi-4NJkAgV6YoHAuC61kkUNhO6oyaGkugtVzKlRXS6ooKAQwSCXngnld6K4akcctt4jw5lapXELauAil-2rE9OogtaWv0HkMPqBCkXMvfChsCGADy3ngPBied6zrLWu1ni-x8Fi3Cao96P5PXS7ca_xwjFkrje0Al9-AFN_X2LRuWTa9UVBjXDdOGSltzvurL34r7SR-bO4GxHbAp9g0CYPz5dboTrisHKOuT9P1gbk-MCedNt3a5M_ajvz_widjSp_9
CitedBy_id crossref_primary_10_1016_j_canlet_2008_12_033
crossref_primary_10_1245_s10434_022_12392_5
crossref_primary_10_2217_fon_2017_0431
crossref_primary_10_3390_ma11020281
crossref_primary_10_3390_ijms19030868
crossref_primary_10_3109_00498254_2011_645517
crossref_primary_10_3390_cancers14092339
crossref_primary_10_1002_cmdc_202300081
crossref_primary_10_1111_bcp_14543
crossref_primary_10_1007_s40495_015_0035_9
crossref_primary_10_1007_s00280_013_2247_1
crossref_primary_10_1002_cncr_22280
crossref_primary_10_1007_s10555_017_9684_y
crossref_primary_10_3389_fphar_2021_759146
crossref_primary_10_1097_CAD_0b013e3281de727e
crossref_primary_10_1016_j_critrevonc_2007_02_001
crossref_primary_10_1016_j_yexcr_2025_114580
crossref_primary_10_1002_mabi_201600457
crossref_primary_10_1007_s00280_008_0790_y
crossref_primary_10_1016_j_drup_2021_100796
crossref_primary_10_1245_s10434_022_12933_y
crossref_primary_10_1007_s00277_009_0831_6
crossref_primary_10_1016_j_medici_2014_09_005
crossref_primary_10_1038_s41397_019_0110_4
crossref_primary_10_1371_journal_pone_0003894
crossref_primary_10_1007_s10330_009_0051_5
crossref_primary_10_1038_nrclinonc_2013_110
crossref_primary_10_1111_aji_12996
crossref_primary_10_1186_s12885_016_2999_1
crossref_primary_10_1111_IGC_0b013e3181f05128
crossref_primary_10_1371_journal_pcbi_1003795
crossref_primary_10_1002_jcp_26091
crossref_primary_10_3390_cancers14184357
crossref_primary_10_1097_01_cad_0000224445_23953_d9
crossref_primary_10_1128_MCB_00483_21
crossref_primary_10_1093_jpp_rgac017
crossref_primary_10_1158_1078_0432_CCR_06_1619
crossref_primary_10_1186_1756_9966_32_13
crossref_primary_10_3390_cancers10100365
crossref_primary_10_1002_jso_21641
crossref_primary_10_3109_08982104_2012_668552
crossref_primary_10_1136_jclinpath_2014_202404
crossref_primary_10_1016_j_ejps_2020_105401
crossref_primary_10_3390_biology3020345
crossref_primary_10_1097_GCO_0b013e32832210ff
crossref_primary_10_1080_14737159_2016_1221345
crossref_primary_10_3109_00498254_2010_508821
crossref_primary_10_1590_s2175_97902022e19946
crossref_primary_10_1089_hum_2006_17_ft_225
crossref_primary_10_1158_1078_0432_CCR_14_3023
crossref_primary_10_1007_s12094_007_0081_9
crossref_primary_10_1208_s12248_010_9216_y
crossref_primary_10_3892_ol_2022_13469
crossref_primary_10_3390_jpm11060585
crossref_primary_10_1038_sj_bjc_6605817
crossref_primary_10_3109_00313025_2010_493862
crossref_primary_10_1002_ags3_12178
crossref_primary_10_1007_s00535_006_1904_0
crossref_primary_10_1016_j_jconrel_2019_09_006
crossref_primary_10_1002_jcp_27666
crossref_primary_10_1016_j_phrs_2013_07_009
crossref_primary_10_1097_IGC_0000000000000814
crossref_primary_10_1016_j_heliyon_2024_e32245
crossref_primary_10_1126_scitranslmed_3003016
crossref_primary_10_1186_s12885_015_1101_8
crossref_primary_10_1136_jcp_2010_080119
crossref_primary_10_3390_ijms23031853
crossref_primary_10_2174_0929867328666210910124319
crossref_primary_10_1016_j_biopha_2011_09_002
crossref_primary_10_1111_j_1747_0285_2010_01025_x
crossref_primary_10_1097_CAD_0b013e3280262427
crossref_primary_10_1016_j_canlet_2013_02_059
crossref_primary_10_1007_s11064_018_2601_0
crossref_primary_10_1017_S002202990800335X
crossref_primary_10_1186_1476_4598_7_8
crossref_primary_10_4161_cc_25334
crossref_primary_10_1517_17425255_2011_562892
crossref_primary_10_3748_wjg_v12_i41_6614
crossref_primary_10_3892_ijo_2017_3973
crossref_primary_10_1093_carcin_bgy184
crossref_primary_10_2174_1381612826666200224112141
crossref_primary_10_3390_cancers17030476
crossref_primary_10_1089_hum_2006_17_798
crossref_primary_10_1016_j_pscychresns_2010_05_002
crossref_primary_10_1053_j_gastro_2021_03_022
crossref_primary_10_1186_1471_2407_6_72
crossref_primary_10_1186_1471_2407_8_97
crossref_primary_10_1002_ijc_25619
crossref_primary_10_1016_j_jconrel_2013_07_007
Cites_doi 10.1093/jnci/92.16.1295
10.1038/sj.leu.2402496
10.1111/j.1349-7006.2000.tb00866.x
10.1097/00001813-199404000-00007
10.1054/drup.1999.0110
10.1385/0-89603-520-4:169
10.1200/JCO.2002.01.003
10.1172/JCI117388
10.1006/jmcc.2001.1475
10.1002/bio.1170090604
10.1200/JCO.1989.7.7.890
10.1007/BF00686403
10.1146/annurev.bi.65.070196.003223
10.1038/nature02625
10.1097/00001813-199608000-00002
10.1002/ijc.10246
10.1186/gb-2002-3-7-research0034
10.1038/nrc706
10.1016/0006-2952(95)00067-A
10.1016/0959-8049(95)00172-F
10.1007/BF01807161
10.1038/nrc1074
10.1002/ijc.2910520118
10.1097/00130404-200211000-00010
10.1093/clinchem/45.8.1148
10.1093/annonc/mdh006
10.1182/blood.V93.12.4086
10.1074/jbc.M211093200
ContentType Journal Article
Copyright Copyright © 2005 Di Nicolantonio et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2005 Di Nicolantonio et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/1471-2407-5-78
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2407
EndPage 78
ExternalDocumentID oai_doaj_org_article_cefcfe6e423c4cfd9ffa9f123f33f832
PMC1199589
16026610
10_1186_1471_2407_5_78
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
6PF
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
IHW
INH
INR
ISR
ITC
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PQQKQ
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
W2D
WOQ
WOW
XSB
-A0
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4358-4a4ec48f6eb5d765d2ad9ada68e9024f97b046e905060a6eaa8e053341c7d7053
IEDL.DBID DOA
ISSN 1471-2407
IngestDate Fri Oct 03 12:38:31 EDT 2025
Thu Aug 21 18:25:49 EDT 2025
Wed Oct 01 14:20:55 EDT 2025
Thu Jan 02 22:10:53 EST 2025
Sat Nov 29 05:12:05 EST 2025
Tue Nov 18 22:26:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4358-4a4ec48f6eb5d765d2ad9ada68e9024f97b046e905060a6eaa8e053341c7d7053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/cefcfe6e423c4cfd9ffa9f123f33f832
PMID 16026610
PQID 68559235
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_cefcfe6e423c4cfd9ffa9f123f33f832
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1199589
proquest_miscellaneous_68559235
pubmed_primary_16026610
crossref_citationtrail_10_1186_1471_2407_5_78
crossref_primary_10_1186_1471_2407_5_78
PublicationCentury 2000
PublicationDate 2005-07-18
PublicationDateYYYYMMDD 2005-07-18
PublicationDate_xml – month: 07
  year: 2005
  text: 2005-07-18
  day: 18
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC cancer
PublicationTitleAlternate BMC Cancer
PublicationYear 2005
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References C Wilmanns (266_CR10) 1992; 52
WT Beck (266_CR25) 1999; 2
Y Ishikawa (266_CR32) 2000; 91
JC Wang (266_CR20) 1996; 65
S Moniotte (266_CR38) 2001; 33
E Chu (266_CR19) 1993; 43
MM Gottesman (266_CR16) 2002; 2
MM van den Heuvel-Eibrink (266_CR39) 2002; 16
SJ Welsh (266_CR28) 2000; 6
C Blanquicett (266_CR42) 2002; 1
CM Kurbacher (266_CR15) 1996; 41
GJ Peters (266_CR30) 1995; 31A
P Borst (266_CR17) 2000; 92
PE Andreotti (266_CR1) 1994; 9
EM Hunter (266_CR11) 1994; 5
D Salonga (266_CR31) 2000; 6
Y Matsumoto (266_CR3) 1997; 57
M Kornmann (266_CR34) 2003; 9
IF Faneyte (266_CR41) 2002; 8
IA Cree (266_CR2) 1996; 7
S D'Atri (266_CR24) 2000; 294
XF Hu (266_CR6) 1999; 93
DB Longley (266_CR18) 2003; 3
SM Swain (266_CR29) 1989; 7
PA Clarke (266_CR36) 2003; 63
S Copur (266_CR27) 1995; 49
E Yague (266_CR44) 2003; 278
TA Buchholz (266_CR35) 2002; 8
J Taipalensuu (266_CR45) 2001; 299
PG Johnston (266_CR26) 1992; 52
I Bieche (266_CR40) 1999; 45
U Stein (266_CR7) 2002; 20
Y Tada (266_CR8) 2002; 98
G Samimi (266_CR23) 2000; 6
PE Andreotti (266_CR9) 1995; 55
PD Foglesong (266_CR21) 1992; 30
G Egger (266_CR4) 2004; 429
J Vandesompele (266_CR12) 2002; 3
IA Cree (266_CR14) 1998
Applied Biosystems (266_CR13) 1997; 10/2001
W Ichikawa (266_CR33) 2003; 9
M Dabholkar (266_CR22) 1994; 94
RV Lord (266_CR43) 2002; 8
T Kurata (266_CR37) 2004; 15
A Abolhoda (266_CR5) 1999; 5
11920626 - Int J Cancer. 2002 Apr 1;98(4):630-5
14519634 - Clin Cancer Res. 2003 Sep 15;9(11):4116-24
10361105 - Blood. 1999 Jun 15;93(12):4086-95
11498354 - Drug Resist Updat. 1999 Dec;2(6):382-389
10430778 - Clin Chem. 1999 Aug;45(8 Pt 1):1148-56
12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
11986944 - Leukemia. 2002 May;16(5):833-9
10944550 - J Natl Cancer Inst. 2000 Aug 16;92(16):1295-302
12149303 - J Clin Oncol. 2002 Aug 1;20(15):3282-92
10778957 - Clin Cancer Res. 2000 Apr;6(4):1322-7
8944334 - Breast Cancer Res Treat. 1996;41(2):161-70
10589744 - Clin Cancer Res. 1999 Nov;5(11):3352-6
8811192 - Annu Rev Biochem. 1996;65:635-92
12481438 - Mol Cancer Ther. 2002 Oct;1(12):1139-45
8049500 - Anticancer Drugs. 1994 Apr;5(2):171-6
1500231 - Int J Cancer. 1992 Aug 19;52(1):98-104
8040325 - J Clin Invest. 1994 Aug;94(2):703-8
1318169 - Cancer Chemother Pharmacol. 1992;30(2):123-5
11561076 - J Pharmacol Exp Ther. 2001 Oct;299(1):164-70
8913430 - Anticancer Drugs. 1996 Aug;7(6):630-5
7879653 - J Biolumin Chemilumin. 1994 Nov-Dec;9(6):373-8
12500855 - Cancer J. 2002 Nov-Dec;8(6):461-8
7585588 - Cancer Res. 1995 Nov 15;55(22):5276-82
12724731 - Nat Rev Cancer. 2003 May;3(5):330-8
2661735 - J Clin Oncol. 1989 Jul;7(7):890-9
7763285 - Biochem Pharmacol. 1995 May 17;49(10):1419-26
15164071 - Nature. 2004 May 27;429(6990):457-63
12525496 - J Biol Chem. 2003 Mar 21;278(12):10344-52
11902585 - Nat Rev Cancer. 2002 Jan;2(1):48-58
12576451 - Clin Cancer Res. 2003 Feb;9(2):786-91
8474431 - Mol Pharmacol. 1993 Apr;43(4):527-33
1643628 - Cancer Res. 1992 Aug 15;52(16):4306-12
11948115 - Clin Cancer Res. 2002 Apr;8(4):1068-74
10900246 - J Pharmacol Exp Ther. 2000 Aug;294(2):664-71
11735259 - J Mol Cell Cardiol. 2001 Dec;33(12):2121-33
12114432 - Clin Cancer Res. 2002 Jul;8(7):2286-91
14679138 - Ann Oncol. 2004 Jan;15(1):173-4
9371507 - Cancer Res. 1997 Nov 15;57(22):5086-92
10873110 - Clin Cancer Res. 2000 Jun;6(6):2538-46
9680619 - Methods Mol Biol. 1998;102:169-77
10778972 - Clin Cancer Res. 2000 Apr;6(4):1415-21
14583483 - Cancer Res. 2003 Oct 15;63(20):6855-63
7577040 - Eur J Cancer. 1995 Jul-Aug;31A(7-8):1299-305
10744051 - Jpn J Cancer Res. 2000 Jan;91(1):105-12
References_xml – volume: 92
  start-page: 1295
  year: 2000
  ident: 266_CR17
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/92.16.1295
– volume: 6
  start-page: 1322
  year: 2000
  ident: 266_CR31
  publication-title: Clin Cancer Res
– volume: 52
  start-page: 4306
  year: 1992
  ident: 266_CR26
  publication-title: Cancer Res
– volume: 43
  start-page: 527
  year: 1993
  ident: 266_CR19
  publication-title: Mol Pharmacol
– volume: 1
  start-page: 1139
  year: 2002
  ident: 266_CR42
  publication-title: Mol Cancer Ther
– volume: 16
  start-page: 833
  year: 2002
  ident: 266_CR39
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2402496
– volume: 91
  start-page: 105
  year: 2000
  ident: 266_CR32
  publication-title: Jpn J Cancer Res
  doi: 10.1111/j.1349-7006.2000.tb00866.x
– volume: 5
  start-page: 171
  year: 1994
  ident: 266_CR11
  publication-title: Anticancer Drugs
  doi: 10.1097/00001813-199404000-00007
– volume: 2
  start-page: 382
  year: 1999
  ident: 266_CR25
  publication-title: Drug Resist Updat
  doi: 10.1054/drup.1999.0110
– volume: 55
  start-page: 5276
  year: 1995
  ident: 266_CR9
  publication-title: Cancer Research
– start-page: 169
  volume-title: Bioluminescence Methods and Protocols
  year: 1998
  ident: 266_CR14
  doi: 10.1385/0-89603-520-4:169
– volume: 8
  start-page: 2286
  year: 2002
  ident: 266_CR43
  publication-title: Clin Cancer Res
– volume: 20
  start-page: 3282
  year: 2002
  ident: 266_CR7
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2002.01.003
– volume: 94
  start-page: 703
  year: 1994
  ident: 266_CR22
  publication-title: J Clin Invest
  doi: 10.1172/JCI117388
– volume: 5
  start-page: 3352
  year: 1999
  ident: 266_CR5
  publication-title: Clin Cancer Res
– volume: 33
  start-page: 2121
  year: 2001
  ident: 266_CR38
  publication-title: J Mol Cell Cardiol
  doi: 10.1006/jmcc.2001.1475
– volume: 10/2001
  start-page: 11
  year: 1997
  ident: 266_CR13
  publication-title: Relative Quantitation of Gene Expression (P/N 4303859B)
– volume: 299
  start-page: 164
  year: 2001
  ident: 266_CR45
  publication-title: J Pharmacol Exp Ther
– volume: 294
  start-page: 664
  year: 2000
  ident: 266_CR24
  publication-title: J Pharmacol Exp Ther
– volume: 9
  start-page: 373
  year: 1994
  ident: 266_CR1
  publication-title: J Biolumin Chemilumin
  doi: 10.1002/bio.1170090604
– volume: 9
  start-page: 786
  year: 2003
  ident: 266_CR33
  publication-title: Clin Cancer Res
– volume: 7
  start-page: 890
  year: 1989
  ident: 266_CR29
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.1989.7.7.890
– volume: 63
  start-page: 6855
  year: 2003
  ident: 266_CR36
  publication-title: Cancer Res
– volume: 30
  start-page: 123
  year: 1992
  ident: 266_CR21
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/BF00686403
– volume: 65
  start-page: 635
  year: 1996
  ident: 266_CR20
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.65.070196.003223
– volume: 429
  start-page: 457
  year: 2004
  ident: 266_CR4
  publication-title: Nature
  doi: 10.1038/nature02625
– volume: 7
  start-page: 630
  year: 1996
  ident: 266_CR2
  publication-title: Anti-Cancer Drugs
  doi: 10.1097/00001813-199608000-00002
– volume: 98
  start-page: 630
  year: 2002
  ident: 266_CR8
  publication-title: Int J Cancer
  doi: 10.1002/ijc.10246
– volume: 3
  start-page: research0034.00
  year: 2002
  ident: 266_CR12
  publication-title: Genome Biology
  doi: 10.1186/gb-2002-3-7-research0034
– volume: 2
  start-page: 48
  year: 2002
  ident: 266_CR16
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc706
– volume: 49
  start-page: 1419
  year: 1995
  ident: 266_CR27
  publication-title: Biochem Pharmacol
  doi: 10.1016/0006-2952(95)00067-A
– volume: 31A
  start-page: 1299
  year: 1995
  ident: 266_CR30
  publication-title: Eur J Cancer
  doi: 10.1016/0959-8049(95)00172-F
– volume: 8
  start-page: 1068
  year: 2002
  ident: 266_CR41
  publication-title: Clin Cancer Res
– volume: 41
  start-page: 161
  issue: 2
  year: 1996
  ident: 266_CR15
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/BF01807161
– volume: 3
  start-page: 330
  year: 2003
  ident: 266_CR18
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1074
– volume: 6
  start-page: 2538
  year: 2000
  ident: 266_CR28
  publication-title: Clin Cancer Res
– volume: 9
  start-page: 4116
  year: 2003
  ident: 266_CR34
  publication-title: Clin Cancer Res
– volume: 52
  start-page: 98
  year: 1992
  ident: 266_CR10
  publication-title: Int J Cancer
  doi: 10.1002/ijc.2910520118
– volume: 8
  start-page: 461
  year: 2002
  ident: 266_CR35
  publication-title: Cancer J
  doi: 10.1097/00130404-200211000-00010
– volume: 45
  start-page: 1148
  year: 1999
  ident: 266_CR40
  publication-title: Clin Chem
  doi: 10.1093/clinchem/45.8.1148
– volume: 15
  start-page: 173
  year: 2004
  ident: 266_CR37
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdh006
– volume: 57
  start-page: 5086
  year: 1997
  ident: 266_CR3
  publication-title: Cancer Res
– volume: 93
  start-page: 4086
  year: 1999
  ident: 266_CR6
  publication-title: Blood
  doi: 10.1182/blood.V93.12.4086
– volume: 6
  start-page: 1415
  year: 2000
  ident: 266_CR23
  publication-title: Clinical Cancer Research: an Official Journal of the American Association for Cancer Research
– volume: 278
  start-page: 10344
  year: 2003
  ident: 266_CR44
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M211093200
– reference: 7577040 - Eur J Cancer. 1995 Jul-Aug;31A(7-8):1299-305
– reference: 11986944 - Leukemia. 2002 May;16(5):833-9
– reference: 7763285 - Biochem Pharmacol. 1995 May 17;49(10):1419-26
– reference: 10778972 - Clin Cancer Res. 2000 Apr;6(4):1415-21
– reference: 12114432 - Clin Cancer Res. 2002 Jul;8(7):2286-91
– reference: 14679138 - Ann Oncol. 2004 Jan;15(1):173-4
– reference: 8944334 - Breast Cancer Res Treat. 1996;41(2):161-70
– reference: 12481438 - Mol Cancer Ther. 2002 Oct;1(12):1139-45
– reference: 15164071 - Nature. 2004 May 27;429(6990):457-63
– reference: 8049500 - Anticancer Drugs. 1994 Apr;5(2):171-6
– reference: 10361105 - Blood. 1999 Jun 15;93(12):4086-95
– reference: 9680619 - Methods Mol Biol. 1998;102:169-77
– reference: 12576451 - Clin Cancer Res. 2003 Feb;9(2):786-91
– reference: 11902585 - Nat Rev Cancer. 2002 Jan;2(1):48-58
– reference: 10744051 - Jpn J Cancer Res. 2000 Jan;91(1):105-12
– reference: 8040325 - J Clin Invest. 1994 Aug;94(2):703-8
– reference: 10589744 - Clin Cancer Res. 1999 Nov;5(11):3352-6
– reference: 1643628 - Cancer Res. 1992 Aug 15;52(16):4306-12
– reference: 10778957 - Clin Cancer Res. 2000 Apr;6(4):1322-7
– reference: 11920626 - Int J Cancer. 2002 Apr 1;98(4):630-5
– reference: 8474431 - Mol Pharmacol. 1993 Apr;43(4):527-33
– reference: 12149303 - J Clin Oncol. 2002 Aug 1;20(15):3282-92
– reference: 11735259 - J Mol Cell Cardiol. 2001 Dec;33(12):2121-33
– reference: 12500855 - Cancer J. 2002 Nov-Dec;8(6):461-8
– reference: 11948115 - Clin Cancer Res. 2002 Apr;8(4):1068-74
– reference: 10944550 - J Natl Cancer Inst. 2000 Aug 16;92(16):1295-302
– reference: 1318169 - Cancer Chemother Pharmacol. 1992;30(2):123-5
– reference: 14519634 - Clin Cancer Res. 2003 Sep 15;9(11):4116-24
– reference: 1500231 - Int J Cancer. 1992 Aug 19;52(1):98-104
– reference: 10900246 - J Pharmacol Exp Ther. 2000 Aug;294(2):664-71
– reference: 2661735 - J Clin Oncol. 1989 Jul;7(7):890-9
– reference: 7879653 - J Biolumin Chemilumin. 1994 Nov-Dec;9(6):373-8
– reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
– reference: 8913430 - Anticancer Drugs. 1996 Aug;7(6):630-5
– reference: 11561076 - J Pharmacol Exp Ther. 2001 Oct;299(1):164-70
– reference: 9371507 - Cancer Res. 1997 Nov 15;57(22):5086-92
– reference: 14583483 - Cancer Res. 2003 Oct 15;63(20):6855-63
– reference: 7585588 - Cancer Res. 1995 Nov 15;55(22):5276-82
– reference: 10873110 - Clin Cancer Res. 2000 Jun;6(6):2538-46
– reference: 11498354 - Drug Resist Updat. 1999 Dec;2(6):382-389
– reference: 10430778 - Clin Chem. 1999 Aug;45(8 Pt 1):1148-56
– reference: 8811192 - Annu Rev Biochem. 1996;65:635-92
– reference: 12724731 - Nat Rev Cancer. 2003 May;3(5):330-8
– reference: 12525496 - J Biol Chem. 2003 Mar 21;278(12):10344-52
SSID ssj0017808
Score 2.1547675
Snippet Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The...
Abstract Background Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 78
SubjectTerms Antineoplastic Agents - pharmacology
ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism
Biopsy
Camptothecin - analogs & derivatives
Camptothecin - pharmacology
Cell Line, Tumor
Cisplatin - pharmacology
Down-Regulation
Doxorubicin - pharmacology
Drug Resistance, Neoplasm
Drug Therapy - methods
Epirubicin - pharmacology
Fluorouracil - pharmacology
Gene Expression Regulation, Neoplastic
Humans
Immunohistochemistry
Neoplasms - drug therapy
Paclitaxel - pharmacology
Recurrence
Reverse Transcriptase Polymerase Chain Reaction
Time Factors
Topotecan - pharmacology
Treatment Outcome
Up-Regulation
Title Cancer cell adaptation to chemotherapy
URI https://www.ncbi.nlm.nih.gov/pubmed/16026610
https://www.proquest.com/docview/68559235
https://pubmed.ncbi.nlm.nih.gov/PMC1199589
https://doaj.org/article/cefcfe6e423c4cfd9ffa9f123f33f832
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5URLyIb-tzD6Kn0G43m8dRi-JF8aDQW8jmgYJuSx-CF3-7k-y2tqJ48bKE7LCE-bKZmUzyDcBp2xYtk7mcUKEZoYZyUrRblsiCaVpw79O8KjbB7-5EtyvvZ0p9hTNhFT1wpbimcd54xxyafUONt9J7LT2utz7LPE7HsPq2uJwEU3X-gItYiy7FpTfkD3hN15gK1pz2kZyE4moz5iiy9v_kan4_MTljgq7XYa32HZOLaswbsODKTVi5rbPjW3DWCRAOkrAZn2ir-1WaPRn1EoTmtb5r9b4Nj9dXD50bUtdBIAadGUGops5Q4ZkrcstZbtvaSvwKE06iifWSFxjlYjuQBWrmtBYuXrFNDbccWzuwVPZKtweJLjBcoZp7Gjd_BDpHDp1A61LmTJqJBpCJOpSpScJDrYoXFYMFwVRQnwrqU7niKH8-le9X9Bi_Sl4G7U6lAq117ECwVQ22-gvsBpxMsFH4GwR16tL1xkPFBIZG7SxvwG6F1NdwQpEtdBIbwOcwnBvJ_Jvy-SkSbafh_rqQ-_8x9ANYjayvgZNTHMLSaDB2R7Bs3kbPw8ExLPKuOI5zGJ-3H1efSRr1Tg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+cell+adaptation+to+chemotherapy&rft.jtitle=BMC+cancer&rft.au=Higgins+Bernie&rft.au=Toh+Simon&rft.au=Somers+Shaw+S&rft.au=Johnson+Penny&rft.date=2005-07-18&rft.pub=BMC&rft.issn=1471-2407&rft.eissn=1471-2407&rft.volume=5&rft.issue=1&rft.spage=78&rft_id=info:doi/10.1186%2F1471-2407-5-78&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cefcfe6e423c4cfd9ffa9f123f33f832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon