Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction
In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well...
Gespeichert in:
| Veröffentlicht in: | ISA Transactions Jg. 126; S. 370 - 376 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
Elsevier Ltd
01.07.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0019-0578, 1879-2022, 1879-2022 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets.
•A kernel model named RFF-RMMC is proposed for online time series prediction.•A kernel approximation method is applied to increase the calculation speed.•The accuracy of similarity is enhanced by maximum mixture correntropy criterion.•The proposed model can predict the time series with low complexity. |
|---|---|
| AbstractList | In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets.
•A kernel model named RFF-RMMC is proposed for online time series prediction.•A kernel approximation method is applied to increase the calculation speed.•The accuracy of similarity is enhanced by maximum mixture correntropy criterion.•The proposed model can predict the time series with low complexity. In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets.In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets. |
| Author | Xu, Xinghan Ren, Weijie |
| Author_xml | – sequence: 1 givenname: Xinghan surname: Xu fullname: Xu, Xinghan email: xu.xinghan.57u@st.kyoto-u.ac.jp organization: Department of Environmental Engineering, Kyoto University, Kyoto 615-8540, Japan – sequence: 2 givenname: Weijie orcidid: 0000-0002-2711-8813 surname: Ren fullname: Ren, Weijie email: renweijie@hrbeu.edu.cn organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China |
| BackLink | https://cir.nii.ac.jp/crid/1872835442574740480$$DView record in CiNii |
| BookMark | eNqFkcFuFSEUholpE29b38AFCxduZnpgmIFxYWIaa02amDR1TShzUK4zcAWmad9eruPKhW4gId9_Tvj-M3ISYkBCXjNoGbDhct_6bEoyLQfOWlAtMPGC7JiSY1Of-AnZAbCxgV6ql-Qs5z0A8H5UOxLvTJjiQq_jmjwm6tCUNSH9gSngTBPaNWX_iHQxT35ZF7r4p9-AjSlhKCkenqmZv8Xky_eFuphoDLMPSItfkGasUzM9JJy8LT6GC3LqzJzx1Z_7nHy9_nh_ddPcfvn0-erDbWNFJ0rjpBoMjtZO0yA4MOygk2g65riSDCy3oxHCyQeBbBitBO462feWd4Nj7kF15-TtNveQ4s8Vc9GLzxbn2QSMa9a8HwTr6q6xomJDbYo5J3T6kPxi0rNmoI9-9V5vfvXRrwalq98ae_dXzPpijn-spJ__F36zhYP3NXc8a1tcdb0QvJdCChAKKvZ-w7Cqeqz96Gw9Bltt1maKnqL_955fUDqoBA |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104790 crossref_primary_10_1016_j_physa_2024_129914 crossref_primary_10_1016_j_dsp_2025_104984 crossref_primary_10_1016_j_isatra_2024_10_014 crossref_primary_10_1016_j_isatra_2024_12_016 crossref_primary_10_1109_TSIPN_2023_3288304 |
| Cites_doi | 10.1109/TSP.2004.830985 10.1016/j.sigpro.2015.04.024 10.1109/MCI.2009.932254 10.1016/j.neucom.2017.02.065 10.1109/TNN.2011.2105888 10.1109/TCYB.2018.2804326 10.1109/TCYB.2018.2789686 10.1016/j.asoc.2017.12.032 10.1016/j.patcog.2017.07.003 10.1214/aoms/1177704472 10.1016/j.isatra.2018.06.004 10.1109/TSP.2008.2009895 10.1016/j.isatra.2012.09.007 10.1109/TNNLS.2013.2272594 10.1109/LSP.2017.2761886 10.1016/j.patcog.2018.02.010 10.1016/j.ymssp.2016.06.024 10.1109/TKDE.2018.2792021 10.1016/j.engappai.2016.11.010 10.1109/TNNLS.2013.2258936 10.1109/TSP.2007.896065 |
| ContentType | Journal Article |
| Copyright | 2021 ISA Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 ISA – notice: Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | RYH AAYXX CITATION 7X8 |
| DOI | 10.1016/j.isatra.2021.08.014 |
| DatabaseName | CiNii Complete CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 376 |
| ExternalDocumentID | 10_1016_j_isatra_2021_08_014 S0019057821004420 |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP EFKBS RYH ~HD 9DU AAYXX ABWVN ACRPL ADNMO AFJKZ AGQPQ CITATION 7X8 |
| ID | FETCH-LOGICAL-c434t-f786ae9ccdd64201e3037ea31f28710c2c9a44f7b4e169c702f3755c236f1fb83 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858646000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Sun Nov 09 11:38:33 EST 2025 Sat Nov 29 07:30:31 EST 2025 Tue Nov 18 22:36:06 EST 2025 Mon Nov 10 09:18:10 EST 2025 Fri Feb 23 02:40:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Maximum mixture correntropy criterion Random Fourier feature Online prediction Kernel recursive least-squares |
| Language | English Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c434t-f786ae9ccdd64201e3037ea31f28710c2c9a44f7b4e169c702f3755c236f1fb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2711-8813 |
| PQID | 2564134349 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2564134349 crossref_primary_10_1016_j_isatra_2021_08_014 crossref_citationtrail_10_1016_j_isatra_2021_08_014 nii_cinii_1872835442574740480 elsevier_sciencedirect_doi_10_1016_j_isatra_2021_08_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | ISA Transactions |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Richard, Bermudez, Honeine (b11) 2008; 57 Engel, Mannor, Meir (b21) 2004; 52 Zhao, Zhang (b17) 2017; 24 Soares, Costa Jr, Costa, Leite (b3) 2018; 64 Rahimi, Recht (b28) 2007 Han, Zhang, Xu, Qiu, Wang (b31) 2018; 49 Bloom, Argyriou, Makris (b6) 2017; 72 Chen, Zhao, Zhu, Principe (b24) 2013; 24 Adankon, Cheriet, Biem (b9) 2011; 22 Li, Li, Yan, He (b15) 2018; 30 Elaissi, Jaffel, Taouali, Messaoud (b5) 2013; 52 Engel, Mannor, Meir (b10) 2004; 52 Mao, He, Yan, Wang (b7) 2017; 83 Van Vaerenbergh, Santamaría, Liu, Príncipe (b23) 2010 Wu, Shi, Zhang, Ma, Chen, Senior Member (b20) 2015; 117 He, Zheng, Hu (b18) 2010; 33 Ma, Duan, Man, Zhao, Chen (b16) 2017; 58 Zhao, Zhang (b25) 2017 Diniz (b12) 2020 Zhao, Zhang, Wang (b26) 2017; 65 Zhang, Dang, Simoes (b1) 2018; 81 Tobar, Kung, Mandic (b8) 2013; 25 Erdogmus (b14) 2002 Du, Xinyao, Wang, Zhang, Tao (b19) 2018; 49 Liu, Pokharel, Príncipe (b13) 2007; 55 Chandra, Ong, Goh (b4) 2017; 243 Lu, Hoi, Wang, Zhao, Liu (b27) 2016; 17 Van Vaerenbergh, Via, Santamaría (b22) 2006 Sapankevych, Sankar (b2) 2009; 4 Chen, Wang, Lu, Wang, Cao, Qin (b30) 2018; 79 Parzen (b29) 1962; 33 He (10.1016/j.isatra.2021.08.014_b18) 2010; 33 Sapankevych (10.1016/j.isatra.2021.08.014_b2) 2009; 4 Soares (10.1016/j.isatra.2021.08.014_b3) 2018; 64 Engel (10.1016/j.isatra.2021.08.014_b10) 2004; 52 Zhao (10.1016/j.isatra.2021.08.014_b26) 2017; 65 Han (10.1016/j.isatra.2021.08.014_b31) 2018; 49 Van Vaerenbergh (10.1016/j.isatra.2021.08.014_b23) 2010 Du (10.1016/j.isatra.2021.08.014_b19) 2018; 49 Richard (10.1016/j.isatra.2021.08.014_b11) 2008; 57 Ma (10.1016/j.isatra.2021.08.014_b16) 2017; 58 Parzen (10.1016/j.isatra.2021.08.014_b29) 1962; 33 Van Vaerenbergh (10.1016/j.isatra.2021.08.014_b22) 2006 Chen (10.1016/j.isatra.2021.08.014_b30) 2018; 79 Wu (10.1016/j.isatra.2021.08.014_b20) 2015; 117 Zhao (10.1016/j.isatra.2021.08.014_b17) 2017; 24 Zhao (10.1016/j.isatra.2021.08.014_b25) 2017 Rahimi (10.1016/j.isatra.2021.08.014_b28) 2007 Elaissi (10.1016/j.isatra.2021.08.014_b5) 2013; 52 Tobar (10.1016/j.isatra.2021.08.014_b8) 2013; 25 Erdogmus (10.1016/j.isatra.2021.08.014_b14) 2002 Lu (10.1016/j.isatra.2021.08.014_b27) 2016; 17 Mao (10.1016/j.isatra.2021.08.014_b7) 2017; 83 Li (10.1016/j.isatra.2021.08.014_b15) 2018; 30 Zhang (10.1016/j.isatra.2021.08.014_b1) 2018; 81 Engel (10.1016/j.isatra.2021.08.014_b21) 2004; 52 Liu (10.1016/j.isatra.2021.08.014_b13) 2007; 55 Bloom (10.1016/j.isatra.2021.08.014_b6) 2017; 72 Diniz (10.1016/j.isatra.2021.08.014_b12) 2020 Adankon (10.1016/j.isatra.2021.08.014_b9) 2011; 22 Chandra (10.1016/j.isatra.2021.08.014_b4) 2017; 243 Chen (10.1016/j.isatra.2021.08.014_b24) 2013; 24 |
| References_xml | – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: b29 article-title: On estimation of a probability density function and mode publication-title: Ann Math Stat – volume: 24 start-page: 1484 year: 2013 end-page: 1491 ident: b24 article-title: Quantized kernel recursive least squares algorithm publication-title: IEEE Trans Neural Netw Learn Syst – volume: 17 start-page: 1613 year: 2016 end-page: 1655 ident: b27 article-title: Large scale online kernel learning publication-title: J Mach Learn Res – volume: 52 start-page: 96 year: 2013 end-page: 104 ident: b5 article-title: Online prediction model based on the SVD–KPCA method publication-title: ISA Trans – volume: 30 start-page: 1575 year: 2018 end-page: 1587 ident: b15 article-title: SDE: A novel clustering framework based on sparsity-density entropy publication-title: IEEE Trans Knowl Data Eng – volume: 49 start-page: 1160 year: 2018 end-page: 1172 ident: b31 article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm publication-title: IEEE Trans Cybern – start-page: 9 year: 2020 end-page: 60 ident: b12 article-title: Fundamentals of adaptive filtering publication-title: Adaptive filtering – volume: 52 start-page: 2275 year: 2004 end-page: 2285 ident: b10 article-title: The kernel recursive least-squares algorithm publication-title: IEEE Trans Signal Process – start-page: 356 year: 2017 end-page: 365 ident: b25 article-title: Projected kernel recursive least squares algorithm publication-title: International conference on neural information processing – volume: 4 start-page: 24 year: 2009 end-page: 38 ident: b2 article-title: Time series prediction using support vector machines: a survey publication-title: IEEE Comput Intell Mag – volume: 49 start-page: 1440 year: 2018 end-page: 1453 ident: b19 article-title: Robust graph-based semisupervised learning for noisy labeled data via maximum correntropy criterion publication-title: IEEE Trans Cybern – start-page: 1177 year: 2007 end-page: 1184 ident: b28 article-title: Random features for large-scale kernel machines publication-title: Proceedings of the 20th international conference on neural information processing systems – volume: 81 start-page: 105 year: 2018 end-page: 120 ident: b1 article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model publication-title: ISA Trans – start-page: 789 year: 2006 end-page: 792 ident: b22 article-title: A sliding-window kernel RLS algorithm and its application to nonlinear channel identification publication-title: 2006 IEEE international conference on acoustics speech and signal processing proceedings, Vol. 5 – volume: 57 start-page: 1058 year: 2008 end-page: 1067 ident: b11 article-title: Online prediction of time series data with kernels publication-title: IEEE Trans Signal Process – volume: 72 start-page: 532 year: 2017 end-page: 547 ident: b6 article-title: Linear latent low dimensional space for online early action recognition and prediction publication-title: Pattern Recognit – volume: 117 start-page: 11 year: 2015 end-page: 16 ident: b20 article-title: Kernel recursive maximum correntropy publication-title: Signal Process – volume: 243 start-page: 21 year: 2017 end-page: 34 ident: b4 article-title: Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction publication-title: Neurocomputing – volume: 25 start-page: 265 year: 2013 end-page: 277 ident: b8 article-title: Multikernel least mean square algorithm publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 1882 year: 2010 end-page: 1885 ident: b23 article-title: Fixed-budget kernel recursive least-squares publication-title: 2010 IEEE international conference on acoustics, speech and signal processing – volume: 83 start-page: 450 year: 2017 end-page: 473 ident: b7 article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine publication-title: Mech Syst Signal Process – volume: 24 start-page: 1832 year: 2017 end-page: 1836 ident: b17 article-title: Kernel recursive generalized maximum correntropy publication-title: IEEE Signal Process Lett – volume: 55 start-page: 5286 year: 2007 end-page: 5298 ident: b13 article-title: Correntropy: Properties and applications in non-Gaussian signal processing publication-title: IEEE Trans Signal Process – volume: 52 start-page: 2275 year: 2004 end-page: 2285 ident: b21 article-title: The kernel recursive least-squares algorithm publication-title: IEEE Trans Signal Process – volume: 22 start-page: 513 year: 2011 end-page: 524 ident: b9 article-title: Semisupervised learning using Bayesian interpretation: Application to LS-SVM publication-title: IEEE Trans Neural Netw – volume: 65 start-page: 963 year: 2017 end-page: 967 ident: b26 article-title: Projected kernel recursive maximum correntropy publication-title: IEEE Trans Circuits Syst II – volume: 58 start-page: 101 year: 2017 end-page: 110 ident: b16 article-title: Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction publication-title: Eng Appl Artif Intell – volume: 79 start-page: 318 year: 2018 end-page: 327 ident: b30 article-title: Mixture correntropy for robust learning publication-title: Pattern Recognit – year: 2002 ident: b14 article-title: Information theoretic learning: Renyi’s entropy and its applications to adaptive system training – volume: 33 start-page: 1561 year: 2010 end-page: 1576 ident: b18 article-title: Maximum correntropy criterion for robust face recognition publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 64 start-page: 445 year: 2018 end-page: 453 ident: b3 article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction publication-title: Appl Soft Comput – volume: 17 start-page: 1613 issue: 1 year: 2016 ident: 10.1016/j.isatra.2021.08.014_b27 article-title: Large scale online kernel learning publication-title: J Mach Learn Res – start-page: 1177 year: 2007 ident: 10.1016/j.isatra.2021.08.014_b28 article-title: Random features for large-scale kernel machines – volume: 52 start-page: 2275 issue: 8 year: 2004 ident: 10.1016/j.isatra.2021.08.014_b10 article-title: The kernel recursive least-squares algorithm publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2004.830985 – volume: 117 start-page: 11 year: 2015 ident: 10.1016/j.isatra.2021.08.014_b20 article-title: Kernel recursive maximum correntropy publication-title: Signal Process doi: 10.1016/j.sigpro.2015.04.024 – volume: 4 start-page: 24 issue: 2 year: 2009 ident: 10.1016/j.isatra.2021.08.014_b2 article-title: Time series prediction using support vector machines: a survey publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2009.932254 – volume: 33 start-page: 1561 issue: 8 year: 2010 ident: 10.1016/j.isatra.2021.08.014_b18 article-title: Maximum correntropy criterion for robust face recognition publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 243 start-page: 21 year: 2017 ident: 10.1016/j.isatra.2021.08.014_b4 article-title: Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.065 – volume: 22 start-page: 513 issue: 4 year: 2011 ident: 10.1016/j.isatra.2021.08.014_b9 article-title: Semisupervised learning using Bayesian interpretation: Application to LS-SVM publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2105888 – volume: 49 start-page: 1440 issue: 4 year: 2018 ident: 10.1016/j.isatra.2021.08.014_b19 article-title: Robust graph-based semisupervised learning for noisy labeled data via maximum correntropy criterion publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2804326 – volume: 49 start-page: 1160 issue: 4 year: 2018 ident: 10.1016/j.isatra.2021.08.014_b31 article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2789686 – start-page: 9 year: 2020 ident: 10.1016/j.isatra.2021.08.014_b12 article-title: Fundamentals of adaptive filtering – volume: 64 start-page: 445 year: 2018 ident: 10.1016/j.isatra.2021.08.014_b3 article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.12.032 – volume: 72 start-page: 532 year: 2017 ident: 10.1016/j.isatra.2021.08.014_b6 article-title: Linear latent low dimensional space for online early action recognition and prediction publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.07.003 – start-page: 356 year: 2017 ident: 10.1016/j.isatra.2021.08.014_b25 article-title: Projected kernel recursive least squares algorithm – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 10.1016/j.isatra.2021.08.014_b29 article-title: On estimation of a probability density function and mode publication-title: Ann Math Stat doi: 10.1214/aoms/1177704472 – volume: 81 start-page: 105 year: 2018 ident: 10.1016/j.isatra.2021.08.014_b1 article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model publication-title: ISA Trans doi: 10.1016/j.isatra.2018.06.004 – volume: 57 start-page: 1058 issue: 3 year: 2008 ident: 10.1016/j.isatra.2021.08.014_b11 article-title: Online prediction of time series data with kernels publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2008.2009895 – volume: 52 start-page: 96 issue: 1 year: 2013 ident: 10.1016/j.isatra.2021.08.014_b5 article-title: Online prediction model based on the SVD–KPCA method publication-title: ISA Trans doi: 10.1016/j.isatra.2012.09.007 – start-page: 789 year: 2006 ident: 10.1016/j.isatra.2021.08.014_b22 article-title: A sliding-window kernel RLS algorithm and its application to nonlinear channel identification – volume: 25 start-page: 265 issue: 2 year: 2013 ident: 10.1016/j.isatra.2021.08.014_b8 article-title: Multikernel least mean square algorithm publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2272594 – volume: 24 start-page: 1832 issue: 12 year: 2017 ident: 10.1016/j.isatra.2021.08.014_b17 article-title: Kernel recursive generalized maximum correntropy publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2761886 – volume: 79 start-page: 318 year: 2018 ident: 10.1016/j.isatra.2021.08.014_b30 article-title: Mixture correntropy for robust learning publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.02.010 – year: 2002 ident: 10.1016/j.isatra.2021.08.014_b14 – volume: 83 start-page: 450 year: 2017 ident: 10.1016/j.isatra.2021.08.014_b7 article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.06.024 – volume: 30 start-page: 1575 issue: 8 year: 2018 ident: 10.1016/j.isatra.2021.08.014_b15 article-title: SDE: A novel clustering framework based on sparsity-density entropy publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2792021 – start-page: 1882 year: 2010 ident: 10.1016/j.isatra.2021.08.014_b23 article-title: Fixed-budget kernel recursive least-squares – volume: 58 start-page: 101 year: 2017 ident: 10.1016/j.isatra.2021.08.014_b16 article-title: Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.11.010 – volume: 24 start-page: 1484 issue: 9 year: 2013 ident: 10.1016/j.isatra.2021.08.014_b24 article-title: Quantized kernel recursive least squares algorithm publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2258936 – volume: 65 start-page: 963 issue: 7 year: 2017 ident: 10.1016/j.isatra.2021.08.014_b26 article-title: Projected kernel recursive maximum correntropy publication-title: IEEE Trans Circuits Syst II – volume: 55 start-page: 5286 issue: 11 year: 2007 ident: 10.1016/j.isatra.2021.08.014_b13 article-title: Correntropy: Properties and applications in non-Gaussian signal processing publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2007.896065 – volume: 52 start-page: 2275 issue: 8 year: 2004 ident: 10.1016/j.isatra.2021.08.014_b21 article-title: The kernel recursive least-squares algorithm publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2004.830985 |
| SSID | ssj0002598 ssib000173020 ssib000305375 ssib017385197 ssib000286908 ssib006542128 ssib006542130 ssib020737742 |
| Score | 2.3525121 |
| Snippet | In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC)... |
| SourceID | proquest crossref nii elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 370 |
| SubjectTerms | Kernel recursive least-squares Maximum mixture correntropy criterion Online prediction Random Fourier feature |
| Title | Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction |
| URI | https://dx.doi.org/10.1016/j.isatra.2021.08.014 https://cir.nii.ac.jp/crid/1872835442574740480 https://www.proquest.com/docview/2564134349 |
| Volume | 126 |
| WOSCitedRecordID | wos000858646000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXoxgM8IDZAFNhkJIRAVaTG-XDyWKFODE0FjU7kLXIdZ0tZk5K2U_n33Gs7aVFBGw-8WFXqfDTn9Pr66xxC3oSxq5A5jj-JBBQiciZBHDhZKDLRj5QbSanNJvhoFCVJ_MUKKiy0nQAvy2i9juf_FWo4BmDj1tl_gLu9KByAzwA6lAA7lHcC_lyUWTVDvyRtRpcrLd3Z-67qUqGIv8TxgRtct7ouZqtZb1asdQVZaaWmupr_7Inry6oullczvQrRqGloG_oe_gS1QGmBrJAtqDa7Pf06QM-JxoC8TdeTFSKZQCt5tSHjuQl431QxLdT24APbLFRt4mXEYwe_MM3JH441QZZth0nPmIXshG8zkjDVK5lqVIViRmDV7DP9XS179Dk9uTg7S8fDZPx2_sNBIzGccLeuKh2yz3gQQ6zeH5wOk09t8wz9Pb0_snnKZj-lXvS3e-O_5Sudsih22m-dlIwfk0e2N0EHhgUH5J4qD8nDLY3JQ3Jgo_eCvrMS4--fkMqQhFqSUEsSakhCW5JQSxJqSUK3SEJbklAgCTUkoUgSakhCNyR5Si5OhuMPHx1rveFI3_OXTs6jUKhYyiyDDmrfVZDpcCU8N8cedl8yGQvfz_nEV24YS95nuceDQDIvzN18EnnPyF5Zleo5obnAuWTFJJ8EPhOuyBhTLkO7uxCuqbrEa15wKq0uPdqjXKfNAsRpamBJEZYUXVNdv0uc9qy50WW5pT5vsEttbmlyxhS4d8uZRwA1PBqWwBoUKPSxpfO5j4IMXfK6IUEKoRnn20SpqtUihd4EpIjwPuMXd6jzkjzY_MNekb1lvVJH5L68WRaL-ph0eBIdWy7_Am0Fs9M |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Fourier+feature+kernel+recursive+maximum+mixture+correntropy+algorithm+for+online+time+series+prediction&rft.jtitle=ISA+transactions&rft.au=Xu%2C+Xinghan&rft.au=Ren%2C+Weijie&rft.date=2022-07-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=126&rft.spage=370&rft_id=info:doi/10.1016%2Fj.isatra.2021.08.014&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |