Traffic network micro-simulation model and control algorithm based on approximate dynamic programming
This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a micro-simulation model and a reinforcement learning method, namely approximate dynamic programming (ADP). By considering traffic environment in discrete tim...
Uloženo v:
| Vydáno v: | IET intelligent transport systems Ročník 10; číslo 3; s. 186 - 196 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
01.04.2016
Institution of Engineering and Technology |
| Témata: | |
| ISSN: | 1751-956X, 1751-9578 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a micro-simulation model and a reinforcement learning method, namely approximate dynamic programming (ADP). By considering traffic environment in discrete time, the microscopic traffic dynamic model is built. In particular, the authors explore a vehicle-following model using cellular automata theory. This vehicle-following model theoretically contributes to traffic network loading environment in an accessible way. To make the network coordinated, tunable state with weights of queue length and vehicles on lane is considered. The intersection can share information with each other in this state representation and make a joint action for intersection coordination. Moreover, the traffic signal control algorithm based on ADP method performs quite well in different performance measures witnessed by simulations. By comparing with other control methods, experimental results present that the proposed algorithm could be a potential candidate in an application of traffic network control system. |
|---|---|
| AbstractList | This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a micro-simulation model and a reinforcement learning method, namely approximate dynamic programming (ADP). By considering traffic environment in discrete time, the microscopic traffic dynamic model is built. In particular, the authors explore a vehicle-following model using cellular automata theory. This vehicle-following model theoretically contributes to traffic network loading environment in an accessible way. To make the network coordinated, tunable state with weights of queue length and vehicles on lane is considered. The intersection can share information with each other in this state representation and make a joint action for intersection coordination. Moreover, the traffic signal control algorithm based on ADP method performs quite well in different performance measures witnessed by simulations. By comparing with other control methods, experimental results present that the proposed algorithm could be a potential candidate in an application of traffic network control system. |
| Author | Yin, Biao Dridi, Mahjoub El Moudni, Abdellah |
| Author_xml | – sequence: 1 givenname: Biao surname: Yin fullname: Yin, Biao email: yihu580124@gmail.com organization: Laboratoire Systèmes et Transports, Université de Technologie de Belfort-Montbéliard, 90000 Belfort, France – sequence: 2 givenname: Mahjoub surname: Dridi fullname: Dridi, Mahjoub organization: Laboratoire Systèmes et Transports, Université de Technologie de Belfort-Montbéliard, 90000 Belfort, France – sequence: 3 givenname: Abdellah surname: El Moudni fullname: El Moudni, Abdellah organization: Laboratoire Systèmes et Transports, Université de Technologie de Belfort-Montbéliard, 90000 Belfort, France |
| BackLink | https://hal.science/hal-03120795$$DView record in HAL |
| BookMark | eNqFkU9v1DAQxSNUJNrCB-DmIz1k8ThxnHArVf-stBISLBI3yxtPti6OvdjetvvtcQgghFA5eTT6vZnneSfFkfMOi-I10AXQuntrMJUmxQWjwBcUaPusOAbBoey4aI9-182XF8VJjHeU8oYxOC5wHdQwmJ44TA8-fCWj6YMvoxn3ViXjHRm9RkuU06T3LgWfa7v1waTbkWxURE0ypHa74B_NqBISfXAqTyG5sw1qHI3bviyeD8pGfPXzPS0-X12uL27K1Yfr5cX5quzrKvtTG-h53SiGjGnRMQChsG44Y9i2Qy0qXutGQ8OHtqtopYEjowq52nQI_UZUp8XZPPdWWbkL2U84SK-MvDlfyalHK2BUdPweMvtmZrPPb3uMSY4m9mitcuj3UUJLWypYBU1GxYzm08QYcJC9ST-uk4IyVgKVUwgyhyBzCHIKQU4hZCX8pfzl6inNu1nzYCwe_i-Qy_VH9v6KUtZMvypn8YTd-X1w-d5PLjv7B7-8XOepn_7YsdND9R2BX73E |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2023_123020 crossref_primary_10_1049_iet_rpg_2019_1282 crossref_primary_10_1109_ACCESS_2020_3034141 crossref_primary_10_1109_TCYB_2020_3015811 crossref_primary_10_1155_2021_6693562 crossref_primary_10_1007_s10791_025_09660_9 crossref_primary_10_1109_MITS_2019_2919541 crossref_primary_10_3390_aerospace11090754 crossref_primary_10_1049_gtd2_70145 crossref_primary_10_1016_j_future_2020_03_065 crossref_primary_10_1049_itr2_12364 crossref_primary_10_32604_cmc_2022_022952 crossref_primary_10_1049_iet_its_2018_5143 crossref_primary_10_1016_j_eswa_2022_116830 crossref_primary_10_1109_TMC_2020_3033782 crossref_primary_10_1109_TNNLS_2022_3146811 crossref_primary_10_1049_iet_its_2017_0283 crossref_primary_10_1145_3068287 |
| Cites_doi | 10.1016/j.physrep.2005.08.005 10.1007/978-1-84628-982-8_3 10.3182/20080706-5-KR-1001.02205 10.1016/j.engappai.2009.11.009 10.1109/ICMLC.2005.1527178 10.1002/9780470182963 10.1109/CoDIT.2014.6996897 10.1098/rspa.1955.0089 10.1109/ITSC.2012.6338707 10.1016/j.trb.2010.09.006 10.1109/TITS.2013.2255286 10.1016/j.trc.2009.04.005 10.1109/MCOM.2009.4939290 10.1109/ITSC.2011.6083140 10.1007/s10458-004-6975-9 10.1049/iet-its.2009.0096 10.1109/TITS.2010.2091408 10.1109/IAT.2003.1241110 10.1016/j.engappai.2012.02.013 10.1109/ITSC.2008.4732718 10.1109/IVS.2004.1336426 10.1016/j.ejor.2006.07.054 10.1007/978-3-540-87479-9_61 10.1051/jp1:1992277 10.1049/iet-its.2009.0070 10.1016/j.engappai.2014.01.007 10.1142/S0129183197000904 10.1109/ITSC.2012.6338911 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 1XC |
| DOI | 10.1049/iet-its.2015.0108 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1751-9578 |
| EndPage | 196 |
| ExternalDocumentID | oai:HAL:hal-03120795v1 10_1049_iet_its_2015_0108 ITR2BF00261 |
| Genre | article |
| GroupedDBID | 0R 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 EBS EJD HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI M43 M7S O9- OCL P2P P62 PTHSS RIE RIG RNS RUI UNR .DC 0R~ 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADZOD AEEZP AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC MCNEO OK1 ROL AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c4351-ab1c546a2e22d792117ae46522e88f47354d6d165f89303d15e20ae5ab9e1cb73 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377126100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-956X |
| IngestDate | Tue Oct 14 20:29:25 EDT 2025 Fri Sep 05 14:26:12 EDT 2025 Tue Nov 18 22:38:59 EST 2025 Wed Oct 29 21:12:13 EDT 2025 Wed Jan 22 16:32:05 EST 2025 Thu May 09 18:04:18 EDT 2019 Tue Jan 05 21:46:10 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | approximate dynamic programming vehicle-following model microscopic traffic dynamic model dynamic programming intelligent transportation systems adaptive control ADP method distributed traffic network system cellular automata cellular automata theory learning (artificial intelligence) reinforcement learning method traffic network loading environment traffic network microsimulation model adaptive traffic signal control algorithm |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4351-ab1c546a2e22d792117ae46522e88f47354d6d165f89303d15e20ae5ab9e1cb73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8087-5939 |
| PQID | 1808072316 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1049_iet_its_2015_0108 wiley_primary_10_1049_iet_its_2015_0108_ITR2BF00261 crossref_primary_10_1049_iet_its_2015_0108 hal_primary_oai_HAL_hal_03120795v1 iet_journals_10_1049_iet_its_2015_0108 proquest_miscellaneous_1808072316 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20160400 April 2016 2016-04-00 20160401 2016-04 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 4 year: 2016 text: 20160400 |
| PublicationDecade | 2010 |
| PublicationTitle | IET intelligent transport systems |
| PublicationYear | 2016 |
| Publisher | The Institution of Engineering and Technology Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology – name: Institution of Engineering and Technology |
| References | El-Tantawy, S.; Abdulhai, B.; Abdelgawad, H. (C13) 2013; 14 Maerivoet, S.; De Moor, B. (C2) 2005; 419 Arel, I.; Liu, C.; Urbanik, T. (C26) 2010; 4 Tonguz, O.K.; Viriyasitavat, W.; Bai, F. (C7) 2009; 47 Cai, C.; Wong, C.K.; Heydecker, B.G. (C23) 2009; 17 Lämmer, S.; Helbing, D. (C29) 2008; 4 Balaji, P.; German, X.; Srinivasan, D. (C12) 2010; 4 Khamis, M.A.; Gomaa, W. (C15) 2014; 29 Sumalee, A.; Zhong, R.; Pan, R. (C5) 2011; 45 Kok, J.R.; Vlassis, N. (C31) 2006; 7 Bazzan, A.L.; de Oliveira, D.; da Silva, B.C. (C18) 2010; 23 Box, S.; Waterson, B. (C27) 2013; 26 Bazzan, A.L. (C14) 2005; 10 Lighthill, M.J.; Whitham, G.B. (C4) 1955; 229 Florian, M.; Mahut, M.; Tremblay, N. (C8) 2008; 189 Prashanth, L.; Bhatnagar, S. (C28) 2011; 12 Nagel, K.; Schreckenberg, M. (C3) 1992; 2 Esser, J.; Schreckenberg, M. (C1) 1997; 8 2009; 47 2013; 26 2012 2011 1998 2006; 7 2008 2007 2005; 419 2004 2011; 12 2014; 29 2003 2008; 4 2008; 189 1997; 8 2010; 23 2013; 14 2000 1955; 229 2005; 10 2011; 45 2005; 3 2014 2010; 4 1992; 2 2009; 17 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Lämmer S. (e_1_2_7_30_1) 2008; 4 e_1_2_7_25_1 e_1_2_7_31_1 Kok J.R. (e_1_2_7_32_1) 2006; 7 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Barto A.G. (e_1_2_7_12_1) 1998 |
| References_xml | – volume: 29 start-page: 134 year: 2014 end-page: 151 ident: C15 article-title: Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework publication-title: Eng. Appl. Artif. Intell. – volume: 4 start-page: 128 issue: 2 year: 2010 end-page: 135 ident: C26 article-title: Reinforcement learning-based multi-agent system for network traffic signal control publication-title: IET Intell. Transp. Syst. – volume: 26 start-page: 652 issue: 1 year: 2013 end-page: 659 ident: C27 article-title: An automated signalized junction controller that learns strategies by temporal difference reinforcement learning publication-title: Eng. Appl. Artif. Intell. – volume: 4 start-page: 1 year: 2008 end-page: 36 ident: C29 article-title: Self-control of traffic lights and vehicle flows in urban road networks publication-title: J. Stat. Mech., Theory Exp. – volume: 45 start-page: 507 issue: 3 year: 2011 end-page: 533 ident: C5 article-title: Stochastic cell transmission model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and assignment publication-title: Transp. Res. B – volume: 229 start-page: 317 issue: 1178 year: 1955 end-page: 345 ident: C4 article-title: On kinematic waves II: a theory of traffic flow on long crowded roads publication-title: Proc. R. Soc. London A – volume: 7 start-page: 1789 year: 2006 end-page: 1828 ident: C31 article-title: Collaborative multiagent reinforcement learning by payoff propagation publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 142 issue: 5 year: 2009 end-page: 150 ident: C7 article-title: Modeling urban traffic: a cellular automata approach publication-title: IEEE Commun. Mag. – volume: 23 start-page: 560 issue: 4 year: 2010 end-page: 568 ident: C18 article-title: Learning in groups of traffic signals publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 1025 issue: 5 year: 1997 end-page: 1036 ident: C1 article-title: Microscopic simulation of urban traffic based on cellular automata publication-title: Int. J. Mod. Phys. C. – volume: 10 start-page: 131 issue: 1 year: 2005 end-page: 164 ident: C14 article-title: A distributed approach for coordination of traffic signal agents publication-title: Auton. Agents Multi-Agent – volume: 4 start-page: 177 issue: 3 year: 2010 end-page: 188 ident: C12 article-title: Urban traffic signal control using reinforcement learning agents publication-title: IET Intell. Transp. Syst. – volume: 17 start-page: 456 issue: 5 year: 2009 end-page: 474 ident: C23 article-title: Adaptive traffic signal control using approximate dynamic programming publication-title: Transp. Res. C – volume: 189 start-page: 1381 issue: 3 year: 2008 end-page: 1392 ident: C8 article-title: Application of a simulation-based dynamic traffic assignment model publication-title: Eur. J. Oper. Res. – volume: 14 start-page: 1140 issue: 3 year: 2013 end-page: 1150 ident: C13 article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 2 start-page: 2221 issue: 12 year: 1992 end-page: 2229 ident: C3 article-title: A cellular automaton model for freeway traffic publication-title: J. Phys. I – volume: 419 start-page: 1 issue: 1 year: 2005 end-page: 64 ident: C2 article-title: Cellular automata models of road traffic publication-title: Phys. Rep. – volume: 12 start-page: 412 issue: 2 year: 2011 end-page: 421 ident: C28 article-title: Reinforcement learning with function approximation for traffic signal control publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 8 start-page: 1025 issue: 5 year: 1997 end-page: 1036 article-title: Microscopic simulation of urban traffic based on cellular automata publication-title: Int. J. Mod. Phys. C. – volume: 419 start-page: 1 issue: 1 year: 2005 end-page: 64 article-title: Cellular automata models of road traffic publication-title: Phys. Rep. – start-page: 1151 year: 2000 end-page: 1158 article-title: Multi‐agent reinforcement learning for traffic light control – volume: 12 start-page: 412 issue: 2 year: 2011 end-page: 421 article-title: Reinforcement learning with function approximation for traffic signal control publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 286 year: 2008 end-page: 291 article-title: Adaptive dynamic programming for multi‐intersections traffic signal intelligent control – year: 2007 – start-page: 453 year: 2004 end-page: 458 article-title: Simulation and optimization of traffic in a city – volume: 4 start-page: 128 issue: 2 year: 2010 end-page: 135 article-title: Reinforcement learning‐based multi‐agent system for network traffic signal control publication-title: IET Intell. Transp. Syst. – start-page: 411 year: 2003 end-page: 414 article-title: A multiagent system for optimizing urban traffic – volume: 29 start-page: 134 year: 2014 end-page: 151 article-title: Adaptive multi‐objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi‐agent framework publication-title: Eng. Appl. Artif. Intell. – volume: 26 start-page: 652 issue: 1 year: 2013 end-page: 659 article-title: An automated signalized junction controller that learns strategies by temporal difference reinforcement learning publication-title: Eng. Appl. Artif. Intell. – start-page: 41 year: 2008 end-page: 50 – year: 1998 – volume: 4 start-page: 177 issue: 3 year: 2010 end-page: 188 article-title: Urban traffic signal control using reinforcement learning agents publication-title: IET Intell. Transp. Syst. – volume: 4 start-page: 1 year: 2008 end-page: 36 article-title: Self‐control of traffic lights and vehicle flows in urban road networks publication-title: J. Stat. Mech., Theory Exp. – start-page: 225 year: 2014 end-page: 230 article-title: Traffic control model and algorithm based on decomposition of MDP – volume: 229 start-page: 317 issue: 1178 year: 1955 end-page: 345 article-title: On kinematic waves II: a theory of traffic flow on long crowded roads publication-title: Proc. R. Soc. London A – volume: 45 start-page: 507 issue: 3 year: 2011 end-page: 533 article-title: Stochastic cell transmission model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and assignment publication-title: Transp. Res. B – start-page: 236 year: 2011 end-page: 241 article-title: Adaptive signal–vehicle cooperative controlling system – year: 2008 – start-page: 656 year: 2008 end-page: 671 – start-page: 596 year: 2012 end-page: 601 article-title: Traffic signal control using reinforcement learning and the max‐plus algorithm as a coordinating strategy – start-page: 319 year: 2012 end-page: 326 article-title: Multi‐agent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN‐ATSC) – volume: 10 start-page: 131 issue: 1 year: 2005 end-page: 164 article-title: A distributed approach for coordination of traffic signal agents publication-title: Auton. Agents Multi‐Agent – volume: 23 start-page: 560 issue: 4 year: 2010 end-page: 568 article-title: Learning in groups of traffic signals publication-title: Eng. Appl. Artif. Intell. – volume: 7 start-page: 1789 year: 2006 end-page: 1828 article-title: Collaborative multiagent reinforcement learning by payoff propagation publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 2221 issue: 12 year: 1992 end-page: 2229 article-title: A cellular automaton model for freeway traffic publication-title: J. Phys. I – volume: 17 start-page: 456 issue: 5 year: 2009 end-page: 474 article-title: Adaptive traffic signal control using approximate dynamic programming publication-title: Transp. Res. C – volume: 47 start-page: 142 issue: 5 year: 2009 end-page: 150 article-title: Modeling urban traffic: a cellular automata approach publication-title: IEEE Commun. Mag. – volume: 14 start-page: 1140 issue: 3 year: 2013 end-page: 1150 article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN‐ATSC): methodology and large‐scale application on downtown Toronto publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 189 start-page: 1381 issue: 3 year: 2008 end-page: 1392 article-title: Application of a simulation‐based dynamic traffic assignment model publication-title: Eur. J. Oper. Res. – volume: 3 start-page: 1482 year: 2005 end-page: 1486 article-title: Intelligent cooperation control of urban traffic networks – ident: e_1_2_7_3_1 doi: 10.1016/j.physrep.2005.08.005 – ident: e_1_2_7_33_1 doi: 10.1007/978-1-84628-982-8_3 – ident: e_1_2_7_7_1 doi: 10.3182/20080706-5-KR-1001.02205 – ident: e_1_2_7_19_1 doi: 10.1016/j.engappai.2009.11.009 – ident: e_1_2_7_18_1 doi: 10.1109/ICMLC.2005.1527178 – ident: e_1_2_7_23_1 doi: 10.1002/9780470182963 – ident: e_1_2_7_31_1 doi: 10.1109/CoDIT.2014.6996897 – ident: e_1_2_7_5_1 doi: 10.1098/rspa.1955.0089 – ident: e_1_2_7_20_1 doi: 10.1109/ITSC.2012.6338707 – ident: e_1_2_7_6_1 doi: 10.1016/j.trb.2010.09.006 – volume-title: Reinforcement learning: an introduction year: 1998 ident: e_1_2_7_12_1 – ident: e_1_2_7_14_1 doi: 10.1109/TITS.2013.2255286 – ident: e_1_2_7_24_1 doi: 10.1016/j.trc.2009.04.005 – ident: e_1_2_7_8_1 doi: 10.1109/MCOM.2009.4939290 – ident: e_1_2_7_25_1 doi: 10.1109/ITSC.2011.6083140 – ident: e_1_2_7_15_1 doi: 10.1007/s10458-004-6975-9 – ident: e_1_2_7_13_1 doi: 10.1049/iet-its.2009.0096 – ident: e_1_2_7_29_1 doi: 10.1109/TITS.2010.2091408 – ident: e_1_2_7_10_1 – ident: e_1_2_7_17_1 doi: 10.1109/IAT.2003.1241110 – volume: 7 start-page: 1789 year: 2006 ident: e_1_2_7_32_1 article-title: Collaborative multiagent reinforcement learning by payoff propagation publication-title: J. Mach. Learn. Res. – ident: e_1_2_7_28_1 doi: 10.1016/j.engappai.2012.02.013 – ident: e_1_2_7_26_1 doi: 10.1109/ITSC.2008.4732718 – ident: e_1_2_7_11_1 doi: 10.1109/IVS.2004.1336426 – ident: e_1_2_7_9_1 doi: 10.1016/j.ejor.2006.07.054 – ident: e_1_2_7_21_1 doi: 10.1007/978-3-540-87479-9_61 – ident: e_1_2_7_4_1 doi: 10.1051/jp1:1992277 – ident: e_1_2_7_27_1 doi: 10.1049/iet-its.2009.0070 – ident: e_1_2_7_16_1 doi: 10.1016/j.engappai.2014.01.007 – volume: 4 start-page: 1 year: 2008 ident: e_1_2_7_30_1 article-title: Self‐control of traffic lights and vehicle flows in urban road networks publication-title: J. Stat. Mech., Theory Exp. – ident: e_1_2_7_2_1 doi: 10.1142/S0129183197000904 – ident: e_1_2_7_22_1 doi: 10.1109/ITSC.2012.6338911 |
| SSID | ssj0056221 |
| Score | 2.1401947 |
| Snippet | This study presents the adaptive traffic signal control algorithm in a distributed traffic network system. The proposed algorithm is based on a... |
| SourceID | hal proquest crossref wiley iet |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 186 |
| SubjectTerms | adaptive control adaptive traffic signal control algorithm ADP method Algorithms approximate dynamic programming cellular automata cellular automata theory Computer Science Control theory distributed traffic network system Dynamic programming intelligent transportation systems Intersections learning (artificial intelligence) Mathematics microscopic traffic dynamic model Modeling and Simulation Networks reinforcement learning method Traffic engineering Traffic flow traffic network loading environment traffic network microsimulation model Traffic signals vehicle‐following model |
| Title | Traffic network micro-simulation model and control algorithm based on approximate dynamic programming |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-its.2015.0108 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-its.2015.0108 https://www.proquest.com/docview/1808072316 https://hal.science/hal-03120795 |
| Volume | 10 |
| WOSCitedRecordID | wos000377126100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLa2wQEOG78mMjZkEOKAFBE7juMcx7RqlVA1QRG9WXbsbJHWdGqzCW78CfyN_CW856TdKqQhIS49RM-vre3n9zl-_j5C3giAFLZ0PBaelbFwsN1RrLKxrfAmJSsTZkUQm8hHIzWZFKcb5Gh5F6bjh1i9cMPICOs1BrixnQoJgFoYxNq3cd0i4zZD5k288HuPsVShfgMXp8vlGPJ7d_kqRz35TE5WR5vF-z9crCWnzXMsjdwEozX0eRvDhiQ02PkvP_8R2e4xKD3sJs1jsuGbJ-ThLWbCp-QMchiSS9CmKxOnUyzc-_Xj56Ke9oJfNIjoUNM42te7U3NxNpvX7fmUYnJ0FIwCZ_m3GnCxp-57Y8AP7WvCpvBNz8iXwfH46CTuNRniEoAVi41lZSak4Z5zlxewfcyNFxJQnFeqQh1j4aRjMqsACCWpY5nnifGZsQVMBpunu2SrmTX-OaGZUc7wtMqUTIQwTpVWZc4m0gMGZJZHJFkOhi57wnLUzbjQ4eBcFBr6UEMfauxDjX0YkXerJpcdW8ddxq9hhFd2yLN9cvhR4zNY6XiSF9k1i8hbbNgH9uJOb2uGw-OxHo4_3xjoS1dF5NVyImkIYzybMY2fXYFf5PfMAWzLiKRh3vz9D4D_T_zDIGyj9_6p1QvyAJ7LrhJpn2y18yt_QO6X1229mL8McQSfX4ej39VRIV8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tAwn2wDcifBqEeECKFrvO1-OAVa0oFYIi-mbZsbNFWtOpzabxxp_A38hfwp2TllVIQ0K8RudLcvb5frbPvwN4KRFSmMKKUDpehNLicifjpQlNSTcpeRFxI32xiXQ8zqbT_OMWvFvdhWn5IdYbbuQZfr4mB6cN6XbBKYkks3JNWDVEuc2JepNu_F6RCDiogMPX4Xg1H2OAb29fpVRQPk6m67PNfO8PFRvRafuIciO3UWgDfl4EsT4K9W_-n--_BTc6FMr222FzG7ZcfQd2L3AT3oVDjGJEL8HqNlGczSh17-f3H8tq1pX8Yr6MDtO1ZV3GO9PHh_NF1RzNGIVHy1DIs5afV4iMHbPfao16WJcVNsM33YMv_YPJ20HYVWUIC4RWPNSGF7FMtHBC2DTHBWSqHdpdCJdlJVUyljaxPIlLhEJRz_LYiUi7WJsch4NJe_dhp57X7gGwWGdWi14ZZ0kkpbZZYbLYmihxiAK5EQFEq95QRUdZTpUzjpU_Ope5QhsqtKEiGyqyYQCv101OWr6Oy4RfYBev5Yhpe7A_UvQM5zoRpXl8xgN4RQ07115eqm1DcHgwUcPJ598C6sSWATxfjSSFjkynM7p281PUSwyfKcLtJICeHzh__wHU_0m86fuF9MN_avUMrg0mH0ZqNBy_fwTXUSZp85Iew06zOHVP4Gpx1lTLxVPvVL8A7eAkqA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tAyF4GN8iGx8GIR6QosWunY_HwVatYqoqKFLfLDt2tkhrOrXZBG_8Cfsb-Uu4S9KyCmlIiNfqfEnPd76f4_PvAN5KhBQ2dyKUnuehdLjdSXlhQ1vQTUqeR9zKptlEMhymk0k22oCD5V2Ylh9i9cGNIqNZrynA_bkr2g2nJJLM0tdhWRPlNifqTbrxe0uqhJNvCzlarseY4NvbVwk1lFfxZHW2me39oWItO22eUm3kJgqtwc_rILbJQv37_-f9H8B2h0LZfus2D2HDV4_g3jVuwsdwglmM6CVY1RaKsymV7v38cbUop13LL9a00WGmcqyreGfm7GQ2L-vTKaP06BgKNazl30pExp6575VBPayrCpvik57A1_7h-ONR2HVlCHOEVjw0ludKxkZ4IVyS4QYyMV7GiON8mhbUyVi62PFYFQiFop7jyovIeGVshu5gk95T2KpmlX8GTJnUGdErVBpHUhqX5jZVzkaxRxTIrQggWs6GzjvKcuqccaabo3OZabShRhtqsqEmGwbwfjXkvOXruEn4DU7xSo6Yto_2jzX9hmudiJJMXfIA3tHALrQXN2pbExwcjvVg_OW3gMb5D-D10pM0BjKdzpjKzy5QLzF8Jgi34wB6jeP8_Q-g_s_iQ7_ZSO_806hXcGd00NfHg-GnXbiLInFblvQctur5hX8Bt_PLulzMXzYx9QuwWCO_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+network+micro%E2%80%90simulation+model+and+control+algorithm+based+on+approximate+dynamic+programming&rft.jtitle=IET+intelligent+transport+systems&rft.au=Yin%2C+Biao&rft.au=Dridi%2C+Mahjoub&rft.au=El+Moudni%2C+Abdellah&rft.date=2016-04-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=10&rft.issue=3&rft.spage=186&rft.epage=196&rft_id=info:doi/10.1049%2Fiet-its.2015.0108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_its_2015_0108 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |