On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes

Aims  To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters—a model predictive control (MPC) algorithm—to control blood glucose concentration during fasting conditions in patients with Type 1 diabetes. In the subcutaneous (sc) route within a closed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetic medicine Jg. 23; H. 1; S. 90 - 93
Hauptverfasser: Schaller, H. C., Schaupp, L., Bodenlenz, M., Wilinska, M. E., Chassin, L. J., Wach, P., Vering, T., Hovorka, R., Pieber, T. R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Science Ltd 01.01.2006
Blackwell
Schlagworte:
ISSN:0742-3071, 1464-5491
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aims  To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters—a model predictive control (MPC) algorithm—to control blood glucose concentration during fasting conditions in patients with Type 1 diabetes. In the subcutaneous (sc) route within a closed loop system. Methods  Paired experiments were performed in six patients. Over 8 h the MPC algorithm was used to control glucose with s.c. insulin administration and two different glucose monitoring protocols: first, the algorithm was provided with intravenous (i.v.) glucose values for insulin dosage calculation directly (i.v.–s.c. route). Then, in the second experiment, i.v. glucose values were fed to the MPC with a delay of 30 min to simulate s.c. glucose measurements (‘s.c.’–s.c. route). In both experiments plasma glucose, insulin dosage, and serum insulin levels were analysed. Results  Glucose concentration was brought from hyper‐ to normoglycaemia and kept in the physiological range (6–7 mmol/l) with both routes in all subjects. Mean glucose concentration reached the threshold of 7 mmol/l approximately 2 (i.v.–s.c. route) and 3 (‘s.c.’–s.c. route) hours after the start of glucose control with the MPC. During the last 2 h of automated glucose control, mean glucose concentration was 6.3 ± 0.2 mmol/l and 6.6 ± 0.3 mmol/l for i.v.–s.c. and ‘s.c.’–s.c. route, respectively. Glucose concentration, insulin doses, and serum insulin levels did not differ significantly between routes (P > 0.05). Conclusions  The MPC algorithm is suitable for glucose control during fasting within an extracorporeal artificial β‐cell in the subcutaneous route Type 1 diabetic patients.
AbstractList To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters-a model predictive control (MPC) algorithm-to control blood glucose concentration during fasting conditions in patients with Type 1 diabetes. In the subcutaneous (sc) route within a closed loop system. Paired experiments were performed in six patients. Over 8 h the MPC algorithm was used to control glucose with s.c. insulin administration and two different glucose monitoring protocols: first, the algorithm was provided with intravenous (i.v.) glucose values for insulin dosage calculation directly (i.v.-s.c. route). Then, in the second experiment, i.v. glucose values were fed to the MPC with a delay of 30 min to simulate s.c. glucose measurements ('s.c.'-s.c. route). In both experiments plasma glucose, insulin dosage, and serum insulin levels were analysed. Glucose concentration was brought from hyper- to normoglycaemia and kept in the physiological range (6-7 mmol/l) with both routes in all subjects. Mean glucose concentration reached the threshold of 7 mmol/l approximately 2 (i.v.-s.c. route) and 3 ('s.c.'-s.c. route) hours after the start of glucose control with the MPC. During the last 2 h of automated glucose control, mean glucose concentration was 6.3 +/- 0.2 mmol/l and 6.6 +/- 0.3 mmol/l for i.v.-s.c. and 's.c.'-s.c. route, respectively. Glucose concentration, insulin doses, and serum insulin levels did not differ significantly between routes (P > 0.05). The MPC algorithm is suitable for glucose control during fasting within an extracorporeal artificial beta-cell in the subcutaneous route Type 1 diabetic patients.
Aims  To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters—a model predictive control (MPC) algorithm—to control blood glucose concentration during fasting conditions in patients with Type 1 diabetes. In the subcutaneous (sc) route within a closed loop system. Methods  Paired experiments were performed in six patients. Over 8 h the MPC algorithm was used to control glucose with s.c. insulin administration and two different glucose monitoring protocols: first, the algorithm was provided with intravenous (i.v.) glucose values for insulin dosage calculation directly (i.v.–s.c. route). Then, in the second experiment, i.v. glucose values were fed to the MPC with a delay of 30 min to simulate s.c. glucose measurements (‘s.c.’–s.c. route). In both experiments plasma glucose, insulin dosage, and serum insulin levels were analysed. Results  Glucose concentration was brought from hyper‐ to normoglycaemia and kept in the physiological range (6–7 mmol/l) with both routes in all subjects. Mean glucose concentration reached the threshold of 7 mmol/l approximately 2 (i.v.–s.c. route) and 3 (‘s.c.’–s.c. route) hours after the start of glucose control with the MPC. During the last 2 h of automated glucose control, mean glucose concentration was 6.3 ± 0.2 mmol/l and 6.6 ± 0.3 mmol/l for i.v.–s.c. and ‘s.c.’–s.c. route, respectively. Glucose concentration, insulin doses, and serum insulin levels did not differ significantly between routes ( P  > 0.05). Conclusions  The MPC algorithm is suitable for glucose control during fasting within an extracorporeal artificial β‐cell in the subcutaneous route Type 1 diabetic patients.
To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters-a model predictive control (MPC) algorithm-to control blood glucose concentration during fasting conditions in patients with Type 1 diabetes. In the subcutaneous (sc) route within a closed loop system.AIMSTo evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters-a model predictive control (MPC) algorithm-to control blood glucose concentration during fasting conditions in patients with Type 1 diabetes. In the subcutaneous (sc) route within a closed loop system.Paired experiments were performed in six patients. Over 8 h the MPC algorithm was used to control glucose with s.c. insulin administration and two different glucose monitoring protocols: first, the algorithm was provided with intravenous (i.v.) glucose values for insulin dosage calculation directly (i.v.-s.c. route). Then, in the second experiment, i.v. glucose values were fed to the MPC with a delay of 30 min to simulate s.c. glucose measurements ('s.c.'-s.c. route). In both experiments plasma glucose, insulin dosage, and serum insulin levels were analysed.METHODSPaired experiments were performed in six patients. Over 8 h the MPC algorithm was used to control glucose with s.c. insulin administration and two different glucose monitoring protocols: first, the algorithm was provided with intravenous (i.v.) glucose values for insulin dosage calculation directly (i.v.-s.c. route). Then, in the second experiment, i.v. glucose values were fed to the MPC with a delay of 30 min to simulate s.c. glucose measurements ('s.c.'-s.c. route). In both experiments plasma glucose, insulin dosage, and serum insulin levels were analysed.Glucose concentration was brought from hyper- to normoglycaemia and kept in the physiological range (6-7 mmol/l) with both routes in all subjects. Mean glucose concentration reached the threshold of 7 mmol/l approximately 2 (i.v.-s.c. route) and 3 ('s.c.'-s.c. route) hours after the start of glucose control with the MPC. During the last 2 h of automated glucose control, mean glucose concentration was 6.3 +/- 0.2 mmol/l and 6.6 +/- 0.3 mmol/l for i.v.-s.c. and 's.c.'-s.c. route, respectively. Glucose concentration, insulin doses, and serum insulin levels did not differ significantly between routes (P > 0.05).RESULTSGlucose concentration was brought from hyper- to normoglycaemia and kept in the physiological range (6-7 mmol/l) with both routes in all subjects. Mean glucose concentration reached the threshold of 7 mmol/l approximately 2 (i.v.-s.c. route) and 3 ('s.c.'-s.c. route) hours after the start of glucose control with the MPC. During the last 2 h of automated glucose control, mean glucose concentration was 6.3 +/- 0.2 mmol/l and 6.6 +/- 0.3 mmol/l for i.v.-s.c. and 's.c.'-s.c. route, respectively. Glucose concentration, insulin doses, and serum insulin levels did not differ significantly between routes (P > 0.05).The MPC algorithm is suitable for glucose control during fasting within an extracorporeal artificial beta-cell in the subcutaneous route Type 1 diabetic patients.CONCLUSIONSThe MPC algorithm is suitable for glucose control during fasting within an extracorporeal artificial beta-cell in the subcutaneous route Type 1 diabetic patients.
Aims  To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters—a model predictive control (MPC) algorithm—to control blood glucose concentration during fasting conditions in patients with Type 1 diabetes. In the subcutaneous (sc) route within a closed loop system. Methods  Paired experiments were performed in six patients. Over 8 h the MPC algorithm was used to control glucose with s.c. insulin administration and two different glucose monitoring protocols: first, the algorithm was provided with intravenous (i.v.) glucose values for insulin dosage calculation directly (i.v.–s.c. route). Then, in the second experiment, i.v. glucose values were fed to the MPC with a delay of 30 min to simulate s.c. glucose measurements (‘s.c.’–s.c. route). In both experiments plasma glucose, insulin dosage, and serum insulin levels were analysed. Results  Glucose concentration was brought from hyper‐ to normoglycaemia and kept in the physiological range (6–7 mmol/l) with both routes in all subjects. Mean glucose concentration reached the threshold of 7 mmol/l approximately 2 (i.v.–s.c. route) and 3 (‘s.c.’–s.c. route) hours after the start of glucose control with the MPC. During the last 2 h of automated glucose control, mean glucose concentration was 6.3 ± 0.2 mmol/l and 6.6 ± 0.3 mmol/l for i.v.–s.c. and ‘s.c.’–s.c. route, respectively. Glucose concentration, insulin doses, and serum insulin levels did not differ significantly between routes (P > 0.05). Conclusions  The MPC algorithm is suitable for glucose control during fasting within an extracorporeal artificial β‐cell in the subcutaneous route Type 1 diabetic patients.
Author Schaupp, L.
Bodenlenz, M.
Wilinska, M. E.
Wach, P.
Schaller, H. C.
Pieber, T. R.
Vering, T.
Hovorka, R.
Chassin, L. J.
Author_xml – sequence: 1
  givenname: H. C.
  surname: Schaller
  fullname: Schaller, H. C.
  email: schaller@microperfusion.at
  organization: Department of Biophysics, Institute of Biomedical Engineering, University of Technology Graz and
– sequence: 2
  givenname: L.
  surname: Schaupp
  fullname: Schaupp, L.
  organization: Department of Biophysics, Institute of Biomedical Engineering, University of Technology Graz and
– sequence: 3
  givenname: M.
  surname: Bodenlenz
  fullname: Bodenlenz, M.
  organization: Department of Biophysics, Institute of Biomedical Engineering, University of Technology Graz and
– sequence: 4
  givenname: M. E.
  surname: Wilinska
  fullname: Wilinska, M. E.
  organization: Diabetes Modelling Group, Department of Paediatrics, University of Cambridge, Cambridge, UK, and
– sequence: 5
  givenname: L. J.
  surname: Chassin
  fullname: Chassin, L. J.
  organization: Diabetes Modelling Group, Department of Paediatrics, University of Cambridge, Cambridge, UK, and
– sequence: 6
  givenname: P.
  surname: Wach
  fullname: Wach, P.
  organization: Department of Biophysics, Institute of Biomedical Engineering, University of Technology Graz and
– sequence: 7
  givenname: T.
  surname: Vering
  fullname: Vering, T.
  organization: Disetronic Medical Systems AG, Burgdorf, Switzerland
– sequence: 8
  givenname: R.
  surname: Hovorka
  fullname: Hovorka, R.
  organization: Diabetes Modelling Group, Department of Paediatrics, University of Cambridge, Cambridge, UK, and
– sequence: 9
  givenname: T. R.
  surname: Pieber
  fullname: Pieber, T. R.
  organization: Department of Internal Medicine, Diabetes and Metabolism, Medical University Graz, Graz, Austria
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17472494$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16409572$$D View this record in MEDLINE/PubMed
BookMark eNqNkdGO1CAYhYlZ486OvoLhRu86QktLa6KJWdfRuO7uxRovCQU6MjJQge7OPJZvKJ3Ojok3CglQ-M6h_OcMnFhnFQAQowVO7dV6gUlFspI0eJEjVC0QrppysX0EZseDEzBDlORZgSg-BWchrBHCeVM0T8AprghqSprPwK9rmxltFeSS91HfpYVZOa_j9w28TyNcmUG4oGDvldQiameh4D0XOu5g5zwMQyuGyK1yQ4DCJFRC41wPhbPROwNd9-DxGqo7bga-NxmsVB52PERtVyMs9bgfoLawT4iyMUx_cLvrFcRQat6qqMJT8LjjJqhnh3kOvn64uD3_mF1eLz-dv7vMBCnKMhMdpYrkmNd1LducN4VsVVHmuCnaOn1XEle5FJwg1JFWtYJQmmPE81byDhFczMHLybf37uegQmQbHYQyZnoro6hqijr1OXh-AId2oyTrvd5wv2MPRU7AiwPAg-Cm89wKHf5wlNCcNCRxbydOeBeCVx1LVd5XK3quDcOIjemzNRtDZmPIbEyf7dNn22RQ_2VwvOPf0jeT9F4btftvHXv_5WJcJX026XWIanvUc_-DVbSgJft2tWT45vPVzZIUrCl-A-qs2iw
CODEN DIMEEV
CitedBy_id crossref_primary_10_1177_193229681100500607
crossref_primary_10_1186_1752_0509_2_43
crossref_primary_10_1517_17425247_4_1_19
crossref_primary_10_1177_1932296814524862
crossref_primary_10_1080_17434440_2022_2150546
crossref_primary_10_1186_1475_925X_9_35
crossref_primary_10_1089_dia_2023_0469
crossref_primary_10_1007_s10047_012_0660_6
crossref_primary_10_1109_TBME_2011_2157823
crossref_primary_10_1021_ie2004779
crossref_primary_10_1177_193229681000400423
crossref_primary_10_1016_j_cmpb_2011_11_006
crossref_primary_10_1177_193229680900300623
crossref_primary_10_1186_1742_4682_9_46
crossref_primary_10_1586_erd_09_23
crossref_primary_10_1016_j_ifacol_2016_07_279
crossref_primary_10_1016_j_jprocont_2007_07_008
crossref_primary_10_1177_193229680900300507
crossref_primary_10_1186_s12911_019_0943_4
crossref_primary_10_1089_dia_2014_0009
crossref_primary_10_1007_s00216_007_1229_8
crossref_primary_10_1109_RBME_2009_2036073
crossref_primary_10_1049_iet_syb_2018_5049
crossref_primary_10_1002_dmrr_683
crossref_primary_10_1016_j_cmpb_2021_106105
crossref_primary_10_1016_j_jprocont_2007_07_010
crossref_primary_10_1586_17434440_2013_827515
crossref_primary_10_1016_j_jpeds_2017_02_055
crossref_primary_10_1126_science_aag3311
crossref_primary_10_1016_j_cmpb_2010_02_010
crossref_primary_10_1016_S0140_6736_09_61998_X
crossref_primary_10_1109_TBME_2015_2470521
crossref_primary_10_1177_193229680700100112
Cites_doi 10.1109/51.897829
10.1172/JCI117817
10.2337/diab.23.5.397
10.1007/978-1-4471-3398-8
10.1002/dmrr.205
10.2337/diacare.24.9.1696
10.1152/ajpendo.1999.277.3.E561
10.2337/diab.43.3.396
10.1109/TBME.1981.324661
10.1088/0967-3334/25/4/010
10.1055/s-2001-18594
10.1089/152091504774197990
10.1016/j.addr.2003.08.011
10.1109/10.740877
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1464-5491.2006.01695.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Nursing
EISSN 1464-5491
EndPage 93
ExternalDocumentID 16409572
17472494
10_1111_j_1464_5491_2006_01695_x
DME1695
ark_67375_WNG_1PKNPG43_9
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
29F
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
YFH
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
RWI
WRC
AAYXX
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4355-cf77e421a888db2a93dbe352193b8b2a6d162dca400f4bebc477210a2bdaf0413
IEDL.DBID DRFUL
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000234465700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0742-3071
IngestDate Thu Oct 02 06:22:12 EDT 2025
Wed Feb 19 01:44:23 EST 2025
Mon Jul 21 09:18:08 EDT 2025
Sat Nov 29 02:33:20 EST 2025
Tue Nov 18 21:31:31 EST 2025
Wed Jan 22 16:41:34 EST 2025
Sun Sep 21 06:30:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Endocrinopathy
Human
Immunopathology
algorithms
Adaptive algorithm
Subcutaneous
Langerhans islet
Autoimmune disease
Glucose
glucose monitoring
continuous subcutaneous insulin infusion
Surveillance
Type 1 diabetes
Insulin pump
glucose control
β Cell
Predictive factor
Fast
Glycemia
artificial β-cell
Endocrine pancreas
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4355-cf77e421a888db2a93dbe352193b8b2a6d162dca400f4bebc477210a2bdaf0413
Notes ark:/67375/WNG-1PKNPG43-9
ArticleID:DME1695
istex:2A4F176B6869C258D4BDC9DA981468B0BD8479F9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16409572
PQID 70693838
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_70693838
pubmed_primary_16409572
pascalfrancis_primary_17472494
crossref_citationtrail_10_1111_j_1464_5491_2006_01695_x
crossref_primary_10_1111_j_1464_5491_2006_01695_x
wiley_primary_10_1111_j_1464_5491_2006_01695_x_DME1695
istex_primary_ark_67375_WNG_1PKNPG43_9
PublicationCentury 2000
PublicationDate 2006-01
January 2006
2006-01-00
2006
2006-Jan
20060101
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Diabetic medicine
PublicationTitleAlternate Diabet Med
PublicationYear 2006
Publisher Blackwell Science Ltd
Blackwell
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell
References Camacho EF, Bordons C. Model Predictive Control. Berlin: Springer-Verlag 1999.
Parker RS, Doyle FJ 3rd, Peppas NA. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999; 46: 148-157.
Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK, Zingg W et al. Clinical control of diabetes by the artificial pancreas. Diabetes 1974; 23: 397-404.
Howey DC, Bowsher RR, Brunelle RL, Woodworth JR. [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin. Diabetes 1994; 43: 396-402.
Hovorka R, Chassin LJ, Wiliniska ME, Canonico V, Akwi JA, Federici MO et al. Closing the loop: the Adicol experience. Diabetes Technol Ther 2004; 6: 307-318.
Broekhuyse HM, Nelson JD, Zinman B, Albisser AM. Comparison of algorithms for the closed-loop control of blood glucose using the artificial beta cell. IEEE Trans Biomed Eng 1981; 28: 678-687.
Bode BW, Sabbah HT, Gross TM, Fredrickson LP, Davidson PC. Diabetes management in the new millennium using insulin pump therapy. Diabetes Metab Res Rev 2002; 18: S14-S20.
Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery-the path to physiological glucose control. Adv Drug Deliv Rev 2004; 56: 125-144.
Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M et al. Non-linear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 2004; 25: 905-920.
Jungheim K, Wientjes KJ, Heinemann L, Lodwig V, Koschinsky T, Schoonen AJ. Subcutaneous continuous glucose monitoring: feasibility of a new microdialysis-based glucose sensor system. Diabetes Care 2001; 24: 1696-1697.
Freckmann G, Kalatz B, Pfeiffer B, Hoss U, Haug C. Recent advances in continuous glucose monitoring. Exp Clin Endocrinol Diabetes 2001; 109: S347-S357.
Sturis J, Scheen AJ, Leproult R, Polonsky KS, Van Cauter E. 24-hour glucose profiles during continuous or oscillatory insulin infusion. Demonstration of the functional significance of ultradian insulin oscillations. J Clin Invest 1995; 95: 1464-1471.
Parker RS, Doyle FJ 3rd, Peppas NA. The intravenous route to blood glucose control. IEEE Eng Med Biol Mag 2001; 20: 65-73.
Rebrin K, Steil GM, van Antwerp WP, Mastrototaro JJ. Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am J Physiol 1999; 277: E561-E571.
1995; 95
1974; 23
2002; 18
2001
2004; 25
2004; 56
1999; 46
2004; 6
1981; 28
1999; 277
2001; 24
2001; 109
2001; 20
1994; 43
1999
e_1_2_8_16_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – reference: Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M et al. Non-linear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 2004; 25: 905-920.
– reference: Parker RS, Doyle FJ 3rd, Peppas NA. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999; 46: 148-157.
– reference: Parker RS, Doyle FJ 3rd, Peppas NA. The intravenous route to blood glucose control. IEEE Eng Med Biol Mag 2001; 20: 65-73.
– reference: Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK, Zingg W et al. Clinical control of diabetes by the artificial pancreas. Diabetes 1974; 23: 397-404.
– reference: Howey DC, Bowsher RR, Brunelle RL, Woodworth JR. [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin. Diabetes 1994; 43: 396-402.
– reference: Rebrin K, Steil GM, van Antwerp WP, Mastrototaro JJ. Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am J Physiol 1999; 277: E561-E571.
– reference: Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery-the path to physiological glucose control. Adv Drug Deliv Rev 2004; 56: 125-144.
– reference: Broekhuyse HM, Nelson JD, Zinman B, Albisser AM. Comparison of algorithms for the closed-loop control of blood glucose using the artificial beta cell. IEEE Trans Biomed Eng 1981; 28: 678-687.
– reference: Camacho EF, Bordons C. Model Predictive Control. Berlin: Springer-Verlag 1999.
– reference: Bode BW, Sabbah HT, Gross TM, Fredrickson LP, Davidson PC. Diabetes management in the new millennium using insulin pump therapy. Diabetes Metab Res Rev 2002; 18: S14-S20.
– reference: Jungheim K, Wientjes KJ, Heinemann L, Lodwig V, Koschinsky T, Schoonen AJ. Subcutaneous continuous glucose monitoring: feasibility of a new microdialysis-based glucose sensor system. Diabetes Care 2001; 24: 1696-1697.
– reference: Hovorka R, Chassin LJ, Wiliniska ME, Canonico V, Akwi JA, Federici MO et al. Closing the loop: the Adicol experience. Diabetes Technol Ther 2004; 6: 307-318.
– reference: Sturis J, Scheen AJ, Leproult R, Polonsky KS, Van Cauter E. 24-hour glucose profiles during continuous or oscillatory insulin infusion. Demonstration of the functional significance of ultradian insulin oscillations. J Clin Invest 1995; 95: 1464-1471.
– reference: Freckmann G, Kalatz B, Pfeiffer B, Hoss U, Haug C. Recent advances in continuous glucose monitoring. Exp Clin Endocrinol Diabetes 2001; 109: S347-S357.
– volume: 20
  start-page: 65
  year: 2001
  end-page: 73
  article-title: The intravenous route to blood glucose control
  publication-title: IEEE Eng Med Biol Mag
– start-page: 68
  year: 2001
– volume: 6
  start-page: 307
  year: 2004
  end-page: 318
  article-title: Closing the loop: the Adicol experience
  publication-title: Diabetes Technol Ther
– volume: 25
  start-page: 905
  year: 2004
  end-page: 920
  article-title: Non‐linear model predictive control of glucose concentration in subjects with type 1 diabetes
  publication-title: Physiol Meas
– volume: 24
  start-page: 1696
  year: 2001
  end-page: 1697
  article-title: Subcutaneous continuous glucose monitoring: feasibility of a new microdialysis‐based glucose sensor system
  publication-title: Diabetes Care
– volume: 46
  start-page: 148
  year: 1999
  end-page: 157
  article-title: A model‐based algorithm for blood glucose control in type I diabetic patients
  publication-title: IEEE Trans Biomed Eng
– volume: 43
  start-page: 396
  year: 1994
  end-page: 402
  article-title: [Lys(B28), Pro(B29)]‐human insulin. A rapidly absorbed analogue of human insulin
  publication-title: Diabetes
– volume: 277
  start-page: E561
  year: 1999
  end-page: E571
  article-title: Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring
  publication-title: Am J Physiol
– volume: 109
  start-page: S347
  year: 2001
  end-page: S357
  article-title: Recent advances in continuous glucose monitoring
  publication-title: Exp Clin Endocrinol Diabetes
– volume: 18
  start-page: S14
  year: 2002
  end-page: S20
  article-title: Diabetes management in the new millennium using insulin pump therapy
  publication-title: Diabetes Metab Res Rev
– volume: 28
  start-page: 678
  year: 1981
  end-page: 687
  article-title: Comparison of algorithms for the closed‐loop control of blood glucose using the artificial beta cell
  publication-title: IEEE Trans Biomed Eng
– volume: 56
  start-page: 125
  year: 2004
  end-page: 144
  article-title: Closed‐loop insulin delivery—the path to physiological glucose control
  publication-title: Adv Drug Deliv Rev
– volume: 23
  start-page: 397
  year: 1974
  end-page: 404
  article-title: Clinical control of diabetes by the artificial pancreas
  publication-title: Diabetes
– volume: 95
  start-page: 1464
  year: 1995
  end-page: 1471
  article-title: 24‐hour glucose profiles during continuous or oscillatory insulin infusion. Demonstration of the functional significance of ultradian insulin oscillations
  publication-title: J Clin Invest
– year: 1999
– ident: e_1_2_8_8_2
  doi: 10.1109/51.897829
– ident: e_1_2_8_15_2
  doi: 10.1172/JCI117817
– ident: e_1_2_8_2_2
  doi: 10.2337/diab.23.5.397
– ident: e_1_2_8_4_2
  doi: 10.1007/978-1-4471-3398-8
– ident: e_1_2_8_16_2
  doi: 10.1002/dmrr.205
– ident: e_1_2_8_12_2
  doi: 10.2337/diacare.24.9.1696
– ident: e_1_2_8_11_2
  doi: 10.1152/ajpendo.1999.277.3.E561
– ident: e_1_2_8_10_2
  doi: 10.2337/diab.43.3.396
– ident: e_1_2_8_3_2
  doi: 10.1109/TBME.1981.324661
– ident: e_1_2_8_6_2
  doi: 10.1088/0967-3334/25/4/010
– ident: e_1_2_8_7_2
– ident: e_1_2_8_13_2
  doi: 10.1055/s-2001-18594
– ident: e_1_2_8_5_2
  doi: 10.1089/152091504774197990
– ident: e_1_2_8_9_2
  doi: 10.1016/j.addr.2003.08.011
– ident: e_1_2_8_14_2
  doi: 10.1109/10.740877
SSID ssj0012939
Score 1.9931793
Snippet Aims  To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters—a model predictive control (MPC) algorithm—to...
Aims  To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters—a model predictive control (MPC) algorithm—to...
To evaluate an algorithm with glucose prediction capacity and continuous adaptation of patient parameters-a model predictive control (MPC) algorithm-to control...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 90
SubjectTerms Administration, Cutaneous
Algorithms
artificial β-cell
Biological and medical sciences
Blood Glucose - analysis
Computer Simulation
continuous subcutaneous insulin infusion
Diabetes Mellitus, Type 1 - blood
Diabetes. Impaired glucose tolerance
Drug Administration Schedule
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fasting
Female
glucose control
glucose monitoring
Humans
Insulin - administration & dosage
Insulin - blood
Insulin Infusion Systems
Male
Medical sciences
Models, Biological
Title On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes
URI https://api.istex.fr/ark:/67375/WNG-1PKNPG43-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1464-5491.2006.01695.x
https://www.ncbi.nlm.nih.gov/pubmed/16409572
https://www.proquest.com/docview/70693838
Volume 23
WOSCitedRecordID wos000234465700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1464-5491
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012939
  issn: 0742-3071
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELagBcSFn2XZDT_FB8QtKE6cOOGG2O0isVsqxIreLNtxoKIkVdKiPfIIvAtvxJMwk7itgvawQtwSKZM49njm-8bjMSHPNfoQESe-TYLI58pqsING-IpFRjAT52nSbhQ-FZNJOptlU5f_hHthuvoQ24AbzozWXuMEV7r5e5JzH_gNc2sKLMnil4AnhyGoMR-Q4dGH8fnpdk0BGpV1RTlDjLiwfl7Ppe_qOash9vsFJk-qBvqv6A6-uAyZ9oFu66nGd__nP94jdxxepa87BbtPrtlyj9w6cyvye-SmCzc8IL_el79__MRvUpWrJZpRqhafq3q--vKNYryXuvx4uqxRHlWCGnDWBpgABfBMm7U2a0Crtlo31Czg0ZwuqmpJXUI9rYrNO17RXZ1yihvhalqoBnO48eG8S0Sj85K6wrFN1wKk3ZTRTcR5n5yPjz--eeu7IyF8A7gu9k0hhOUhU0Dccx2qLMq1BQwJMFSncJ_kLAlzo8AyFVxbbTiwBxaoUOeqCMBhPySDsirtIaEFINEwDfIsMpbHsdaApAIbWJMFKVeR9ojYjL00rl46HtuxkD3exCWODp7mmch2dOSFR9hWctnVDLmCzItWvbYCqv6KOXcilp8mJ5JN302mJzySmUdGPf3bfQGIIXBp7pFnG4WUYCpw_acbNymCJIvSKPXIQaenO9kEaH4sQo8krTpeudny6OwYrx79q-BjcnsX1HpCBqt6bZ-SG-b7at7UI3JdzNKRm8h_AG6GR5Y
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hhteFR3mZRzsHxM3Ia69f3BBtWtQkRKgVva1212uICHFkJ6hHfgL_hX_EL2HG3iQK6qFC3BLJY6-9szPfNzs7w9hLTT4kjRPfJkHkC2U12kGT-opHJuUmLrKkPSg8SEej7Pw8H7t2QHQWpqsPsQ640cpo7TUtcApI_73KhY8Eh7tNBZ7k8WsElD2BWhXvsN7Bx_7ZYL2pgKPKu6qcIYVc-HZiz6X32vJWPfrwF5Q9qRr8gGXX-eIyaLqNdFtX1b_7X1_yHrvjECu87VTsPrtmZ7vs5tDtye-yGy7g8ID9-jD7_eMnPRRUoeZkSEFNP1f1ZPHlG1DEF1yGPMxrkielAIPu2iAXAITP0Cy1WSJetdWyATPFSwuYVtUcXEo9VOXqHm9gU6kc6ChcDaVqKIubLi66VDSYzMCVjm26ERDxBg6rmPNDdtY_PH137LumEL5BZBf7pkxTK0KukLoXOlR5VGiLKBKBqM7wf1LwJCyMQttUCm21EcgfeKBCXagyQJf9iO3Mqpl9wqBELBpmQZFHxoo41hqxVGADa_IgEyrSHktXky-Nq5hOjTumcos5CUmzQ_08E9nOjrzwGF9LzruqIVeQedXq11pA1V8p6y6N5afRkeTjk9H4SEQy99jelgJunoDUENm08Nj-SiMlGgvaAermTaZBkkdZlHnscaeoG9kEiX6chh5LWn288rDlwfCQfj39V8F9duv4dDiQg_ejk2fs9ibE9ZztLOqlfcGum--LSVPvufX8B0mjSp4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hBqpeeBQo5tHuAXEz8trrtc0NkaagpiFCVPS22pchIsSRnaAe-Qn8F_4Rv4QZe5MoqIcKcbMlj73encc3s7MzhDzXaEOyVIROREnIldOgB00WKpaYjJnU5qI9KDzMRqP84qIY-3ZAeBamqw-xDrihZLT6GgXczW35t5TzEBwc5jcVmCjSlwAoezwtBEhpr_9hcD5cbyrAqIquKmeMIRe2ndhz5bu2rFUPJ_4SsydVAxNYdp0vroKm20i3NVWDO__1J--S2x6x0tcdi90jN9xsn-ye-T35fXLLBxzuk1_vZ79__MSPUmXVHBUpVdPPVT1ZfPlGMeJLfYY8nddIj0xBDZhrA74ABfhMm6U2S8Crrlo21EzhUUunVTWnPqWeVuXqHa_oplI5xaNwNS1Vg1nc-LDtUtHoZEZ96dimGwE63pTRVcz5ATkfHH988zb0TSFCA8guDU2ZZY7HTIHrbnWsisRqBygSgKjO4V5YJmJrFOimkmunDQf_gUUq1laVEZjsh2RnVs3cI0JLwKJxHtkiMY6nqdaApSIXOVNEOVeJDki2WnxpfMV0bNwxlVueE5e4OtjPU8h2deRlQNiact5VDbkGzYuWv9YEqv6KWXdZKj-NTiQbn47GJzyRRUAOtxhw8wVwDcGb5gE5WnGkBGWBO0DdusksEkWSJ3lADjpG3dAKcPTTLA6IaPnx2sOW_bNjvHr8r4RHZHfcH8jhu9HpE7K3iXA9JTuLeumekZvm-2LS1IdenP8AZxBKGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-line+adaptive+algorithm+with+glucose+prediction+capacity+for+subcutaneous+closed+loop+control+of+glucose+%3A+evaluation+under+fasting+conditions+in+patients+with+Type+1+diabetes&rft.jtitle=Diabetic+medicine&rft.au=SCHALLER%2C+H.+C&rft.au=SCHAUPP%2C+L&rft.au=BODENLENZ%2C+M&rft.au=WILINSKA%2C+M.+E&rft.date=2006&rft.pub=Blackwell&rft.issn=0742-3071&rft.volume=23&rft.issue=1&rft.spage=90&rft.epage=93&rft_id=info:doi/10.1111%2Fj.1464-5491.2006.01695.x&rft.externalDBID=n%2Fa&rft.externalDocID=17472494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3071&client=summon