Cancer cell adaptation to chemotherapy
Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human...
Saved in:
| Published in: | BMC cancer Vol. 5; no. 1; p. 78 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
BioMed Central
18.07.2005
BMC |
| Subjects: | |
| ISSN: | 1471-2407, 1471-2407 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors.
Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels.
In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors.
This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy. |
|---|---|
| AbstractList | Abstract Background Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Methods Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. Results In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIα (TOPOIIα). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIα in 6/7 colorectal tumors and 8/10 ovarian tumors. Conclusion This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy. Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors.BACKGROUNDTumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors.Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels.METHODSCells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels.In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors.RESULTSIn 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors.This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy.CONCLUSIONThis study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy. Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIalpha (TOPOIIalpha). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIalpha in 6/7 colorectal tumors and 8/10 ovarian tumors. This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy. |
| ArticleNumber | 78 |
| Author | Mercer, Stuart J Johnson, Penny Higgins, Bernie Fernando, Augusta Gabriel, Francis G Lamont, Alan Somers, Shaw S Whitehouse, Pauline A Di Nicolantonio, Federica Gulliford, Tim Cree, Ian A Glaysher, Sharon Di Palma, Silvana Sharma, Sanjay Knight, Louise A Hurren, Jeremy Toh, Simon Yiangou, Constantinos |
| AuthorAffiliation | 1 Translational Oncology Research Centre, Department of Histopathology, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK 2 Department of Surgery, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK 3 Department of Mathematics and Statistics, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth PO1 3HE, UK 5 Department of Radiotherapy and Oncology, St Mary's Hospital, Milton Road, Portsmouth PO3 6AD, UK 4 Department of Radiotherapy and Oncology, Southend Hospital, Prittlewell Chase, Westcliff-on-Sea, Essex SS0 0RY, UK |
| AuthorAffiliation_xml | – name: 2 Department of Surgery, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK – name: 1 Translational Oncology Research Centre, Department of Histopathology, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK – name: 4 Department of Radiotherapy and Oncology, Southend Hospital, Prittlewell Chase, Westcliff-on-Sea, Essex SS0 0RY, UK – name: 3 Department of Mathematics and Statistics, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth PO1 3HE, UK – name: 5 Department of Radiotherapy and Oncology, St Mary's Hospital, Milton Road, Portsmouth PO3 6AD, UK |
| Author_xml | – sequence: 1 givenname: Federica surname: Di Nicolantonio fullname: Di Nicolantonio, Federica – sequence: 2 givenname: Stuart J surname: Mercer fullname: Mercer, Stuart J – sequence: 3 givenname: Louise A surname: Knight fullname: Knight, Louise A – sequence: 4 givenname: Francis G surname: Gabriel fullname: Gabriel, Francis G – sequence: 5 givenname: Pauline A surname: Whitehouse fullname: Whitehouse, Pauline A – sequence: 6 givenname: Sanjay surname: Sharma fullname: Sharma, Sanjay – sequence: 7 givenname: Augusta surname: Fernando fullname: Fernando, Augusta – sequence: 8 givenname: Sharon surname: Glaysher fullname: Glaysher, Sharon – sequence: 9 givenname: Silvana surname: Di Palma fullname: Di Palma, Silvana – sequence: 10 givenname: Penny surname: Johnson fullname: Johnson, Penny – sequence: 11 givenname: Shaw S surname: Somers fullname: Somers, Shaw S – sequence: 12 givenname: Simon surname: Toh fullname: Toh, Simon – sequence: 13 givenname: Bernie surname: Higgins fullname: Higgins, Bernie – sequence: 14 givenname: Alan surname: Lamont fullname: Lamont, Alan – sequence: 15 givenname: Tim surname: Gulliford fullname: Gulliford, Tim – sequence: 16 givenname: Jeremy surname: Hurren fullname: Hurren, Jeremy – sequence: 17 givenname: Constantinos surname: Yiangou fullname: Yiangou, Constantinos – sequence: 18 givenname: Ian A surname: Cree fullname: Cree, Ian A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16026610$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkc1LAzEQxYMo2lavHqUnb1uTzfdFkOIXFLzoOUyzE7uy3dTsVuh_767VYsVThsnM7w3vDclhHWsk5JzRCWNGXTGhWZYLqjOZaXNABrvG4a_6hAyb5o1Spg01x-SEKZorxeiAXE6h9pjGHqtqDAWsWmjLWI_bOPYLXMZ2gQlWm1NyFKBq8Oz7HZGXu9vn6UM2e7p_nN7MMi-4NJkAgV6YoHAuC61kkUNhO6oyaGkugtVzKlRXS6ooKAQwSCXngnld6K4akcctt4jw5lapXELauAil-2rE9OogtaWv0HkMPqBCkXMvfChsCGADy3ngPBied6zrLWu1ni-x8Fi3Cao96P5PXS7ca_xwjFkrje0Al9-AFN_X2LRuWTa9UVBjXDdOGSltzvurL34r7SR-bO4GxHbAp9g0CYPz5dboTrisHKOuT9P1gbk-MCedNt3a5M_ajvz_widjSp_9 |
| CitedBy_id | crossref_primary_10_1016_j_canlet_2008_12_033 crossref_primary_10_1245_s10434_022_12392_5 crossref_primary_10_2217_fon_2017_0431 crossref_primary_10_3390_ma11020281 crossref_primary_10_3390_ijms19030868 crossref_primary_10_3109_00498254_2011_645517 crossref_primary_10_3390_cancers14092339 crossref_primary_10_1002_cmdc_202300081 crossref_primary_10_1111_bcp_14543 crossref_primary_10_1007_s40495_015_0035_9 crossref_primary_10_1007_s00280_013_2247_1 crossref_primary_10_1002_cncr_22280 crossref_primary_10_1007_s10555_017_9684_y crossref_primary_10_3389_fphar_2021_759146 crossref_primary_10_1097_CAD_0b013e3281de727e crossref_primary_10_1016_j_critrevonc_2007_02_001 crossref_primary_10_1016_j_yexcr_2025_114580 crossref_primary_10_1002_mabi_201600457 crossref_primary_10_1007_s00280_008_0790_y crossref_primary_10_1016_j_drup_2021_100796 crossref_primary_10_1245_s10434_022_12933_y crossref_primary_10_1007_s00277_009_0831_6 crossref_primary_10_1016_j_medici_2014_09_005 crossref_primary_10_1038_s41397_019_0110_4 crossref_primary_10_1371_journal_pone_0003894 crossref_primary_10_1007_s10330_009_0051_5 crossref_primary_10_1038_nrclinonc_2013_110 crossref_primary_10_1111_aji_12996 crossref_primary_10_1186_s12885_016_2999_1 crossref_primary_10_1111_IGC_0b013e3181f05128 crossref_primary_10_1371_journal_pcbi_1003795 crossref_primary_10_1002_jcp_26091 crossref_primary_10_3390_cancers14184357 crossref_primary_10_1097_01_cad_0000224445_23953_d9 crossref_primary_10_1128_MCB_00483_21 crossref_primary_10_1093_jpp_rgac017 crossref_primary_10_1158_1078_0432_CCR_06_1619 crossref_primary_10_1186_1756_9966_32_13 crossref_primary_10_3390_cancers10100365 crossref_primary_10_1002_jso_21641 crossref_primary_10_3109_08982104_2012_668552 crossref_primary_10_1136_jclinpath_2014_202404 crossref_primary_10_1016_j_ejps_2020_105401 crossref_primary_10_3390_biology3020345 crossref_primary_10_1097_GCO_0b013e32832210ff crossref_primary_10_1080_14737159_2016_1221345 crossref_primary_10_3109_00498254_2010_508821 crossref_primary_10_1590_s2175_97902022e19946 crossref_primary_10_1089_hum_2006_17_ft_225 crossref_primary_10_1158_1078_0432_CCR_14_3023 crossref_primary_10_1007_s12094_007_0081_9 crossref_primary_10_1208_s12248_010_9216_y crossref_primary_10_3892_ol_2022_13469 crossref_primary_10_3390_jpm11060585 crossref_primary_10_1038_sj_bjc_6605817 crossref_primary_10_3109_00313025_2010_493862 crossref_primary_10_1002_ags3_12178 crossref_primary_10_1007_s00535_006_1904_0 crossref_primary_10_1016_j_jconrel_2019_09_006 crossref_primary_10_1002_jcp_27666 crossref_primary_10_1016_j_phrs_2013_07_009 crossref_primary_10_1097_IGC_0000000000000814 crossref_primary_10_1016_j_heliyon_2024_e32245 crossref_primary_10_1126_scitranslmed_3003016 crossref_primary_10_1186_s12885_015_1101_8 crossref_primary_10_1136_jcp_2010_080119 crossref_primary_10_3390_ijms23031853 crossref_primary_10_2174_0929867328666210910124319 crossref_primary_10_1016_j_biopha_2011_09_002 crossref_primary_10_1111_j_1747_0285_2010_01025_x crossref_primary_10_1097_CAD_0b013e3280262427 crossref_primary_10_1016_j_canlet_2013_02_059 crossref_primary_10_1007_s11064_018_2601_0 crossref_primary_10_1017_S002202990800335X crossref_primary_10_1186_1476_4598_7_8 crossref_primary_10_4161_cc_25334 crossref_primary_10_1517_17425255_2011_562892 crossref_primary_10_3748_wjg_v12_i41_6614 crossref_primary_10_3892_ijo_2017_3973 crossref_primary_10_1093_carcin_bgy184 crossref_primary_10_2174_1381612826666200224112141 crossref_primary_10_3390_cancers17030476 crossref_primary_10_1089_hum_2006_17_798 crossref_primary_10_1016_j_pscychresns_2010_05_002 crossref_primary_10_1053_j_gastro_2021_03_022 crossref_primary_10_1186_1471_2407_6_72 crossref_primary_10_1186_1471_2407_8_97 crossref_primary_10_1002_ijc_25619 crossref_primary_10_1016_j_jconrel_2013_07_007 |
| Cites_doi | 10.1093/jnci/92.16.1295 10.1038/sj.leu.2402496 10.1111/j.1349-7006.2000.tb00866.x 10.1097/00001813-199404000-00007 10.1054/drup.1999.0110 10.1385/0-89603-520-4:169 10.1200/JCO.2002.01.003 10.1172/JCI117388 10.1006/jmcc.2001.1475 10.1002/bio.1170090604 10.1200/JCO.1989.7.7.890 10.1007/BF00686403 10.1146/annurev.bi.65.070196.003223 10.1038/nature02625 10.1097/00001813-199608000-00002 10.1002/ijc.10246 10.1186/gb-2002-3-7-research0034 10.1038/nrc706 10.1016/0006-2952(95)00067-A 10.1016/0959-8049(95)00172-F 10.1007/BF01807161 10.1038/nrc1074 10.1002/ijc.2910520118 10.1097/00130404-200211000-00010 10.1093/clinchem/45.8.1148 10.1093/annonc/mdh006 10.1182/blood.V93.12.4086 10.1074/jbc.M211093200 |
| ContentType | Journal Article |
| Copyright | Copyright © 2005 Di Nicolantonio et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2005 Di Nicolantonio et al; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1186/1471-2407-5-78 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1471-2407 |
| EndPage | 78 |
| ExternalDocumentID | oai_doaj_org_article_cefcfe6e423c4cfd9ffa9f123f33f832 PMC1199589 16026610 10_1186_1471_2407_5_78 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 6PF AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IHR IHW INH INR ISR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PQQKQ RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A W2D WOQ WOW XSB -A0 ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c4358-4a4ec48f6eb5d765d2ad9ada68e9024f97b046e905060a6eaa8e053341c7d7053 |
| IEDL.DBID | DOA |
| ISSN | 1471-2407 |
| IngestDate | Fri Oct 03 12:38:31 EDT 2025 Thu Aug 21 18:25:49 EDT 2025 Wed Oct 01 14:20:55 EDT 2025 Thu Jan 02 22:10:53 EST 2025 Sat Nov 29 05:12:05 EST 2025 Tue Nov 18 22:26:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4358-4a4ec48f6eb5d765d2ad9ada68e9024f97b046e905060a6eaa8e053341c7d7053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/cefcfe6e423c4cfd9ffa9f123f33f832 |
| PMID | 16026610 |
| PQID | 68559235 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cefcfe6e423c4cfd9ffa9f123f33f832 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1199589 proquest_miscellaneous_68559235 pubmed_primary_16026610 crossref_citationtrail_10_1186_1471_2407_5_78 crossref_primary_10_1186_1471_2407_5_78 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-07-18 |
| PublicationDateYYYYMMDD | 2005-07-18 |
| PublicationDate_xml | – month: 07 year: 2005 text: 2005-07-18 day: 18 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMC cancer |
| PublicationTitleAlternate | BMC Cancer |
| PublicationYear | 2005 |
| Publisher | BioMed Central BMC |
| Publisher_xml | – name: BioMed Central – name: BMC |
| References | C Wilmanns (266_CR10) 1992; 52 WT Beck (266_CR25) 1999; 2 Y Ishikawa (266_CR32) 2000; 91 JC Wang (266_CR20) 1996; 65 S Moniotte (266_CR38) 2001; 33 E Chu (266_CR19) 1993; 43 MM Gottesman (266_CR16) 2002; 2 MM van den Heuvel-Eibrink (266_CR39) 2002; 16 SJ Welsh (266_CR28) 2000; 6 C Blanquicett (266_CR42) 2002; 1 CM Kurbacher (266_CR15) 1996; 41 GJ Peters (266_CR30) 1995; 31A P Borst (266_CR17) 2000; 92 PE Andreotti (266_CR1) 1994; 9 EM Hunter (266_CR11) 1994; 5 D Salonga (266_CR31) 2000; 6 Y Matsumoto (266_CR3) 1997; 57 M Kornmann (266_CR34) 2003; 9 IF Faneyte (266_CR41) 2002; 8 IA Cree (266_CR2) 1996; 7 S D'Atri (266_CR24) 2000; 294 XF Hu (266_CR6) 1999; 93 DB Longley (266_CR18) 2003; 3 SM Swain (266_CR29) 1989; 7 PA Clarke (266_CR36) 2003; 63 S Copur (266_CR27) 1995; 49 E Yague (266_CR44) 2003; 278 TA Buchholz (266_CR35) 2002; 8 J Taipalensuu (266_CR45) 2001; 299 PG Johnston (266_CR26) 1992; 52 I Bieche (266_CR40) 1999; 45 U Stein (266_CR7) 2002; 20 Y Tada (266_CR8) 2002; 98 G Samimi (266_CR23) 2000; 6 PE Andreotti (266_CR9) 1995; 55 PD Foglesong (266_CR21) 1992; 30 G Egger (266_CR4) 2004; 429 J Vandesompele (266_CR12) 2002; 3 IA Cree (266_CR14) 1998 Applied Biosystems (266_CR13) 1997; 10/2001 W Ichikawa (266_CR33) 2003; 9 M Dabholkar (266_CR22) 1994; 94 RV Lord (266_CR43) 2002; 8 T Kurata (266_CR37) 2004; 15 A Abolhoda (266_CR5) 1999; 5 11920626 - Int J Cancer. 2002 Apr 1;98(4):630-5 14519634 - Clin Cancer Res. 2003 Sep 15;9(11):4116-24 10361105 - Blood. 1999 Jun 15;93(12):4086-95 11498354 - Drug Resist Updat. 1999 Dec;2(6):382-389 10430778 - Clin Chem. 1999 Aug;45(8 Pt 1):1148-56 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 11986944 - Leukemia. 2002 May;16(5):833-9 10944550 - J Natl Cancer Inst. 2000 Aug 16;92(16):1295-302 12149303 - J Clin Oncol. 2002 Aug 1;20(15):3282-92 10778957 - Clin Cancer Res. 2000 Apr;6(4):1322-7 8944334 - Breast Cancer Res Treat. 1996;41(2):161-70 10589744 - Clin Cancer Res. 1999 Nov;5(11):3352-6 8811192 - Annu Rev Biochem. 1996;65:635-92 12481438 - Mol Cancer Ther. 2002 Oct;1(12):1139-45 8049500 - Anticancer Drugs. 1994 Apr;5(2):171-6 1500231 - Int J Cancer. 1992 Aug 19;52(1):98-104 8040325 - J Clin Invest. 1994 Aug;94(2):703-8 1318169 - Cancer Chemother Pharmacol. 1992;30(2):123-5 11561076 - J Pharmacol Exp Ther. 2001 Oct;299(1):164-70 8913430 - Anticancer Drugs. 1996 Aug;7(6):630-5 7879653 - J Biolumin Chemilumin. 1994 Nov-Dec;9(6):373-8 12500855 - Cancer J. 2002 Nov-Dec;8(6):461-8 7585588 - Cancer Res. 1995 Nov 15;55(22):5276-82 12724731 - Nat Rev Cancer. 2003 May;3(5):330-8 2661735 - J Clin Oncol. 1989 Jul;7(7):890-9 7763285 - Biochem Pharmacol. 1995 May 17;49(10):1419-26 15164071 - Nature. 2004 May 27;429(6990):457-63 12525496 - J Biol Chem. 2003 Mar 21;278(12):10344-52 11902585 - Nat Rev Cancer. 2002 Jan;2(1):48-58 12576451 - Clin Cancer Res. 2003 Feb;9(2):786-91 8474431 - Mol Pharmacol. 1993 Apr;43(4):527-33 1643628 - Cancer Res. 1992 Aug 15;52(16):4306-12 11948115 - Clin Cancer Res. 2002 Apr;8(4):1068-74 10900246 - J Pharmacol Exp Ther. 2000 Aug;294(2):664-71 11735259 - J Mol Cell Cardiol. 2001 Dec;33(12):2121-33 12114432 - Clin Cancer Res. 2002 Jul;8(7):2286-91 14679138 - Ann Oncol. 2004 Jan;15(1):173-4 9371507 - Cancer Res. 1997 Nov 15;57(22):5086-92 10873110 - Clin Cancer Res. 2000 Jun;6(6):2538-46 9680619 - Methods Mol Biol. 1998;102:169-77 10778972 - Clin Cancer Res. 2000 Apr;6(4):1415-21 14583483 - Cancer Res. 2003 Oct 15;63(20):6855-63 7577040 - Eur J Cancer. 1995 Jul-Aug;31A(7-8):1299-305 10744051 - Jpn J Cancer Res. 2000 Jan;91(1):105-12 |
| References_xml | – volume: 92 start-page: 1295 year: 2000 ident: 266_CR17 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/92.16.1295 – volume: 6 start-page: 1322 year: 2000 ident: 266_CR31 publication-title: Clin Cancer Res – volume: 52 start-page: 4306 year: 1992 ident: 266_CR26 publication-title: Cancer Res – volume: 43 start-page: 527 year: 1993 ident: 266_CR19 publication-title: Mol Pharmacol – volume: 1 start-page: 1139 year: 2002 ident: 266_CR42 publication-title: Mol Cancer Ther – volume: 16 start-page: 833 year: 2002 ident: 266_CR39 publication-title: Leukemia doi: 10.1038/sj.leu.2402496 – volume: 91 start-page: 105 year: 2000 ident: 266_CR32 publication-title: Jpn J Cancer Res doi: 10.1111/j.1349-7006.2000.tb00866.x – volume: 5 start-page: 171 year: 1994 ident: 266_CR11 publication-title: Anticancer Drugs doi: 10.1097/00001813-199404000-00007 – volume: 2 start-page: 382 year: 1999 ident: 266_CR25 publication-title: Drug Resist Updat doi: 10.1054/drup.1999.0110 – volume: 55 start-page: 5276 year: 1995 ident: 266_CR9 publication-title: Cancer Research – start-page: 169 volume-title: Bioluminescence Methods and Protocols year: 1998 ident: 266_CR14 doi: 10.1385/0-89603-520-4:169 – volume: 8 start-page: 2286 year: 2002 ident: 266_CR43 publication-title: Clin Cancer Res – volume: 20 start-page: 3282 year: 2002 ident: 266_CR7 publication-title: J Clin Oncol doi: 10.1200/JCO.2002.01.003 – volume: 94 start-page: 703 year: 1994 ident: 266_CR22 publication-title: J Clin Invest doi: 10.1172/JCI117388 – volume: 5 start-page: 3352 year: 1999 ident: 266_CR5 publication-title: Clin Cancer Res – volume: 33 start-page: 2121 year: 2001 ident: 266_CR38 publication-title: J Mol Cell Cardiol doi: 10.1006/jmcc.2001.1475 – volume: 10/2001 start-page: 11 year: 1997 ident: 266_CR13 publication-title: Relative Quantitation of Gene Expression (P/N 4303859B) – volume: 299 start-page: 164 year: 2001 ident: 266_CR45 publication-title: J Pharmacol Exp Ther – volume: 294 start-page: 664 year: 2000 ident: 266_CR24 publication-title: J Pharmacol Exp Ther – volume: 9 start-page: 373 year: 1994 ident: 266_CR1 publication-title: J Biolumin Chemilumin doi: 10.1002/bio.1170090604 – volume: 9 start-page: 786 year: 2003 ident: 266_CR33 publication-title: Clin Cancer Res – volume: 7 start-page: 890 year: 1989 ident: 266_CR29 publication-title: J Clin Oncol doi: 10.1200/JCO.1989.7.7.890 – volume: 63 start-page: 6855 year: 2003 ident: 266_CR36 publication-title: Cancer Res – volume: 30 start-page: 123 year: 1992 ident: 266_CR21 publication-title: Cancer Chemother Pharmacol doi: 10.1007/BF00686403 – volume: 65 start-page: 635 year: 1996 ident: 266_CR20 publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.65.070196.003223 – volume: 429 start-page: 457 year: 2004 ident: 266_CR4 publication-title: Nature doi: 10.1038/nature02625 – volume: 7 start-page: 630 year: 1996 ident: 266_CR2 publication-title: Anti-Cancer Drugs doi: 10.1097/00001813-199608000-00002 – volume: 98 start-page: 630 year: 2002 ident: 266_CR8 publication-title: Int J Cancer doi: 10.1002/ijc.10246 – volume: 3 start-page: research0034.00 year: 2002 ident: 266_CR12 publication-title: Genome Biology doi: 10.1186/gb-2002-3-7-research0034 – volume: 2 start-page: 48 year: 2002 ident: 266_CR16 publication-title: Nat Rev Cancer doi: 10.1038/nrc706 – volume: 49 start-page: 1419 year: 1995 ident: 266_CR27 publication-title: Biochem Pharmacol doi: 10.1016/0006-2952(95)00067-A – volume: 31A start-page: 1299 year: 1995 ident: 266_CR30 publication-title: Eur J Cancer doi: 10.1016/0959-8049(95)00172-F – volume: 8 start-page: 1068 year: 2002 ident: 266_CR41 publication-title: Clin Cancer Res – volume: 41 start-page: 161 issue: 2 year: 1996 ident: 266_CR15 publication-title: Breast Cancer Res Treat doi: 10.1007/BF01807161 – volume: 3 start-page: 330 year: 2003 ident: 266_CR18 publication-title: Nat Rev Cancer doi: 10.1038/nrc1074 – volume: 6 start-page: 2538 year: 2000 ident: 266_CR28 publication-title: Clin Cancer Res – volume: 9 start-page: 4116 year: 2003 ident: 266_CR34 publication-title: Clin Cancer Res – volume: 52 start-page: 98 year: 1992 ident: 266_CR10 publication-title: Int J Cancer doi: 10.1002/ijc.2910520118 – volume: 8 start-page: 461 year: 2002 ident: 266_CR35 publication-title: Cancer J doi: 10.1097/00130404-200211000-00010 – volume: 45 start-page: 1148 year: 1999 ident: 266_CR40 publication-title: Clin Chem doi: 10.1093/clinchem/45.8.1148 – volume: 15 start-page: 173 year: 2004 ident: 266_CR37 publication-title: Ann Oncol doi: 10.1093/annonc/mdh006 – volume: 57 start-page: 5086 year: 1997 ident: 266_CR3 publication-title: Cancer Res – volume: 93 start-page: 4086 year: 1999 ident: 266_CR6 publication-title: Blood doi: 10.1182/blood.V93.12.4086 – volume: 6 start-page: 1415 year: 2000 ident: 266_CR23 publication-title: Clinical Cancer Research: an Official Journal of the American Association for Cancer Research – volume: 278 start-page: 10344 year: 2003 ident: 266_CR44 publication-title: J Biol Chem doi: 10.1074/jbc.M211093200 – reference: 7577040 - Eur J Cancer. 1995 Jul-Aug;31A(7-8):1299-305 – reference: 11986944 - Leukemia. 2002 May;16(5):833-9 – reference: 7763285 - Biochem Pharmacol. 1995 May 17;49(10):1419-26 – reference: 10778972 - Clin Cancer Res. 2000 Apr;6(4):1415-21 – reference: 12114432 - Clin Cancer Res. 2002 Jul;8(7):2286-91 – reference: 14679138 - Ann Oncol. 2004 Jan;15(1):173-4 – reference: 8944334 - Breast Cancer Res Treat. 1996;41(2):161-70 – reference: 12481438 - Mol Cancer Ther. 2002 Oct;1(12):1139-45 – reference: 15164071 - Nature. 2004 May 27;429(6990):457-63 – reference: 8049500 - Anticancer Drugs. 1994 Apr;5(2):171-6 – reference: 10361105 - Blood. 1999 Jun 15;93(12):4086-95 – reference: 9680619 - Methods Mol Biol. 1998;102:169-77 – reference: 12576451 - Clin Cancer Res. 2003 Feb;9(2):786-91 – reference: 11902585 - Nat Rev Cancer. 2002 Jan;2(1):48-58 – reference: 10744051 - Jpn J Cancer Res. 2000 Jan;91(1):105-12 – reference: 8040325 - J Clin Invest. 1994 Aug;94(2):703-8 – reference: 10589744 - Clin Cancer Res. 1999 Nov;5(11):3352-6 – reference: 1643628 - Cancer Res. 1992 Aug 15;52(16):4306-12 – reference: 10778957 - Clin Cancer Res. 2000 Apr;6(4):1322-7 – reference: 11920626 - Int J Cancer. 2002 Apr 1;98(4):630-5 – reference: 8474431 - Mol Pharmacol. 1993 Apr;43(4):527-33 – reference: 12149303 - J Clin Oncol. 2002 Aug 1;20(15):3282-92 – reference: 11735259 - J Mol Cell Cardiol. 2001 Dec;33(12):2121-33 – reference: 12500855 - Cancer J. 2002 Nov-Dec;8(6):461-8 – reference: 11948115 - Clin Cancer Res. 2002 Apr;8(4):1068-74 – reference: 10944550 - J Natl Cancer Inst. 2000 Aug 16;92(16):1295-302 – reference: 1318169 - Cancer Chemother Pharmacol. 1992;30(2):123-5 – reference: 14519634 - Clin Cancer Res. 2003 Sep 15;9(11):4116-24 – reference: 1500231 - Int J Cancer. 1992 Aug 19;52(1):98-104 – reference: 10900246 - J Pharmacol Exp Ther. 2000 Aug;294(2):664-71 – reference: 2661735 - J Clin Oncol. 1989 Jul;7(7):890-9 – reference: 7879653 - J Biolumin Chemilumin. 1994 Nov-Dec;9(6):373-8 – reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 – reference: 8913430 - Anticancer Drugs. 1996 Aug;7(6):630-5 – reference: 11561076 - J Pharmacol Exp Ther. 2001 Oct;299(1):164-70 – reference: 9371507 - Cancer Res. 1997 Nov 15;57(22):5086-92 – reference: 14583483 - Cancer Res. 2003 Oct 15;63(20):6855-63 – reference: 7585588 - Cancer Res. 1995 Nov 15;55(22):5276-82 – reference: 10873110 - Clin Cancer Res. 2000 Jun;6(6):2538-46 – reference: 11498354 - Drug Resist Updat. 1999 Dec;2(6):382-389 – reference: 10430778 - Clin Chem. 1999 Aug;45(8 Pt 1):1148-56 – reference: 8811192 - Annu Rev Biochem. 1996;65:635-92 – reference: 12724731 - Nat Rev Cancer. 2003 May;3(5):330-8 – reference: 12525496 - J Biol Chem. 2003 Mar 21;278(12):10344-52 |
| SSID | ssj0017808 |
| Score | 2.1547675 |
| Snippet | Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The... Abstract Background Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 78 |
| SubjectTerms | Antineoplastic Agents - pharmacology ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism Biopsy Camptothecin - analogs & derivatives Camptothecin - pharmacology Cell Line, Tumor Cisplatin - pharmacology Down-Regulation Doxorubicin - pharmacology Drug Resistance, Neoplasm Drug Therapy - methods Epirubicin - pharmacology Fluorouracil - pharmacology Gene Expression Regulation, Neoplastic Humans Immunohistochemistry Neoplasms - drug therapy Paclitaxel - pharmacology Recurrence Reverse Transcriptase Polymerase Chain Reaction Time Factors Topotecan - pharmacology Treatment Outcome Up-Regulation |
| Title | Cancer cell adaptation to chemotherapy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16026610 https://www.proquest.com/docview/68559235 https://pubmed.ncbi.nlm.nih.gov/PMC1199589 https://doaj.org/article/cefcfe6e423c4cfd9ffa9f123f33f832 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: RSV dateStart: 20011201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5URLyIb-tzD6Kn0G43m8dRi-JF8aDQW8jmgYJuSx-CF3-7k-y2tqJ48bKE7LCE-bKZmUzyDcBp2xYtk7mcUKEZoYZyUrRblsiCaVpw79O8KjbB7-5EtyvvZ0p9hTNhFT1wpbimcd54xxyafUONt9J7LT2utz7LPE7HsPq2uJwEU3X-gItYiy7FpTfkD3hN15gK1pz2kZyE4moz5iiy9v_kan4_MTljgq7XYa32HZOLaswbsODKTVi5rbPjW3DWCRAOkrAZn2ir-1WaPRn1EoTmtb5r9b4Nj9dXD50bUtdBIAadGUGops5Q4ZkrcstZbtvaSvwKE06iifWSFxjlYjuQBWrmtBYuXrFNDbccWzuwVPZKtweJLjBcoZp7Gjd_BDpHDp1A61LmTJqJBpCJOpSpScJDrYoXFYMFwVRQnwrqU7niKH8-le9X9Bi_Sl4G7U6lAq117ECwVQ22-gvsBpxMsFH4GwR16tL1xkPFBIZG7SxvwG6F1NdwQpEtdBIbwOcwnBvJ_Jvy-SkSbafh_rqQ-_8x9ANYjayvgZNTHMLSaDB2R7Bs3kbPw8ExLPKuOI5zGJ-3H1efSRr1Tg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+cell+adaptation+to+chemotherapy&rft.jtitle=BMC+cancer&rft.au=Higgins+Bernie&rft.au=Toh+Simon&rft.au=Somers+Shaw+S&rft.au=Johnson+Penny&rft.date=2005-07-18&rft.pub=BMC&rft.issn=1471-2407&rft.eissn=1471-2407&rft.volume=5&rft.issue=1&rft.spage=78&rft_id=info:doi/10.1186%2F1471-2407-5-78&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cefcfe6e423c4cfd9ffa9f123f33f832 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon |