A data-driven approach for optimal operational and financial commodity hedging
Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision rather than prediction quality have been developed to overcome price model misspecification. Yet, in the context of data-driven commodity purchasi...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 316; H. 1; S. 341 - 360 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.07.2024
|
| Schlagworte: | |
| ISSN: | 0377-2217 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision rather than prediction quality have been developed to overcome price model misspecification. Yet, in the context of data-driven commodity purchasing, the existing literature either considers anticipatory inventory management or forward contracting where the decision frequency corresponds to the maturity of the traded contracts. We prove the optimality of a novel procurement policy combining operational and financial instruments with decision granularities independent of the derivative’s maturity. A mixed-integer programming model is developed to train policy parameters efficiently. We study the implications of policy complexity for learning-stability and out-of-sample generalization. Finally, we backtest the data-driven policy on real market data of four major commodities (i.e., copper, nickel, corn, and soybean) over ten years and show that the average savings potential of a combined financial and operational procurement policy compared to single-instrument strategies is up to 6.38% for corn where warehousing can efficiently mitigate price seasonality. The approach hedges corn and soybean commodities more efficiently through inventories while copper and nickel can be hedged efficiently by leveraging available financial instruments. Best model results are identified for a decision granularity with fewer parameters as high-frequent decisions deteriorate learning stability and model generalization.
•Model generalization for purchasers commanding operational and financial instruments.•Quantification of the value of both decision modes for commodity-purchasing firms.•Demonstration of the general setting’s implications for the optimal policy structure.•Independent demand and decision period granularities (e.g., daily, weekly, and monthly). |
|---|---|
| AbstractList | Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision rather than prediction quality have been developed to overcome price model misspecification. Yet, in the context of data-driven commodity purchasing, the existing literature either considers anticipatory inventory management or forward contracting where the decision frequency corresponds to the maturity of the traded contracts. We prove the optimality of a novel procurement policy combining operational and financial instruments with decision granularities independent of the derivative’s maturity. A mixed-integer programming model is developed to train policy parameters efficiently. We study the implications of policy complexity for learning-stability and out-of-sample generalization. Finally, we backtest the data-driven policy on real market data of four major commodities (i.e., copper, nickel, corn, and soybean) over ten years and show that the average savings potential of a combined financial and operational procurement policy compared to single-instrument strategies is up to 6.38% for corn where warehousing can efficiently mitigate price seasonality. The approach hedges corn and soybean commodities more efficiently through inventories while copper and nickel can be hedged efficiently by leveraging available financial instruments. Best model results are identified for a decision granularity with fewer parameters as high-frequent decisions deteriorate learning stability and model generalization.
•Model generalization for purchasers commanding operational and financial instruments.•Quantification of the value of both decision modes for commodity-purchasing firms.•Demonstration of the general setting’s implications for the optimal policy structure.•Independent demand and decision period granularities (e.g., daily, weekly, and monthly). |
| Author | Mandl, Christian Rettinger, Moritz Minner, Stefan |
| Author_xml | – sequence: 1 givenname: Moritz orcidid: 0000-0001-8880-6946 surname: Rettinger fullname: Rettinger, Moritz email: moritz.rettinger@tum.de organization: Logistics & Supply Chain Management, TUM School of Management, Technical University of Munich, Germany – sequence: 2 givenname: Christian surname: Mandl fullname: Mandl, Christian email: christian.mandl@th-deg.de organization: School of Management, Deggendorf Institute of Technology, Germany – sequence: 3 givenname: Stefan orcidid: 0000-0001-6127-8223 surname: Minner fullname: Minner, Stefan email: stefan.minner@tum.de organization: Logistics & Supply Chain Management, TUM School of Management, Technical University of Munich, Germany |
| BookMark | eNp9kMtOwzAQRb0oEm3hB1jlBxLGdhIHiU1V8ZIq2MDacuxx66i1I8eq1L_HBVYsupqHdEZzz4LMfPBIyB2FigJt74cKhxArBqyugFbA2hmZAxeiZIyKa7KYpgEAaEObOXlfFUYlVZrojugLNY4xKL0rbIhFGJM7qH2uGFVywedeeVNY55XXLk86HA7BuHQqdmi2zm9vyJVV-wlv_-qSfD0_fa5fy83Hy9t6tSl1zetUGsGEFcbYFqDXTDDddA8tN3llBAfFtbWUKsSmR9Hxrqmh71rRGuyaXgDlS9L93tUxTFNEK7VLPz-mqNxeUpBnF3KQZxfy7EICldlFRtk_dIw5Zjxdhh5_Icyhjg6jnLRDr9G4iDpJE9wl_BsdHn3Z |
| CitedBy_id | crossref_primary_10_1080_01605682_2025_2491513 crossref_primary_10_1016_j_seps_2024_102023 crossref_primary_10_1016_j_ejor_2025_09_025 crossref_primary_10_1080_00207543_2024_2441449 |
| Cites_doi | 10.1080/00207543.2022.2051766 10.3982/ECTA5771 10.1111/j.1540-6261.1997.tb02721.x 10.1007/s10100-017-0475-x 10.1287/mnsc.1110.1430 10.1287/ijoo.2022.0086 10.1016/j.resourpol.2015.03.004 10.1287/mnsc.1090.1049 10.1287/mnsc.2020.3922 10.1287/opre.1100.0862 10.1287/mnsc.1050.0361 10.1016/j.compchemeng.2019.03.034 10.1287/opre.19.6.1434 10.2307/1913583 10.1287/mnsc.2018.3253 10.1016/j.ejor.2012.08.025 10.1007/s10287-018-0338-5 10.1198/016214501753168398 10.1111/poms.13748 10.1088/1742-5468/ac3a74 10.1057/jors.1969.29 10.1287/opre.2015.1407 10.1287/mnsc.2014.2136 10.1287/mnsc.2014.2028 10.1109/72.788640 10.1038/s41598-020-78914-x 10.2307/2330757 10.1287/mnsc.2018.3035 10.1016/j.resourpol.2012.06.014 10.1111/poms.12723 10.1093/rfs/hhm075 10.1287/opre.1090.0768 10.1287/msom.2020.0890 10.1287/opre.2018.1757 10.1111/poms.13683 10.1007/s10115-021-01605-0 10.1287/mnsc.46.7.893.12034 10.1080/21573727.2011.632096 10.1287/mnsc.2017.3008 10.1111/poms.13719 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ejor.2024.01.026 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EndPage | 360 |
| ExternalDocumentID | 10_1016_j_ejor_2024_01_026 S0377221724000456 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEUPX AFFNX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ R2- VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c434t-d727f7ddf600bc272c58963d7ddd730a3cff11aee5be7838540b8676de85b7013 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 05:34:56 EST 2025 Tue Nov 18 21:51:09 EST 2025 Sat Feb 08 15:52:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Commodity procurement Decision analysis Model generalization Data-driven optimization |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c434t-d727f7ddf600bc272c58963d7ddd730a3cff11aee5be7838540b8676de85b7013 |
| ORCID | 0000-0001-8880-6946 0000-0001-6127-8223 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ejor.2024.01.026 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ejor_2024_01_026 crossref_primary_10_1016_j_ejor_2024_01_026 elsevier_sciencedirect_doi_10_1016_j_ejor_2024_01_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Curtis, Scheinberg (b10) 2017 Bertsimas, Kallus (b3) 2020; 66 CME Group (b7) 2020 Secomandi (b41) 2010; 56 Smith, Stulz (b43) 1985; 20 Busch, Crönert, Minner, Rettinger, Sel (b5) 2022; 5 Xing, Ma, Zhao, Liu (b48) 2022; 31 Hastie, Tibshirani, Friedman (b22) 2009 Zhang, Chan, Xu (b49) 2023; 61 Garvin, Ford (b13) 2012; 2 CME Group (b6) 2019 Kalymon (b28) 1971; 19 The London Metal Exchange (b44) 2020 Wang, Wu, Yang (b47) 2015; 61 Vapnik (b45) 1998 Secomandi (b42) 2015; 63 Sánchez Lasheras, de Cos Juez, Suárez Sánchez, Krzemień, Riesgo Fernández (b38) 2015; 45 Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever (b35) 2021; 2021 Goel, Tanrisever (b19) 2017; 26 Schwartz (b39) 1997; 52 Demiguel, Garlappi, Uppal (b11) 2009; 22 Geman, Nguyen (b14) 2005; 51 Inderfurth, Kelle, Kleber (b27) 2018; 26 Nadarajah, Margot, Secomandi (b34) 2015; 61 Bousquet, Elisseeff (b4) 2002; 2 Inderfurth, Kelle, Kleber (b26) 2013; 225 Vapnik (b46) 1999; 10 Hay, Holt (b23) 1975; 43 Hu, Chu, Pei, Liu, Bian (b25) 2021; 63 Cortazar, Millard, Ortega, Schwartz (b9) 2019; 65 Goel, Gutierrez (b18) 2011; 57 Mandl, Minner (b31) 2023; 25 Mandl, Nadarajah, Minner, Gavirneni (b32) 2022; 31 Gijsbrechts, Boute, Disney, Van Mieghem (b17) 2022 Geman, Smith (b15) 2013; 38 Elmachtoub, Grigas (b12) 2022; 68 Mohri, Rostamizadeh, Talwalkar (b33) 2018 Coradi, Maldaner, Lutz, da Silva Daí, Teodoro (b8) 2020; 10 Pirrong (b37) 2011 Hansen, Yu (b21) 2001; 96 Ning, You (b36) 2019; 125 Schwartz, Smith (b40) 2000; 46 Hansen, Lunde, Nason (b20) 2011; 79 Heath (b24) 2019; 65 Ban, Rudin (b1) 2019; 67 Georghiou, Kuhn, Wiesemann (b16) 2019; 16 Lai, Margot, Secomandi (b30) 2010; 58 Berling, Martínez-de Albéniz (b2) 2011; 59 Kingsman (b29) 1969; 20 Schwartz (10.1016/j.ejor.2024.01.026_b39) 1997; 52 Goel (10.1016/j.ejor.2024.01.026_b19) 2017; 26 Inderfurth (10.1016/j.ejor.2024.01.026_b26) 2013; 225 The London Metal Exchange (10.1016/j.ejor.2024.01.026_b44) 2020 Lai (10.1016/j.ejor.2024.01.026_b30) 2010; 58 Vapnik (10.1016/j.ejor.2024.01.026_b45) 1998 Ban (10.1016/j.ejor.2024.01.026_b1) 2019; 67 Geman (10.1016/j.ejor.2024.01.026_b14) 2005; 51 Pirrong (10.1016/j.ejor.2024.01.026_b37) 2011 Elmachtoub (10.1016/j.ejor.2024.01.026_b12) 2022; 68 Curtis (10.1016/j.ejor.2024.01.026_b10) 2017 Busch (10.1016/j.ejor.2024.01.026_b5) 2022; 5 Zhang (10.1016/j.ejor.2024.01.026_b49) 2023; 61 Gijsbrechts (10.1016/j.ejor.2024.01.026_b17) 2022 Secomandi (10.1016/j.ejor.2024.01.026_b41) 2010; 56 Ning (10.1016/j.ejor.2024.01.026_b36) 2019; 125 Coradi (10.1016/j.ejor.2024.01.026_b8) 2020; 10 Nakkiran (10.1016/j.ejor.2024.01.026_b35) 2021; 2021 Geman (10.1016/j.ejor.2024.01.026_b15) 2013; 38 Hay (10.1016/j.ejor.2024.01.026_b23) 1975; 43 Mandl (10.1016/j.ejor.2024.01.026_b32) 2022; 31 Georghiou (10.1016/j.ejor.2024.01.026_b16) 2019; 16 Wang (10.1016/j.ejor.2024.01.026_b47) 2015; 61 Garvin (10.1016/j.ejor.2024.01.026_b13) 2012; 2 Inderfurth (10.1016/j.ejor.2024.01.026_b27) 2018; 26 Goel (10.1016/j.ejor.2024.01.026_b18) 2011; 57 CME Group (10.1016/j.ejor.2024.01.026_b7) 2020 Schwartz (10.1016/j.ejor.2024.01.026_b40) 2000; 46 Nadarajah (10.1016/j.ejor.2024.01.026_b34) 2015; 61 Bousquet (10.1016/j.ejor.2024.01.026_b4) 2002; 2 Mohri (10.1016/j.ejor.2024.01.026_b33) 2018 Demiguel (10.1016/j.ejor.2024.01.026_b11) 2009; 22 Secomandi (10.1016/j.ejor.2024.01.026_b42) 2015; 63 Kingsman (10.1016/j.ejor.2024.01.026_b29) 1969; 20 CME Group (10.1016/j.ejor.2024.01.026_b6) 2019 Sánchez Lasheras (10.1016/j.ejor.2024.01.026_b38) 2015; 45 Heath (10.1016/j.ejor.2024.01.026_b24) 2019; 65 Kalymon (10.1016/j.ejor.2024.01.026_b28) 1971; 19 Bertsimas (10.1016/j.ejor.2024.01.026_b3) 2020; 66 Smith (10.1016/j.ejor.2024.01.026_b43) 1985; 20 Xing (10.1016/j.ejor.2024.01.026_b48) 2022; 31 Cortazar (10.1016/j.ejor.2024.01.026_b9) 2019; 65 Mandl (10.1016/j.ejor.2024.01.026_b31) 2023; 25 Vapnik (10.1016/j.ejor.2024.01.026_b46) 1999; 10 Hansen (10.1016/j.ejor.2024.01.026_b21) 2001; 96 Hu (10.1016/j.ejor.2024.01.026_b25) 2021; 63 Berling (10.1016/j.ejor.2024.01.026_b2) 2011; 59 Hansen (10.1016/j.ejor.2024.01.026_b20) 2011; 79 Hastie (10.1016/j.ejor.2024.01.026_b22) 2009 |
| References_xml | – volume: 66 start-page: 1025 year: 2020 end-page: 1044 ident: b3 article-title: From predictive to prescriptive analytics publication-title: Management Science – volume: 45 start-page: 37 year: 2015 end-page: 43 ident: b38 article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models publication-title: Resources Policy – year: 2022 ident: b17 article-title: Volume flexibility at responsive suppliers in reshoring decisions: Analysis of a dual sourcing inventory model publication-title: Production and Operations Management – volume: 57 start-page: 2228 year: 2011 end-page: 2244 ident: b18 article-title: Multiechelon procurement and distribution policies for traded commodities publication-title: Management Science – volume: 26 start-page: 1924 year: 2017 end-page: 1945 ident: b19 article-title: Financial hedging and optimal procurement policies under correlated price and demand publication-title: Production and Operations Management – volume: 5 start-page: 273 year: 2022 end-page: 294 ident: b5 article-title: Deep learning for commodity procurement: non-linear data-driven optimization of hedging decisions publication-title: INFORMS Journal on Optimization – volume: 38 start-page: 18 year: 2013 end-page: 28 ident: b15 article-title: Theory of storage, inventory and volatility in the LME base metals publication-title: Resources Policy – volume: 65 start-page: 4141 year: 2019 end-page: 4155 ident: b9 article-title: Commodity price forecasts, futures prices, and pricing models publication-title: Management Science – volume: 43 start-page: 231 year: 1975 end-page: 259 ident: b23 article-title: A general solution for linear decision rules: An optimal dynamic strategy applicable under uncertainty publication-title: Econometrica – volume: 10 start-page: 988 year: 1999 end-page: 999 ident: b46 article-title: An overview of statistical learning theory publication-title: IEEE Transactions on Neural Networks – volume: 61 start-page: 2870 year: 2015 end-page: 2889 ident: b47 article-title: Hedging with futures: does anything beat the naïve hedging strategy? publication-title: Management Science – volume: 125 start-page: 434 year: 2019 end-page: 448 ident: b36 article-title: Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming publication-title: Computers & Chemical Engineering – volume: 225 start-page: 298 year: 2013 end-page: 309 ident: b26 article-title: Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination publication-title: European Journal of Operational Research – volume: 59 start-page: 109 year: 2011 end-page: 124 ident: b2 article-title: Optimal inventory policies when purchase price and demand are stochastic publication-title: Operations Research – year: 2011 ident: b37 article-title: Commodity price dynamics: a structural approach – volume: 2 start-page: 97 year: 2012 end-page: 108 ident: b13 article-title: Real options in infrastructure projects: theory, practice and prospects publication-title: Engineering Project Organization Journal – volume: 26 start-page: 93 year: 2018 end-page: 119 ident: b27 article-title: Inventory control in dual sourcing commodity procurement with price correlation publication-title: Central European Journal of Operations Research – volume: 10 year: 2020 ident: b8 article-title: Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales publication-title: Scientific Reports – year: 2020 ident: b44 article-title: Warehousing charges – volume: 20 start-page: 59 year: 1969 end-page: 79 ident: b29 article-title: Commodity purchasing publication-title: Journal of the Operational Research Society – year: 2018 ident: b33 article-title: Foundations of machine learning – volume: 67 start-page: 90 year: 2019 end-page: 108 ident: b1 article-title: The big data newsvendor: practical insights from machine learning publication-title: Operations Research – year: 2020 ident: b7 article-title: Copper – A leading indicator for growth – volume: 19 start-page: 1434 year: 1971 end-page: 1458 ident: b28 article-title: Stochastic prices in a single-item inventory purchasing model publication-title: Operations Research – volume: 79 start-page: 453 year: 2011 end-page: 497 ident: b20 article-title: The model confidence set publication-title: Econometrica – volume: 46 start-page: 893 year: 2000 end-page: 911 ident: b40 article-title: Short-term variations and long-term dynamics in commodity prices publication-title: Management Science – year: 1998 ident: b45 article-title: Statistical learning theory – volume: 52 start-page: 923 year: 1997 end-page: 973 ident: b39 article-title: The stochastic behavior of commodity prices: implications for valuation and hedging publication-title: The Journal of Finance – volume: 96 start-page: 746 year: 2001 end-page: 774 ident: b21 article-title: Model selection and the principle of minimum description length publication-title: Journal of the American Statistical Association – volume: 51 start-page: 1076 year: 2005 end-page: 1091 ident: b14 article-title: Soybean inventory and forward curve dynamics publication-title: Management Science – volume: 16 start-page: 545 year: 2019 end-page: 576 ident: b16 article-title: The decision rule approach to optimization under uncertainty: methodology and applications publication-title: Computational Management Science – year: 2019 ident: b6 article-title: Premium charge for corn, mini-sized corn, soybeans, and mini- sized soybean futures contracts – volume: 61 start-page: 4265 year: 2023 end-page: 4278 ident: b49 article-title: Data-driven analysis on optimal purchasing decisions in combined procurement publication-title: International Journal of Production Research – volume: 58 start-page: 564 year: 2010 end-page: 582 ident: b30 article-title: An approximate dynamic programming approach to benchmark practice-based heuristics for natural gas storage valuation publication-title: Operations Research – volume: 22 start-page: 1915 year: 2009 end-page: 1953 ident: b11 article-title: Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? publication-title: The Review of Financial Studies – volume: 61 start-page: 3054 year: 2015 end-page: 3076 ident: b34 article-title: Relaxations of approximate linear programs for the real option management of commodity storage publication-title: Management Science – volume: 68 start-page: 9 year: 2022 end-page: 26 ident: b12 article-title: Smart “predict, then optimize” publication-title: Management Science – volume: 56 start-page: 449 year: 2010 end-page: 467 ident: b41 article-title: Optimal commodity trading with a capacitated storage asset publication-title: Management Science – volume: 31 start-page: 2438 year: 2022 end-page: 2456 ident: b32 article-title: Data-driven storage operations: cross-commodity backtest and structured policies publication-title: Production and Operations Management – start-page: 89 year: 2017 end-page: 114 ident: b10 article-title: Optimization methods for supervised machine learning: From linear models to deep learning publication-title: Leading developments from INFORMs communities – volume: 25 start-page: 371 year: 2023 end-page: 390 ident: b31 article-title: Data-driven optimization for commodity procurement under price uncertainty publication-title: Manufacturing & Service Operations Management – volume: 31 start-page: 3233 year: 2022 end-page: 3263 ident: b48 article-title: Operational hedging or financial hedging? Strategic risk management in commodity procurement publication-title: Production and Operations Management – volume: 65 start-page: 4407 year: 2019 end-page: 4421 ident: b24 article-title: Macroeconomic factors in oil futures markets publication-title: Management Science – year: 2009 ident: b22 article-title: The elements of statistical learning – volume: 63 start-page: 1131 year: 2015 end-page: 1143 ident: b42 article-title: Merchant commodity storage practice revisited publication-title: Operations Research – volume: 2 start-page: 499 year: 2002 end-page: 526 ident: b4 article-title: Stability and generalization publication-title: Journal of Machine Learning Research – volume: 63 start-page: 2585 year: 2021 end-page: 2619 ident: b25 article-title: Model complexity of deep learning: a survey publication-title: Knowledge and Information Systems – volume: 2021 year: 2021 ident: b35 article-title: Deep double descent: Where bigger models and more data hurt publication-title: Journal of Statistical Mechanics: Theory and Experiment – volume: 20 start-page: 391 year: 1985 end-page: 405 ident: b43 article-title: The determinants of firms’ hedging policies publication-title: The Journal of Financial and Quantitative Analysis – volume: 61 start-page: 4265 issue: 13 year: 2023 ident: 10.1016/j.ejor.2024.01.026_b49 article-title: Data-driven analysis on optimal purchasing decisions in combined procurement publication-title: International Journal of Production Research doi: 10.1080/00207543.2022.2051766 – volume: 2 start-page: 499 issue: 1 year: 2002 ident: 10.1016/j.ejor.2024.01.026_b4 article-title: Stability and generalization publication-title: Journal of Machine Learning Research – volume: 79 start-page: 453 issue: 2 year: 2011 ident: 10.1016/j.ejor.2024.01.026_b20 article-title: The model confidence set publication-title: Econometrica doi: 10.3982/ECTA5771 – volume: 52 start-page: 923 issue: 3 year: 1997 ident: 10.1016/j.ejor.2024.01.026_b39 article-title: The stochastic behavior of commodity prices: implications for valuation and hedging publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1997.tb02721.x – volume: 26 start-page: 93 issue: 1 year: 2018 ident: 10.1016/j.ejor.2024.01.026_b27 article-title: Inventory control in dual sourcing commodity procurement with price correlation publication-title: Central European Journal of Operations Research doi: 10.1007/s10100-017-0475-x – volume: 57 start-page: 2228 issue: 12 year: 2011 ident: 10.1016/j.ejor.2024.01.026_b18 article-title: Multiechelon procurement and distribution policies for traded commodities publication-title: Management Science doi: 10.1287/mnsc.1110.1430 – year: 2019 ident: 10.1016/j.ejor.2024.01.026_b6 – year: 1998 ident: 10.1016/j.ejor.2024.01.026_b45 – volume: 5 start-page: 273 issue: 3 year: 2022 ident: 10.1016/j.ejor.2024.01.026_b5 article-title: Deep learning for commodity procurement: non-linear data-driven optimization of hedging decisions publication-title: INFORMS Journal on Optimization doi: 10.1287/ijoo.2022.0086 – volume: 45 start-page: 37 issue: 1 year: 2015 ident: 10.1016/j.ejor.2024.01.026_b38 article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models publication-title: Resources Policy doi: 10.1016/j.resourpol.2015.03.004 – volume: 56 start-page: 449 issue: 3 year: 2010 ident: 10.1016/j.ejor.2024.01.026_b41 article-title: Optimal commodity trading with a capacitated storage asset publication-title: Management Science doi: 10.1287/mnsc.1090.1049 – volume: 68 start-page: 9 issue: 1 year: 2022 ident: 10.1016/j.ejor.2024.01.026_b12 article-title: Smart “predict, then optimize” publication-title: Management Science doi: 10.1287/mnsc.2020.3922 – year: 2018 ident: 10.1016/j.ejor.2024.01.026_b33 – volume: 59 start-page: 109 issue: 1 year: 2011 ident: 10.1016/j.ejor.2024.01.026_b2 article-title: Optimal inventory policies when purchase price and demand are stochastic publication-title: Operations Research doi: 10.1287/opre.1100.0862 – volume: 51 start-page: 1076 issue: 7 year: 2005 ident: 10.1016/j.ejor.2024.01.026_b14 article-title: Soybean inventory and forward curve dynamics publication-title: Management Science doi: 10.1287/mnsc.1050.0361 – volume: 125 start-page: 434 issue: 1 year: 2019 ident: 10.1016/j.ejor.2024.01.026_b36 article-title: Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2019.03.034 – volume: 19 start-page: 1434 issue: 6 year: 1971 ident: 10.1016/j.ejor.2024.01.026_b28 article-title: Stochastic prices in a single-item inventory purchasing model publication-title: Operations Research doi: 10.1287/opre.19.6.1434 – volume: 43 start-page: 231 issue: 2 year: 1975 ident: 10.1016/j.ejor.2024.01.026_b23 article-title: A general solution for linear decision rules: An optimal dynamic strategy applicable under uncertainty publication-title: Econometrica doi: 10.2307/1913583 – start-page: 89 year: 2017 ident: 10.1016/j.ejor.2024.01.026_b10 article-title: Optimization methods for supervised machine learning: From linear models to deep learning – volume: 66 start-page: 1025 issue: 3 year: 2020 ident: 10.1016/j.ejor.2024.01.026_b3 article-title: From predictive to prescriptive analytics publication-title: Management Science doi: 10.1287/mnsc.2018.3253 – volume: 225 start-page: 298 issue: 2 year: 2013 ident: 10.1016/j.ejor.2024.01.026_b26 article-title: Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.08.025 – volume: 16 start-page: 545 issue: 4 year: 2019 ident: 10.1016/j.ejor.2024.01.026_b16 article-title: The decision rule approach to optimization under uncertainty: methodology and applications publication-title: Computational Management Science doi: 10.1007/s10287-018-0338-5 – volume: 96 start-page: 746 issue: 454 year: 2001 ident: 10.1016/j.ejor.2024.01.026_b21 article-title: Model selection and the principle of minimum description length publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753168398 – volume: 31 start-page: 3233 issue: 8 year: 2022 ident: 10.1016/j.ejor.2024.01.026_b48 article-title: Operational hedging or financial hedging? Strategic risk management in commodity procurement publication-title: Production and Operations Management doi: 10.1111/poms.13748 – volume: 2021 issue: 12 year: 2021 ident: 10.1016/j.ejor.2024.01.026_b35 article-title: Deep double descent: Where bigger models and more data hurt publication-title: Journal of Statistical Mechanics: Theory and Experiment doi: 10.1088/1742-5468/ac3a74 – volume: 20 start-page: 59 issue: 1 year: 1969 ident: 10.1016/j.ejor.2024.01.026_b29 article-title: Commodity purchasing publication-title: Journal of the Operational Research Society doi: 10.1057/jors.1969.29 – volume: 63 start-page: 1131 issue: 5 year: 2015 ident: 10.1016/j.ejor.2024.01.026_b42 article-title: Merchant commodity storage practice revisited publication-title: Operations Research doi: 10.1287/opre.2015.1407 – year: 2011 ident: 10.1016/j.ejor.2024.01.026_b37 – volume: 61 start-page: 3054 issue: 12 year: 2015 ident: 10.1016/j.ejor.2024.01.026_b34 article-title: Relaxations of approximate linear programs for the real option management of commodity storage publication-title: Management Science doi: 10.1287/mnsc.2014.2136 – volume: 61 start-page: 2870 issue: 12 year: 2015 ident: 10.1016/j.ejor.2024.01.026_b47 article-title: Hedging with futures: does anything beat the naïve hedging strategy? publication-title: Management Science doi: 10.1287/mnsc.2014.2028 – volume: 10 start-page: 988 issue: 5 year: 1999 ident: 10.1016/j.ejor.2024.01.026_b46 article-title: An overview of statistical learning theory publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.788640 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.ejor.2024.01.026_b8 article-title: Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales publication-title: Scientific Reports doi: 10.1038/s41598-020-78914-x – volume: 20 start-page: 391 issue: 4 year: 1985 ident: 10.1016/j.ejor.2024.01.026_b43 article-title: The determinants of firms’ hedging policies publication-title: The Journal of Financial and Quantitative Analysis doi: 10.2307/2330757 – volume: 65 start-page: 4141 issue: 9 year: 2019 ident: 10.1016/j.ejor.2024.01.026_b9 article-title: Commodity price forecasts, futures prices, and pricing models publication-title: Management Science doi: 10.1287/mnsc.2018.3035 – year: 2020 ident: 10.1016/j.ejor.2024.01.026_b44 – volume: 38 start-page: 18 issue: 1 year: 2013 ident: 10.1016/j.ejor.2024.01.026_b15 article-title: Theory of storage, inventory and volatility in the LME base metals publication-title: Resources Policy doi: 10.1016/j.resourpol.2012.06.014 – volume: 26 start-page: 1924 issue: 10 year: 2017 ident: 10.1016/j.ejor.2024.01.026_b19 article-title: Financial hedging and optimal procurement policies under correlated price and demand publication-title: Production and Operations Management doi: 10.1111/poms.12723 – volume: 22 start-page: 1915 issue: 5 year: 2009 ident: 10.1016/j.ejor.2024.01.026_b11 article-title: Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? publication-title: The Review of Financial Studies doi: 10.1093/rfs/hhm075 – year: 2020 ident: 10.1016/j.ejor.2024.01.026_b7 – volume: 58 start-page: 564 issue: 3 year: 2010 ident: 10.1016/j.ejor.2024.01.026_b30 article-title: An approximate dynamic programming approach to benchmark practice-based heuristics for natural gas storage valuation publication-title: Operations Research doi: 10.1287/opre.1090.0768 – volume: 25 start-page: 371 issue: 2 year: 2023 ident: 10.1016/j.ejor.2024.01.026_b31 article-title: Data-driven optimization for commodity procurement under price uncertainty publication-title: Manufacturing & Service Operations Management doi: 10.1287/msom.2020.0890 – volume: 67 start-page: 90 issue: 1 year: 2019 ident: 10.1016/j.ejor.2024.01.026_b1 article-title: The big data newsvendor: practical insights from machine learning publication-title: Operations Research doi: 10.1287/opre.2018.1757 – volume: 31 start-page: 2438 issue: 6 year: 2022 ident: 10.1016/j.ejor.2024.01.026_b32 article-title: Data-driven storage operations: cross-commodity backtest and structured policies publication-title: Production and Operations Management doi: 10.1111/poms.13683 – volume: 63 start-page: 2585 issue: 10 year: 2021 ident: 10.1016/j.ejor.2024.01.026_b25 article-title: Model complexity of deep learning: a survey publication-title: Knowledge and Information Systems doi: 10.1007/s10115-021-01605-0 – volume: 46 start-page: 893 issue: 7 year: 2000 ident: 10.1016/j.ejor.2024.01.026_b40 article-title: Short-term variations and long-term dynamics in commodity prices publication-title: Management Science doi: 10.1287/mnsc.46.7.893.12034 – volume: 2 start-page: 97 issue: 1–2 year: 2012 ident: 10.1016/j.ejor.2024.01.026_b13 article-title: Real options in infrastructure projects: theory, practice and prospects publication-title: Engineering Project Organization Journal doi: 10.1080/21573727.2011.632096 – year: 2009 ident: 10.1016/j.ejor.2024.01.026_b22 – volume: 65 start-page: 4407 issue: 9 year: 2019 ident: 10.1016/j.ejor.2024.01.026_b24 article-title: Macroeconomic factors in oil futures markets publication-title: Management Science doi: 10.1287/mnsc.2017.3008 – year: 2022 ident: 10.1016/j.ejor.2024.01.026_b17 article-title: Volume flexibility at responsive suppliers in reshoring decisions: Analysis of a dual sourcing inventory model publication-title: Production and Operations Management doi: 10.1111/poms.13719 |
| SSID | ssj0001515 |
| Score | 2.474022 |
| Snippet | Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 341 |
| SubjectTerms | Commodity procurement Data-driven optimization Decision analysis Model generalization |
| Title | A data-driven approach for optimal operational and financial commodity hedging |
| URI | https://dx.doi.org/10.1016/j.ejor.2024.01.026 |
| Volume | 316 |
| WOSCitedRecordID | wos001206587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001515 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLY6mKbtMLZuE7Ax-bAb8tTace0eKwTaJqimiU29RUlsb1QlqUJAiOP-cp7rHw2sIDjsElVW4qZ5X58_v7z3PYQ-MV0YmnFBMqDHBPYbmuSGMSILJoCOGNFbZLv_OhTjsZxMht87nb-hFuZiJspSXl4O5__V1DAGxrals48wd5wUBuAzGB2OYHY4Psjwo12b9UlUbf1Y1AxfpBNW4B9OLfuc6zoEAW3g3ETZDbih00pZZv5Hq99hWVsVufcstj2VFw6KAeYfepFU7UBxVNUnzdUyAF6q2VLcoIXRo2UzsEYbP-7DEjSJKayxHEsIQqkrzAyulrm6yhuYco6TOfkrvwYz12PgH_fuIg3Tz3paWS1XmjjJ1RVa2rfWuJh5GJLapqmdI7VzpL1-CnM8QetU8CE49_XR1_3Jt7ieW8q3eBflf5AvvXJZgrfvZDW9aVGW41fopd9r4JHDyGvU0WUXPQulDl20EVp6YO_hu-hFS5_yDRqPcAtLOGAJA5awxxJuAQCDUXHEEo5Ywh5Lb9HPg_3jvS_EN-AgRcKShiggt0YoZYAV5wUVtOASHLaCIQUrQ8YKY_r9TGueayGZBPafy4EYKC15LmBz8Q6tlVWpNxG25w16itrHlliNOS6E4hy8RMYHMk-2UD88t7Tw6vS2ScosvdtiW2g3XjN32iz3ns2DOVLPLh1rTAFd91y3_ahveY-eL_8NH9BaU5_rHfS0uGhOzuqPHlrXBRidHw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+approach+for+optimal+operational+and+financial+commodity+hedging&rft.jtitle=European+journal+of+operational+research&rft.au=Rettinger%2C+Moritz&rft.au=Mandl%2C+Christian&rft.au=Minner%2C+Stefan&rft.date=2024-07-01&rft.issn=0377-2217&rft.volume=316&rft.issue=1&rft.spage=341&rft.epage=360&rft_id=info:doi/10.1016%2Fj.ejor.2024.01.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2024_01_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |