Traffic network micro-simulation model and control algorithm based on approximate dynamic programming

This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a micro-simulation model and a reinforcement learning method, namely approximate dynamic programming (ADP). By considering traffic environment in discrete tim...

Full description

Saved in:
Bibliographic Details
Published in:IET intelligent transport systems Vol. 10; no. 3; pp. 186 - 196
Main Authors: Yin, Biao, Dridi, Mahjoub, El Moudni, Abdellah
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 01.04.2016
Institution of Engineering and Technology
Subjects:
ISSN:1751-956X, 1751-9578
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a micro-simulation model and a reinforcement learning method, namely approximate dynamic programming (ADP). By considering traffic environment in discrete time, the microscopic traffic dynamic model is built. In particular, the authors explore a vehicle-following model using cellular automata theory. This vehicle-following model theoretically contributes to traffic network loading environment in an accessible way. To make the network coordinated, tunable state with weights of queue length and vehicles on lane is considered. The intersection can share information with each other in this state representation and make a joint action for intersection coordination. Moreover, the traffic signal control algorithm based on ADP method performs quite well in different performance measures witnessed by simulations. By comparing with other control methods, experimental results present that the proposed algorithm could be a potential candidate in an application of traffic network control system.
AbstractList This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a micro-simulation model and a reinforcement learning method, namely approximate dynamic programming (ADP). By considering traffic environment in discrete time, the microscopic traffic dynamic model is built. In particular, the authors explore a vehicle-following model using cellular automata theory. This vehicle-following model theoretically contributes to traffic network loading environment in an accessible way. To make the network coordinated, tunable state with weights of queue length and vehicles on lane is considered. The intersection can share information with each other in this state representation and make a joint action for intersection coordination. Moreover, the traffic signal control algorithm based on ADP method performs quite well in different performance measures witnessed by simulations. By comparing with other control methods, experimental results present that the proposed algorithm could be a potential candidate in an application of traffic network control system.
Author Yin, Biao
Dridi, Mahjoub
El Moudni, Abdellah
Author_xml – sequence: 1
  givenname: Biao
  surname: Yin
  fullname: Yin, Biao
  email: yihu580124@gmail.com
  organization: Laboratoire Systèmes et Transports, Université de Technologie de Belfort-Montbéliard, 90000 Belfort, France
– sequence: 2
  givenname: Mahjoub
  surname: Dridi
  fullname: Dridi, Mahjoub
  organization: Laboratoire Systèmes et Transports, Université de Technologie de Belfort-Montbéliard, 90000 Belfort, France
– sequence: 3
  givenname: Abdellah
  surname: El Moudni
  fullname: El Moudni, Abdellah
  organization: Laboratoire Systèmes et Transports, Université de Technologie de Belfort-Montbéliard, 90000 Belfort, France
BackLink https://hal.science/hal-03120795$$DView record in HAL
BookMark eNqFkU9v1DAQxSNUJNrCB-DmIz1k8ThxnHArVf-stBISLBI3yxtPti6OvdjetvvtcQgghFA5eTT6vZnneSfFkfMOi-I10AXQuntrMJUmxQWjwBcUaPusOAbBoey4aI9-182XF8VJjHeU8oYxOC5wHdQwmJ44TA8-fCWj6YMvoxn3ViXjHRm9RkuU06T3LgWfa7v1waTbkWxURE0ypHa74B_NqBISfXAqTyG5sw1qHI3bviyeD8pGfPXzPS0-X12uL27K1Yfr5cX5quzrKvtTG-h53SiGjGnRMQChsG44Y9i2Qy0qXutGQ8OHtqtopYEjowq52nQI_UZUp8XZPPdWWbkL2U84SK-MvDlfyalHK2BUdPweMvtmZrPPb3uMSY4m9mitcuj3UUJLWypYBU1GxYzm08QYcJC9ST-uk4IyVgKVUwgyhyBzCHIKQU4hZCX8pfzl6inNu1nzYCwe_i-Qy_VH9v6KUtZMvypn8YTd-X1w-d5PLjv7B7-8XOepn_7YsdND9R2BX73E
CitedBy_id crossref_primary_10_1016_j_eswa_2023_123020
crossref_primary_10_1049_iet_rpg_2019_1282
crossref_primary_10_1109_ACCESS_2020_3034141
crossref_primary_10_1109_TCYB_2020_3015811
crossref_primary_10_1155_2021_6693562
crossref_primary_10_1007_s10791_025_09660_9
crossref_primary_10_1109_MITS_2019_2919541
crossref_primary_10_3390_aerospace11090754
crossref_primary_10_1049_gtd2_70145
crossref_primary_10_1016_j_future_2020_03_065
crossref_primary_10_1049_itr2_12364
crossref_primary_10_32604_cmc_2022_022952
crossref_primary_10_1049_iet_its_2018_5143
crossref_primary_10_1016_j_eswa_2022_116830
crossref_primary_10_1109_TMC_2020_3033782
crossref_primary_10_1109_TNNLS_2022_3146811
crossref_primary_10_1049_iet_its_2017_0283
crossref_primary_10_1145_3068287
Cites_doi 10.1016/j.physrep.2005.08.005
10.1007/978-1-84628-982-8_3
10.3182/20080706-5-KR-1001.02205
10.1016/j.engappai.2009.11.009
10.1109/ICMLC.2005.1527178
10.1002/9780470182963
10.1109/CoDIT.2014.6996897
10.1098/rspa.1955.0089
10.1109/ITSC.2012.6338707
10.1016/j.trb.2010.09.006
10.1109/TITS.2013.2255286
10.1016/j.trc.2009.04.005
10.1109/MCOM.2009.4939290
10.1109/ITSC.2011.6083140
10.1007/s10458-004-6975-9
10.1049/iet-its.2009.0096
10.1109/TITS.2010.2091408
10.1109/IAT.2003.1241110
10.1016/j.engappai.2012.02.013
10.1109/ITSC.2008.4732718
10.1109/IVS.2004.1336426
10.1016/j.ejor.2006.07.054
10.1007/978-3-540-87479-9_61
10.1051/jp1:1992277
10.1049/iet-its.2009.0070
10.1016/j.engappai.2014.01.007
10.1142/S0129183197000904
10.1109/ITSC.2012.6338911
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
1XC
DOI 10.1049/iet-its.2015.0108
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1751-9578
EndPage 196
ExternalDocumentID oai:HAL:hal-03120795v1
10_1049_iet_its_2015_0108
ITR2BF00261
Genre article
GroupedDBID 0R
24P
29I
29J
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
M43
M7S
O9-
OCL
P2P
P62
PTHSS
RIE
RIG
RNS
RUI
UNR
.DC
0R~
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADZOD
AEEZP
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
MCNEO
OK1
ROL
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c4351-ab1c546a2e22d792117ae46522e88f47354d6d165f89303d15e20ae5ab9e1cb73
IEDL.DBID 24P
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377126100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-956X
IngestDate Tue Oct 14 20:29:25 EDT 2025
Fri Sep 05 14:26:12 EDT 2025
Tue Nov 18 22:38:59 EST 2025
Wed Oct 29 21:12:13 EDT 2025
Wed Jan 22 16:32:05 EST 2025
Thu May 09 18:04:18 EDT 2019
Tue Jan 05 21:46:10 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords approximate dynamic programming
vehicle-following model
microscopic traffic dynamic model
dynamic programming
intelligent transportation systems
adaptive control
ADP method
distributed traffic network system
cellular automata
cellular automata theory
learning (artificial intelligence)
reinforcement learning method
traffic network loading environment
traffic network microsimulation model
adaptive traffic signal control algorithm
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4351-ab1c546a2e22d792117ae46522e88f47354d6d165f89303d15e20ae5ab9e1cb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8087-5939
PQID 1808072316
PQPubID 23500
PageCount 11
ParticipantIDs crossref_citationtrail_10_1049_iet_its_2015_0108
wiley_primary_10_1049_iet_its_2015_0108_ITR2BF00261
crossref_primary_10_1049_iet_its_2015_0108
hal_primary_oai_HAL_hal_03120795v1
iet_journals_10_1049_iet_its_2015_0108
proquest_miscellaneous_1808072316
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20160400
April 2016
2016-04-00
20160401
2016-04
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 4
  year: 2016
  text: 20160400
PublicationDecade 2010
PublicationTitle IET intelligent transport systems
PublicationYear 2016
Publisher The Institution of Engineering and Technology
Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
– name: Institution of Engineering and Technology
References El-Tantawy, S.; Abdulhai, B.; Abdelgawad, H. (C13) 2013; 14
Maerivoet, S.; De Moor, B. (C2) 2005; 419
Arel, I.; Liu, C.; Urbanik, T. (C26) 2010; 4
Tonguz, O.K.; Viriyasitavat, W.; Bai, F. (C7) 2009; 47
Cai, C.; Wong, C.K.; Heydecker, B.G. (C23) 2009; 17
Lämmer, S.; Helbing, D. (C29) 2008; 4
Balaji, P.; German, X.; Srinivasan, D. (C12) 2010; 4
Khamis, M.A.; Gomaa, W. (C15) 2014; 29
Sumalee, A.; Zhong, R.; Pan, R. (C5) 2011; 45
Kok, J.R.; Vlassis, N. (C31) 2006; 7
Bazzan, A.L.; de Oliveira, D.; da Silva, B.C. (C18) 2010; 23
Box, S.; Waterson, B. (C27) 2013; 26
Bazzan, A.L. (C14) 2005; 10
Lighthill, M.J.; Whitham, G.B. (C4) 1955; 229
Florian, M.; Mahut, M.; Tremblay, N. (C8) 2008; 189
Prashanth, L.; Bhatnagar, S. (C28) 2011; 12
Nagel, K.; Schreckenberg, M. (C3) 1992; 2
Esser, J.; Schreckenberg, M. (C1) 1997; 8
2009; 47
2013; 26
2012
2011
1998
2006; 7
2008
2007
2005; 419
2004
2011; 12
2014; 29
2003
2008; 4
2008; 189
1997; 8
2010; 23
2013; 14
2000
1955; 229
2005; 10
2011; 45
2005; 3
2014
2010; 4
1992; 2
2009; 17
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Lämmer S. (e_1_2_7_30_1) 2008; 4
e_1_2_7_25_1
e_1_2_7_31_1
Kok J.R. (e_1_2_7_32_1) 2006; 7
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Barto A.G. (e_1_2_7_12_1) 1998
References_xml – volume: 29
  start-page: 134
  year: 2014
  end-page: 151
  ident: C15
  article-title: Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework
  publication-title: Eng. Appl. Artif. Intell.
– volume: 4
  start-page: 128
  issue: 2
  year: 2010
  end-page: 135
  ident: C26
  article-title: Reinforcement learning-based multi-agent system for network traffic signal control
  publication-title: IET Intell. Transp. Syst.
– volume: 26
  start-page: 652
  issue: 1
  year: 2013
  end-page: 659
  ident: C27
  article-title: An automated signalized junction controller that learns strategies by temporal difference reinforcement learning
  publication-title: Eng. Appl. Artif. Intell.
– volume: 4
  start-page: 1
  year: 2008
  end-page: 36
  ident: C29
  article-title: Self-control of traffic lights and vehicle flows in urban road networks
  publication-title: J. Stat. Mech., Theory Exp.
– volume: 45
  start-page: 507
  issue: 3
  year: 2011
  end-page: 533
  ident: C5
  article-title: Stochastic cell transmission model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and assignment
  publication-title: Transp. Res. B
– volume: 229
  start-page: 317
  issue: 1178
  year: 1955
  end-page: 345
  ident: C4
  article-title: On kinematic waves II: a theory of traffic flow on long crowded roads
  publication-title: Proc. R. Soc. London A
– volume: 7
  start-page: 1789
  year: 2006
  end-page: 1828
  ident: C31
  article-title: Collaborative multiagent reinforcement learning by payoff propagation
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 142
  issue: 5
  year: 2009
  end-page: 150
  ident: C7
  article-title: Modeling urban traffic: a cellular automata approach
  publication-title: IEEE Commun. Mag.
– volume: 23
  start-page: 560
  issue: 4
  year: 2010
  end-page: 568
  ident: C18
  article-title: Learning in groups of traffic signals
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 1025
  issue: 5
  year: 1997
  end-page: 1036
  ident: C1
  article-title: Microscopic simulation of urban traffic based on cellular automata
  publication-title: Int. J. Mod. Phys. C.
– volume: 10
  start-page: 131
  issue: 1
  year: 2005
  end-page: 164
  ident: C14
  article-title: A distributed approach for coordination of traffic signal agents
  publication-title: Auton. Agents Multi-Agent
– volume: 4
  start-page: 177
  issue: 3
  year: 2010
  end-page: 188
  ident: C12
  article-title: Urban traffic signal control using reinforcement learning agents
  publication-title: IET Intell. Transp. Syst.
– volume: 17
  start-page: 456
  issue: 5
  year: 2009
  end-page: 474
  ident: C23
  article-title: Adaptive traffic signal control using approximate dynamic programming
  publication-title: Transp. Res. C
– volume: 189
  start-page: 1381
  issue: 3
  year: 2008
  end-page: 1392
  ident: C8
  article-title: Application of a simulation-based dynamic traffic assignment model
  publication-title: Eur. J. Oper. Res.
– volume: 14
  start-page: 1140
  issue: 3
  year: 2013
  end-page: 1150
  ident: C13
  article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 2
  start-page: 2221
  issue: 12
  year: 1992
  end-page: 2229
  ident: C3
  article-title: A cellular automaton model for freeway traffic
  publication-title: J. Phys. I
– volume: 419
  start-page: 1
  issue: 1
  year: 2005
  end-page: 64
  ident: C2
  article-title: Cellular automata models of road traffic
  publication-title: Phys. Rep.
– volume: 12
  start-page: 412
  issue: 2
  year: 2011
  end-page: 421
  ident: C28
  article-title: Reinforcement learning with function approximation for traffic signal control
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 8
  start-page: 1025
  issue: 5
  year: 1997
  end-page: 1036
  article-title: Microscopic simulation of urban traffic based on cellular automata
  publication-title: Int. J. Mod. Phys. C.
– volume: 419
  start-page: 1
  issue: 1
  year: 2005
  end-page: 64
  article-title: Cellular automata models of road traffic
  publication-title: Phys. Rep.
– start-page: 1151
  year: 2000
  end-page: 1158
  article-title: Multi‐agent reinforcement learning for traffic light control
– volume: 12
  start-page: 412
  issue: 2
  year: 2011
  end-page: 421
  article-title: Reinforcement learning with function approximation for traffic signal control
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 286
  year: 2008
  end-page: 291
  article-title: Adaptive dynamic programming for multi‐intersections traffic signal intelligent control
– year: 2007
– start-page: 453
  year: 2004
  end-page: 458
  article-title: Simulation and optimization of traffic in a city
– volume: 4
  start-page: 128
  issue: 2
  year: 2010
  end-page: 135
  article-title: Reinforcement learning‐based multi‐agent system for network traffic signal control
  publication-title: IET Intell. Transp. Syst.
– start-page: 411
  year: 2003
  end-page: 414
  article-title: A multiagent system for optimizing urban traffic
– volume: 29
  start-page: 134
  year: 2014
  end-page: 151
  article-title: Adaptive multi‐objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi‐agent framework
  publication-title: Eng. Appl. Artif. Intell.
– volume: 26
  start-page: 652
  issue: 1
  year: 2013
  end-page: 659
  article-title: An automated signalized junction controller that learns strategies by temporal difference reinforcement learning
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 41
  year: 2008
  end-page: 50
– year: 1998
– volume: 4
  start-page: 177
  issue: 3
  year: 2010
  end-page: 188
  article-title: Urban traffic signal control using reinforcement learning agents
  publication-title: IET Intell. Transp. Syst.
– volume: 4
  start-page: 1
  year: 2008
  end-page: 36
  article-title: Self‐control of traffic lights and vehicle flows in urban road networks
  publication-title: J. Stat. Mech., Theory Exp.
– start-page: 225
  year: 2014
  end-page: 230
  article-title: Traffic control model and algorithm based on decomposition of MDP
– volume: 229
  start-page: 317
  issue: 1178
  year: 1955
  end-page: 345
  article-title: On kinematic waves II: a theory of traffic flow on long crowded roads
  publication-title: Proc. R. Soc. London A
– volume: 45
  start-page: 507
  issue: 3
  year: 2011
  end-page: 533
  article-title: Stochastic cell transmission model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and assignment
  publication-title: Transp. Res. B
– start-page: 236
  year: 2011
  end-page: 241
  article-title: Adaptive signal–vehicle cooperative controlling system
– year: 2008
– start-page: 656
  year: 2008
  end-page: 671
– start-page: 596
  year: 2012
  end-page: 601
  article-title: Traffic signal control using reinforcement learning and the max‐plus algorithm as a coordinating strategy
– start-page: 319
  year: 2012
  end-page: 326
  article-title: Multi‐agent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN‐ATSC)
– volume: 10
  start-page: 131
  issue: 1
  year: 2005
  end-page: 164
  article-title: A distributed approach for coordination of traffic signal agents
  publication-title: Auton. Agents Multi‐Agent
– volume: 23
  start-page: 560
  issue: 4
  year: 2010
  end-page: 568
  article-title: Learning in groups of traffic signals
  publication-title: Eng. Appl. Artif. Intell.
– volume: 7
  start-page: 1789
  year: 2006
  end-page: 1828
  article-title: Collaborative multiagent reinforcement learning by payoff propagation
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 2221
  issue: 12
  year: 1992
  end-page: 2229
  article-title: A cellular automaton model for freeway traffic
  publication-title: J. Phys. I
– volume: 17
  start-page: 456
  issue: 5
  year: 2009
  end-page: 474
  article-title: Adaptive traffic signal control using approximate dynamic programming
  publication-title: Transp. Res. C
– volume: 47
  start-page: 142
  issue: 5
  year: 2009
  end-page: 150
  article-title: Modeling urban traffic: a cellular automata approach
  publication-title: IEEE Commun. Mag.
– volume: 14
  start-page: 1140
  issue: 3
  year: 2013
  end-page: 1150
  article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN‐ATSC): methodology and large‐scale application on downtown Toronto
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 189
  start-page: 1381
  issue: 3
  year: 2008
  end-page: 1392
  article-title: Application of a simulation‐based dynamic traffic assignment model
  publication-title: Eur. J. Oper. Res.
– volume: 3
  start-page: 1482
  year: 2005
  end-page: 1486
  article-title: Intelligent cooperation control of urban traffic networks
– ident: e_1_2_7_3_1
  doi: 10.1016/j.physrep.2005.08.005
– ident: e_1_2_7_33_1
  doi: 10.1007/978-1-84628-982-8_3
– ident: e_1_2_7_7_1
  doi: 10.3182/20080706-5-KR-1001.02205
– ident: e_1_2_7_19_1
  doi: 10.1016/j.engappai.2009.11.009
– ident: e_1_2_7_18_1
  doi: 10.1109/ICMLC.2005.1527178
– ident: e_1_2_7_23_1
  doi: 10.1002/9780470182963
– ident: e_1_2_7_31_1
  doi: 10.1109/CoDIT.2014.6996897
– ident: e_1_2_7_5_1
  doi: 10.1098/rspa.1955.0089
– ident: e_1_2_7_20_1
  doi: 10.1109/ITSC.2012.6338707
– ident: e_1_2_7_6_1
  doi: 10.1016/j.trb.2010.09.006
– volume-title: Reinforcement learning: an introduction
  year: 1998
  ident: e_1_2_7_12_1
– ident: e_1_2_7_14_1
  doi: 10.1109/TITS.2013.2255286
– ident: e_1_2_7_24_1
  doi: 10.1016/j.trc.2009.04.005
– ident: e_1_2_7_8_1
  doi: 10.1109/MCOM.2009.4939290
– ident: e_1_2_7_25_1
  doi: 10.1109/ITSC.2011.6083140
– ident: e_1_2_7_15_1
  doi: 10.1007/s10458-004-6975-9
– ident: e_1_2_7_13_1
  doi: 10.1049/iet-its.2009.0096
– ident: e_1_2_7_29_1
  doi: 10.1109/TITS.2010.2091408
– ident: e_1_2_7_10_1
– ident: e_1_2_7_17_1
  doi: 10.1109/IAT.2003.1241110
– volume: 7
  start-page: 1789
  year: 2006
  ident: e_1_2_7_32_1
  article-title: Collaborative multiagent reinforcement learning by payoff propagation
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_7_28_1
  doi: 10.1016/j.engappai.2012.02.013
– ident: e_1_2_7_26_1
  doi: 10.1109/ITSC.2008.4732718
– ident: e_1_2_7_11_1
  doi: 10.1109/IVS.2004.1336426
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ejor.2006.07.054
– ident: e_1_2_7_21_1
  doi: 10.1007/978-3-540-87479-9_61
– ident: e_1_2_7_4_1
  doi: 10.1051/jp1:1992277
– ident: e_1_2_7_27_1
  doi: 10.1049/iet-its.2009.0070
– ident: e_1_2_7_16_1
  doi: 10.1016/j.engappai.2014.01.007
– volume: 4
  start-page: 1
  year: 2008
  ident: e_1_2_7_30_1
  article-title: Self‐control of traffic lights and vehicle flows in urban road networks
  publication-title: J. Stat. Mech., Theory Exp.
– ident: e_1_2_7_2_1
  doi: 10.1142/S0129183197000904
– ident: e_1_2_7_22_1
  doi: 10.1109/ITSC.2012.6338911
SSID ssj0056221
Score 2.1401947
Snippet This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a...
SourceID hal
proquest
crossref
wiley
iet
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 186
SubjectTerms adaptive control
adaptive traffic signal control algorithm
ADP method
Algorithms
approximate dynamic programming
cellular automata
cellular automata theory
Computer Science
Control theory
distributed traffic network system
Dynamic programming
intelligent transportation systems
Intersections
learning (artificial intelligence)
Mathematics
microscopic traffic dynamic model
Modeling and Simulation
Networks
reinforcement learning method
Traffic engineering
Traffic flow
traffic network loading environment
traffic network microsimulation model
Traffic signals
vehicle‐following model
Title Traffic network micro-simulation model and control algorithm based on approximate dynamic programming
URI http://digital-library.theiet.org/content/journals/10.1049/iet-its.2015.0108
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-its.2015.0108
https://www.proquest.com/docview/1808072316
https://hal.science/hal-03120795
Volume 10
WOSCitedRecordID wos000377126100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELba0gMcgBYqlj8ZhDggrVjvj717LFWjRqqiqgTIzZr12u1KzaZKthXceASekSdhxrsJjZCKhMghB2s82diemc_r8TeMvQFQ4Jy1oXAZhGmpqhCiUoSlUugOwcnck_p8PlajUT6ZFCcb7GB5F6bjh1i9cCPL8P6aDBzKrgoJglqcxNq2Yd0S47Yg5k268HtHiCSn-g1xerJ0xxjfu8tXiurJZ3KyOtos3v-hYi04bZ5TauQmCq2hz5sY1gehwYP_8vgP2f0eg_L9btHssA3b7LJ7N5gJH7EzjGFELsGbLk2cTylx7-f3H4t62hf84r6IDoem4n2-O4eLs9m8bs-nnIJjxVHIc5Z_rREXW159awD18D4nbIq_9Jh9GhyOD47CviZDaBBYiRBKYbJUQmzjuFIFbh8V2FQiirN57qiOcVrJSsjMIRCKkkpkNo7AZlAWVphSJXtsq5k19gnjKpelc1FuEmvQjQjAj8pcYnDHWRhIAxYtJ0ObnrCc6mZcaH9wnhYax1DjGGoaQ01jGLB3qy6XHVvHbcKvcYZXcsSzfbR_rKkNPV0cqSK7FgF7Sx17w17cqm1NcHg41sPxx98C-rJyAXu1XEgazZjOZqCxsyvUS_yeCsG2DFji183f_wDqP40_DPw2-uk_9XrG7mK77DKRnrOtdn5lX7Btc93Wi_lLb0f4_WU4-gWRnSKe
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61BQl6KG81lIdBiANSRJyXk2OBrnbFskKwwN4sx7HbSN1stZtWcOMn9Df2lzDjZJeukIqEyDEaT5KJ52WPvwF4oZRQ1hrjc5soPy5E6aug4H4hBJpDZdPMgfp8HYrRKJtM8o8b8G55FqbFh1gtuJFmOHtNCk4L0m3CGRNIZmUav2oIcpsT9Cad-L0WY8BBDRy-DUZLe4wOvj19JaihfJJOVnub-es_WKx5p80jqo3cRKK18PNyEOu8UO_W_3n_27DTRaFsv502d2DD1Hdh-xI24T04RC9G8BKsbgvF2ZRK9y5-ni-qadfyi7k2OkzVJesq3pk6PpzNq-Zoysg9lgyJHGr59wojY8PKH7VCPqyrCpvik-7Dl97B-G3f77oy-BpDK-6rguskTlVowrAUOSaQQhmUexiaLLPUyTgu05KnicVQKIhKnpgwUCZRRW64LkT0ALbqWW12gYksLawNMh0ZjYaEK7xEYiONOWeuVexBsPwbUneQ5dQ541i6rfM4lyhDiTKUJENJMvTg1WrISYvXcRXxc_zFKzpC2u7vDyXdQ1sXBiJPzrgHL2lgp9qLK7mtEQ4OxnIw_vybQJ6U1oNny5kkUZFpd0bVZnaKfAnhU2C4nXoQuYnz9w9A_p_CNz2XSD_8p1FP4UZ__GEoh4PR-z24iTRpW5f0CLaa-al5DNf1WVMt5k-cUv0Cszgl5w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tAyH2wDdaGB8GIR6QIuIktpPHwVatoqoqKKhvlpPYW6Q1ndpsgjf-hP2N-0t2l6RlFdKQEHmMzpfk7PuKz78DeGuMMs5Z63MnjB9nqvBNkHE_UwrNoXEyaUB9vg_UcJhMJuloA_aXZ2FafIjVDzfSjMZek4Lb08K1CWdMIJmlrf2yJshtTtCbdOL3ViwUp7UdxqOlPUYH356-UtRQXsjJam8z_fAHizXvtHlMtZGbSLQWfl4PYhsv1Lv_f97_AdzrolC21y6bh7Bhq0ewfQ2b8DEcoRcjeAlWtYXibEqle5e_LhbltGv5xZo2OsxUBesq3pk5OZrNy_p4ysg9FgyJGtTyHyVGxpYVPyuDfFhXFTbFJz2Bb72D8adDv-vK4OcYWnHfZDwXsTShDcNCpZhAKmNjiXGcTRJHnYzjQhZcCoehUBAVXNgwMFaYLLU8z1T0FLaqWWV3gKlEZs4FSR7ZHA0JN3gp4aIcc840N7EHwXI2dN5BllPnjBPdbJ3HqUYZapShJhlqkqEH71dDTlu8jpuI3-AUr-gIaftwb6DpHtq6MFCpOOcevKOBnWovbuS2Rtg_GOv--OtvAo3z78Hr5UrSqMi0O2MqOztDvoTwqTDclh5EzcL5-wcg_y_hx16TSD_7p1Gv4M5ov6cH_eHnXbiLJLItS3oOW_X8zL6A2_l5XS7mLxudugJ0cST-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+network+micro%E2%80%90simulation+model+and+control+algorithm+based+on+approximate+dynamic+programming&rft.jtitle=IET+intelligent+transport+systems&rft.au=Yin%2C+Biao&rft.au=Dridi%2C+Mahjoub&rft.au=El+Moudni%2C+Abdellah&rft.date=2016-04-01&rft.pub=Institution+of+Engineering+and+Technology&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=10&rft.issue=3&rft.spage=186&rft.epage=196&rft_id=info:doi/10.1049%2Fiet-its.2015.0108&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03120795v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon