Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction

In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA Transactions Jg. 126; S. 370 - 376
Hauptverfasser: Xu, Xinghan, Ren, Weijie
Format: Journal Article
Sprache:Englisch
Japanisch
Veröffentlicht: Elsevier Ltd 01.07.2022
Elsevier BV
Schlagworte:
ISSN:0019-0578, 1879-2022, 1879-2022
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets. •A kernel model named RFF-RMMC is proposed for online time series prediction.•A kernel approximation method is applied to increase the calculation speed.•The accuracy of similarity is enhanced by maximum mixture correntropy criterion.•The proposed model can predict the time series with low complexity.
AbstractList In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets. •A kernel model named RFF-RMMC is proposed for online time series prediction.•A kernel approximation method is applied to increase the calculation speed.•The accuracy of similarity is enhanced by maximum mixture correntropy criterion.•The proposed model can predict the time series with low complexity.
In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets.In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets.
Author Xu, Xinghan
Ren, Weijie
Author_xml – sequence: 1
  givenname: Xinghan
  surname: Xu
  fullname: Xu, Xinghan
  email: xu.xinghan.57u@st.kyoto-u.ac.jp
  organization: Department of Environmental Engineering, Kyoto University, Kyoto 615-8540, Japan
– sequence: 2
  givenname: Weijie
  orcidid: 0000-0002-2711-8813
  surname: Ren
  fullname: Ren, Weijie
  email: renweijie@hrbeu.edu.cn
  organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
BackLink https://cir.nii.ac.jp/crid/1872835442574740480$$DView record in CiNii
BookMark eNqFkcFuFSEUholpE29b38AFCxduZnpgmIFxYWIaa02amDR1TShzUK4zcAWmad9eruPKhW4gId9_Tvj-M3ISYkBCXjNoGbDhct_6bEoyLQfOWlAtMPGC7JiSY1Of-AnZAbCxgV6ql-Qs5z0A8H5UOxLvTJjiQq_jmjwm6tCUNSH9gSngTBPaNWX_iHQxT35ZF7r4p9-AjSlhKCkenqmZv8Xky_eFuphoDLMPSItfkGasUzM9JJy8LT6GC3LqzJzx1Z_7nHy9_nh_ddPcfvn0-erDbWNFJ0rjpBoMjtZO0yA4MOygk2g65riSDCy3oxHCyQeBbBitBO462feWd4Nj7kF15-TtNveQ4s8Vc9GLzxbn2QSMa9a8HwTr6q6xomJDbYo5J3T6kPxi0rNmoI9-9V5vfvXRrwalq98ae_dXzPpijn-spJ__F36zhYP3NXc8a1tcdb0QvJdCChAKKvZ-w7Cqeqz96Gw9Bltt1maKnqL_955fUDqoBA
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104790
crossref_primary_10_1016_j_physa_2024_129914
crossref_primary_10_1016_j_dsp_2025_104984
crossref_primary_10_1016_j_isatra_2024_10_014
crossref_primary_10_1016_j_isatra_2024_12_016
crossref_primary_10_1109_TSIPN_2023_3288304
Cites_doi 10.1109/TSP.2004.830985
10.1016/j.sigpro.2015.04.024
10.1109/MCI.2009.932254
10.1016/j.neucom.2017.02.065
10.1109/TNN.2011.2105888
10.1109/TCYB.2018.2804326
10.1109/TCYB.2018.2789686
10.1016/j.asoc.2017.12.032
10.1016/j.patcog.2017.07.003
10.1214/aoms/1177704472
10.1016/j.isatra.2018.06.004
10.1109/TSP.2008.2009895
10.1016/j.isatra.2012.09.007
10.1109/TNNLS.2013.2272594
10.1109/LSP.2017.2761886
10.1016/j.patcog.2018.02.010
10.1016/j.ymssp.2016.06.024
10.1109/TKDE.2018.2792021
10.1016/j.engappai.2016.11.010
10.1109/TNNLS.2013.2258936
10.1109/TSP.2007.896065
ContentType Journal Article
Copyright 2021 ISA
Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 ISA
– notice: Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
DBID RYH
AAYXX
CITATION
7X8
DOI 10.1016/j.isatra.2021.08.014
DatabaseName CiNii Complete
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 376
ExternalDocumentID 10_1016_j_isatra_2021_08_014
S0019057821004420
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
9DU
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
CITATION
7X8
ID FETCH-LOGICAL-c434t-f786ae9ccdd64201e3037ea31f28710c2c9a44f7b4e169c702f3755c236f1fb83
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858646000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Sun Nov 09 11:38:33 EST 2025
Sat Nov 29 07:30:31 EST 2025
Tue Nov 18 22:36:06 EST 2025
Mon Nov 10 09:18:10 EST 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Maximum mixture correntropy criterion
Random Fourier feature
Online prediction
Kernel recursive least-squares
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-f786ae9ccdd64201e3037ea31f28710c2c9a44f7b4e169c702f3755c236f1fb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2711-8813
PQID 2564134349
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2564134349
crossref_primary_10_1016_j_isatra_2021_08_014
crossref_citationtrail_10_1016_j_isatra_2021_08_014
nii_cinii_1872835442574740480
elsevier_sciencedirect_doi_10_1016_j_isatra_2021_08_014
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle ISA Transactions
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Richard, Bermudez, Honeine (b11) 2008; 57
Engel, Mannor, Meir (b21) 2004; 52
Zhao, Zhang (b17) 2017; 24
Soares, Costa Jr, Costa, Leite (b3) 2018; 64
Rahimi, Recht (b28) 2007
Han, Zhang, Xu, Qiu, Wang (b31) 2018; 49
Bloom, Argyriou, Makris (b6) 2017; 72
Chen, Zhao, Zhu, Principe (b24) 2013; 24
Adankon, Cheriet, Biem (b9) 2011; 22
Li, Li, Yan, He (b15) 2018; 30
Elaissi, Jaffel, Taouali, Messaoud (b5) 2013; 52
Engel, Mannor, Meir (b10) 2004; 52
Mao, He, Yan, Wang (b7) 2017; 83
Van Vaerenbergh, Santamaría, Liu, Príncipe (b23) 2010
Wu, Shi, Zhang, Ma, Chen, Senior Member (b20) 2015; 117
He, Zheng, Hu (b18) 2010; 33
Ma, Duan, Man, Zhao, Chen (b16) 2017; 58
Zhao, Zhang (b25) 2017
Diniz (b12) 2020
Zhao, Zhang, Wang (b26) 2017; 65
Zhang, Dang, Simoes (b1) 2018; 81
Tobar, Kung, Mandic (b8) 2013; 25
Erdogmus (b14) 2002
Du, Xinyao, Wang, Zhang, Tao (b19) 2018; 49
Liu, Pokharel, Príncipe (b13) 2007; 55
Chandra, Ong, Goh (b4) 2017; 243
Lu, Hoi, Wang, Zhao, Liu (b27) 2016; 17
Van Vaerenbergh, Via, Santamaría (b22) 2006
Sapankevych, Sankar (b2) 2009; 4
Chen, Wang, Lu, Wang, Cao, Qin (b30) 2018; 79
Parzen (b29) 1962; 33
He (10.1016/j.isatra.2021.08.014_b18) 2010; 33
Sapankevych (10.1016/j.isatra.2021.08.014_b2) 2009; 4
Soares (10.1016/j.isatra.2021.08.014_b3) 2018; 64
Engel (10.1016/j.isatra.2021.08.014_b10) 2004; 52
Zhao (10.1016/j.isatra.2021.08.014_b26) 2017; 65
Han (10.1016/j.isatra.2021.08.014_b31) 2018; 49
Van Vaerenbergh (10.1016/j.isatra.2021.08.014_b23) 2010
Du (10.1016/j.isatra.2021.08.014_b19) 2018; 49
Richard (10.1016/j.isatra.2021.08.014_b11) 2008; 57
Ma (10.1016/j.isatra.2021.08.014_b16) 2017; 58
Parzen (10.1016/j.isatra.2021.08.014_b29) 1962; 33
Van Vaerenbergh (10.1016/j.isatra.2021.08.014_b22) 2006
Chen (10.1016/j.isatra.2021.08.014_b30) 2018; 79
Wu (10.1016/j.isatra.2021.08.014_b20) 2015; 117
Zhao (10.1016/j.isatra.2021.08.014_b17) 2017; 24
Zhao (10.1016/j.isatra.2021.08.014_b25) 2017
Rahimi (10.1016/j.isatra.2021.08.014_b28) 2007
Elaissi (10.1016/j.isatra.2021.08.014_b5) 2013; 52
Tobar (10.1016/j.isatra.2021.08.014_b8) 2013; 25
Erdogmus (10.1016/j.isatra.2021.08.014_b14) 2002
Lu (10.1016/j.isatra.2021.08.014_b27) 2016; 17
Mao (10.1016/j.isatra.2021.08.014_b7) 2017; 83
Li (10.1016/j.isatra.2021.08.014_b15) 2018; 30
Zhang (10.1016/j.isatra.2021.08.014_b1) 2018; 81
Engel (10.1016/j.isatra.2021.08.014_b21) 2004; 52
Liu (10.1016/j.isatra.2021.08.014_b13) 2007; 55
Bloom (10.1016/j.isatra.2021.08.014_b6) 2017; 72
Diniz (10.1016/j.isatra.2021.08.014_b12) 2020
Adankon (10.1016/j.isatra.2021.08.014_b9) 2011; 22
Chandra (10.1016/j.isatra.2021.08.014_b4) 2017; 243
Chen (10.1016/j.isatra.2021.08.014_b24) 2013; 24
References_xml – volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: b29
  article-title: On estimation of a probability density function and mode
  publication-title: Ann Math Stat
– volume: 24
  start-page: 1484
  year: 2013
  end-page: 1491
  ident: b24
  article-title: Quantized kernel recursive least squares algorithm
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 17
  start-page: 1613
  year: 2016
  end-page: 1655
  ident: b27
  article-title: Large scale online kernel learning
  publication-title: J Mach Learn Res
– volume: 52
  start-page: 96
  year: 2013
  end-page: 104
  ident: b5
  article-title: Online prediction model based on the SVD–KPCA method
  publication-title: ISA Trans
– volume: 30
  start-page: 1575
  year: 2018
  end-page: 1587
  ident: b15
  article-title: SDE: A novel clustering framework based on sparsity-density entropy
  publication-title: IEEE Trans Knowl Data Eng
– volume: 49
  start-page: 1160
  year: 2018
  end-page: 1172
  ident: b31
  article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm
  publication-title: IEEE Trans Cybern
– start-page: 9
  year: 2020
  end-page: 60
  ident: b12
  article-title: Fundamentals of adaptive filtering
  publication-title: Adaptive filtering
– volume: 52
  start-page: 2275
  year: 2004
  end-page: 2285
  ident: b10
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans Signal Process
– start-page: 356
  year: 2017
  end-page: 365
  ident: b25
  article-title: Projected kernel recursive least squares algorithm
  publication-title: International conference on neural information processing
– volume: 4
  start-page: 24
  year: 2009
  end-page: 38
  ident: b2
  article-title: Time series prediction using support vector machines: a survey
  publication-title: IEEE Comput Intell Mag
– volume: 49
  start-page: 1440
  year: 2018
  end-page: 1453
  ident: b19
  article-title: Robust graph-based semisupervised learning for noisy labeled data via maximum correntropy criterion
  publication-title: IEEE Trans Cybern
– start-page: 1177
  year: 2007
  end-page: 1184
  ident: b28
  article-title: Random features for large-scale kernel machines
  publication-title: Proceedings of the 20th international conference on neural information processing systems
– volume: 81
  start-page: 105
  year: 2018
  end-page: 120
  ident: b1
  article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model
  publication-title: ISA Trans
– start-page: 789
  year: 2006
  end-page: 792
  ident: b22
  article-title: A sliding-window kernel RLS algorithm and its application to nonlinear channel identification
  publication-title: 2006 IEEE international conference on acoustics speech and signal processing proceedings, Vol. 5
– volume: 57
  start-page: 1058
  year: 2008
  end-page: 1067
  ident: b11
  article-title: Online prediction of time series data with kernels
  publication-title: IEEE Trans Signal Process
– volume: 72
  start-page: 532
  year: 2017
  end-page: 547
  ident: b6
  article-title: Linear latent low dimensional space for online early action recognition and prediction
  publication-title: Pattern Recognit
– volume: 117
  start-page: 11
  year: 2015
  end-page: 16
  ident: b20
  article-title: Kernel recursive maximum correntropy
  publication-title: Signal Process
– volume: 243
  start-page: 21
  year: 2017
  end-page: 34
  ident: b4
  article-title: Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction
  publication-title: Neurocomputing
– volume: 25
  start-page: 265
  year: 2013
  end-page: 277
  ident: b8
  article-title: Multikernel least mean square algorithm
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 1882
  year: 2010
  end-page: 1885
  ident: b23
  article-title: Fixed-budget kernel recursive least-squares
  publication-title: 2010 IEEE international conference on acoustics, speech and signal processing
– volume: 83
  start-page: 450
  year: 2017
  end-page: 473
  ident: b7
  article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
  publication-title: Mech Syst Signal Process
– volume: 24
  start-page: 1832
  year: 2017
  end-page: 1836
  ident: b17
  article-title: Kernel recursive generalized maximum correntropy
  publication-title: IEEE Signal Process Lett
– volume: 55
  start-page: 5286
  year: 2007
  end-page: 5298
  ident: b13
  article-title: Correntropy: Properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans Signal Process
– volume: 52
  start-page: 2275
  year: 2004
  end-page: 2285
  ident: b21
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans Signal Process
– volume: 22
  start-page: 513
  year: 2011
  end-page: 524
  ident: b9
  article-title: Semisupervised learning using Bayesian interpretation: Application to LS-SVM
  publication-title: IEEE Trans Neural Netw
– volume: 65
  start-page: 963
  year: 2017
  end-page: 967
  ident: b26
  article-title: Projected kernel recursive maximum correntropy
  publication-title: IEEE Trans Circuits Syst II
– volume: 58
  start-page: 101
  year: 2017
  end-page: 110
  ident: b16
  article-title: Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction
  publication-title: Eng Appl Artif Intell
– volume: 79
  start-page: 318
  year: 2018
  end-page: 327
  ident: b30
  article-title: Mixture correntropy for robust learning
  publication-title: Pattern Recognit
– year: 2002
  ident: b14
  article-title: Information theoretic learning: Renyi’s entropy and its applications to adaptive system training
– volume: 33
  start-page: 1561
  year: 2010
  end-page: 1576
  ident: b18
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 64
  start-page: 445
  year: 2018
  end-page: 453
  ident: b3
  article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction
  publication-title: Appl Soft Comput
– volume: 17
  start-page: 1613
  issue: 1
  year: 2016
  ident: 10.1016/j.isatra.2021.08.014_b27
  article-title: Large scale online kernel learning
  publication-title: J Mach Learn Res
– start-page: 1177
  year: 2007
  ident: 10.1016/j.isatra.2021.08.014_b28
  article-title: Random features for large-scale kernel machines
– volume: 52
  start-page: 2275
  issue: 8
  year: 2004
  ident: 10.1016/j.isatra.2021.08.014_b10
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2004.830985
– volume: 117
  start-page: 11
  year: 2015
  ident: 10.1016/j.isatra.2021.08.014_b20
  article-title: Kernel recursive maximum correntropy
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.04.024
– volume: 4
  start-page: 24
  issue: 2
  year: 2009
  ident: 10.1016/j.isatra.2021.08.014_b2
  article-title: Time series prediction using support vector machines: a survey
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2009.932254
– volume: 33
  start-page: 1561
  issue: 8
  year: 2010
  ident: 10.1016/j.isatra.2021.08.014_b18
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 243
  start-page: 21
  year: 2017
  ident: 10.1016/j.isatra.2021.08.014_b4
  article-title: Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.065
– volume: 22
  start-page: 513
  issue: 4
  year: 2011
  ident: 10.1016/j.isatra.2021.08.014_b9
  article-title: Semisupervised learning using Bayesian interpretation: Application to LS-SVM
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2105888
– volume: 49
  start-page: 1440
  issue: 4
  year: 2018
  ident: 10.1016/j.isatra.2021.08.014_b19
  article-title: Robust graph-based semisupervised learning for noisy labeled data via maximum correntropy criterion
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2804326
– volume: 49
  start-page: 1160
  issue: 4
  year: 2018
  ident: 10.1016/j.isatra.2021.08.014_b31
  article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2789686
– start-page: 9
  year: 2020
  ident: 10.1016/j.isatra.2021.08.014_b12
  article-title: Fundamentals of adaptive filtering
– volume: 64
  start-page: 445
  year: 2018
  ident: 10.1016/j.isatra.2021.08.014_b3
  article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.12.032
– volume: 72
  start-page: 532
  year: 2017
  ident: 10.1016/j.isatra.2021.08.014_b6
  article-title: Linear latent low dimensional space for online early action recognition and prediction
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.07.003
– start-page: 356
  year: 2017
  ident: 10.1016/j.isatra.2021.08.014_b25
  article-title: Projected kernel recursive least squares algorithm
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 10.1016/j.isatra.2021.08.014_b29
  article-title: On estimation of a probability density function and mode
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704472
– volume: 81
  start-page: 105
  year: 2018
  ident: 10.1016/j.isatra.2021.08.014_b1
  article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.06.004
– volume: 57
  start-page: 1058
  issue: 3
  year: 2008
  ident: 10.1016/j.isatra.2021.08.014_b11
  article-title: Online prediction of time series data with kernels
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2008.2009895
– volume: 52
  start-page: 96
  issue: 1
  year: 2013
  ident: 10.1016/j.isatra.2021.08.014_b5
  article-title: Online prediction model based on the SVD–KPCA method
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2012.09.007
– start-page: 789
  year: 2006
  ident: 10.1016/j.isatra.2021.08.014_b22
  article-title: A sliding-window kernel RLS algorithm and its application to nonlinear channel identification
– volume: 25
  start-page: 265
  issue: 2
  year: 2013
  ident: 10.1016/j.isatra.2021.08.014_b8
  article-title: Multikernel least mean square algorithm
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2272594
– volume: 24
  start-page: 1832
  issue: 12
  year: 2017
  ident: 10.1016/j.isatra.2021.08.014_b17
  article-title: Kernel recursive generalized maximum correntropy
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2017.2761886
– volume: 79
  start-page: 318
  year: 2018
  ident: 10.1016/j.isatra.2021.08.014_b30
  article-title: Mixture correntropy for robust learning
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.02.010
– year: 2002
  ident: 10.1016/j.isatra.2021.08.014_b14
– volume: 83
  start-page: 450
  year: 2017
  ident: 10.1016/j.isatra.2021.08.014_b7
  article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.06.024
– volume: 30
  start-page: 1575
  issue: 8
  year: 2018
  ident: 10.1016/j.isatra.2021.08.014_b15
  article-title: SDE: A novel clustering framework based on sparsity-density entropy
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2792021
– start-page: 1882
  year: 2010
  ident: 10.1016/j.isatra.2021.08.014_b23
  article-title: Fixed-budget kernel recursive least-squares
– volume: 58
  start-page: 101
  year: 2017
  ident: 10.1016/j.isatra.2021.08.014_b16
  article-title: Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.11.010
– volume: 24
  start-page: 1484
  issue: 9
  year: 2013
  ident: 10.1016/j.isatra.2021.08.014_b24
  article-title: Quantized kernel recursive least squares algorithm
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2258936
– volume: 65
  start-page: 963
  issue: 7
  year: 2017
  ident: 10.1016/j.isatra.2021.08.014_b26
  article-title: Projected kernel recursive maximum correntropy
  publication-title: IEEE Trans Circuits Syst II
– volume: 55
  start-page: 5286
  issue: 11
  year: 2007
  ident: 10.1016/j.isatra.2021.08.014_b13
  article-title: Correntropy: Properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2007.896065
– volume: 52
  start-page: 2275
  issue: 8
  year: 2004
  ident: 10.1016/j.isatra.2021.08.014_b21
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2004.830985
SSID ssj0002598
ssib000173020
ssib000305375
ssib017385197
ssib000286908
ssib006542128
ssib006542130
ssib020737742
Score 2.3525121
Snippet In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC)...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 370
SubjectTerms Kernel recursive least-squares
Maximum mixture correntropy criterion
Online prediction
Random Fourier feature
Title Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction
URI https://dx.doi.org/10.1016/j.isatra.2021.08.014
https://cir.nii.ac.jp/crid/1872835442574740480
https://www.proquest.com/docview/2564134349
Volume 126
WOSCitedRecordID wos000858646000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXoxgM8IDZAFNhkJIRAVaTG-XDyWKFODE0FjU7kLXIdZ0tZk5K2U_n33Gs7aVFBGw-8WFXqfDTn9Pr66xxC3oSxq5A5jj-JBBQiciZBHDhZKDLRj5QbSanNJvhoFCVJ_MUKKiy0nQAvy2i9juf_FWo4BmDj1tl_gLu9KByAzwA6lAA7lHcC_lyUWTVDvyRtRpcrLd3Z-67qUqGIv8TxgRtct7ouZqtZb1asdQVZaaWmupr_7Inry6oullczvQrRqGloG_oe_gS1QGmBrJAtqDa7Pf06QM-JxoC8TdeTFSKZQCt5tSHjuQl431QxLdT24APbLFRt4mXEYwe_MM3JH441QZZth0nPmIXshG8zkjDVK5lqVIViRmDV7DP9XS179Dk9uTg7S8fDZPx2_sNBIzGccLeuKh2yz3gQQ6zeH5wOk09t8wz9Pb0_snnKZj-lXvS3e-O_5Sudsih22m-dlIwfk0e2N0EHhgUH5J4qD8nDLY3JQ3Jgo_eCvrMS4--fkMqQhFqSUEsSakhCW5JQSxJqSUK3SEJbklAgCTUkoUgSakhCNyR5Si5OhuMPHx1rveFI3_OXTs6jUKhYyiyDDmrfVZDpcCU8N8cedl8yGQvfz_nEV24YS95nuceDQDIvzN18EnnPyF5Zleo5obnAuWTFJJ8EPhOuyBhTLkO7uxCuqbrEa15wKq0uPdqjXKfNAsRpamBJEZYUXVNdv0uc9qy50WW5pT5vsEttbmlyxhS4d8uZRwA1PBqWwBoUKPSxpfO5j4IMXfK6IUEKoRnn20SpqtUihd4EpIjwPuMXd6jzkjzY_MNekb1lvVJH5L68WRaL-ph0eBIdWy7_Am0Fs9M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Fourier+feature+kernel+recursive+maximum+mixture+correntropy+algorithm+for+online+time+series+prediction&rft.jtitle=ISA+transactions&rft.au=Xu%2C+Xinghan&rft.au=Ren%2C+Weijie&rft.date=2022-07-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=126&rft.spage=370&rft_id=info:doi/10.1016%2Fj.isatra.2021.08.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon