A data-driven approach for optimal operational and financial commodity hedging

Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision rather than prediction quality have been developed to overcome price model misspecification. Yet, in the context of data-driven commodity purchasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 316; H. 1; S. 341 - 360
Hauptverfasser: Rettinger, Moritz, Mandl, Christian, Minner, Stefan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2024
Schlagworte:
ISSN:0377-2217
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision rather than prediction quality have been developed to overcome price model misspecification. Yet, in the context of data-driven commodity purchasing, the existing literature either considers anticipatory inventory management or forward contracting where the decision frequency corresponds to the maturity of the traded contracts. We prove the optimality of a novel procurement policy combining operational and financial instruments with decision granularities independent of the derivative’s maturity. A mixed-integer programming model is developed to train policy parameters efficiently. We study the implications of policy complexity for learning-stability and out-of-sample generalization. Finally, we backtest the data-driven policy on real market data of four major commodities (i.e., copper, nickel, corn, and soybean) over ten years and show that the average savings potential of a combined financial and operational procurement policy compared to single-instrument strategies is up to 6.38% for corn where warehousing can efficiently mitigate price seasonality. The approach hedges corn and soybean commodities more efficiently through inventories while copper and nickel can be hedged efficiently by leveraging available financial instruments. Best model results are identified for a decision granularity with fewer parameters as high-frequent decisions deteriorate learning stability and model generalization. •Model generalization for purchasers commanding operational and financial instruments.•Quantification of the value of both decision modes for commodity-purchasing firms.•Demonstration of the general setting’s implications for the optimal policy structure.•Independent demand and decision period granularities (e.g., daily, weekly, and monthly).
AbstractList Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision rather than prediction quality have been developed to overcome price model misspecification. Yet, in the context of data-driven commodity purchasing, the existing literature either considers anticipatory inventory management or forward contracting where the decision frequency corresponds to the maturity of the traded contracts. We prove the optimality of a novel procurement policy combining operational and financial instruments with decision granularities independent of the derivative’s maturity. A mixed-integer programming model is developed to train policy parameters efficiently. We study the implications of policy complexity for learning-stability and out-of-sample generalization. Finally, we backtest the data-driven policy on real market data of four major commodities (i.e., copper, nickel, corn, and soybean) over ten years and show that the average savings potential of a combined financial and operational procurement policy compared to single-instrument strategies is up to 6.38% for corn where warehousing can efficiently mitigate price seasonality. The approach hedges corn and soybean commodities more efficiently through inventories while copper and nickel can be hedged efficiently by leveraging available financial instruments. Best model results are identified for a decision granularity with fewer parameters as high-frequent decisions deteriorate learning stability and model generalization. •Model generalization for purchasers commanding operational and financial instruments.•Quantification of the value of both decision modes for commodity-purchasing firms.•Demonstration of the general setting’s implications for the optimal policy structure.•Independent demand and decision period granularities (e.g., daily, weekly, and monthly).
Author Mandl, Christian
Rettinger, Moritz
Minner, Stefan
Author_xml – sequence: 1
  givenname: Moritz
  orcidid: 0000-0001-8880-6946
  surname: Rettinger
  fullname: Rettinger, Moritz
  email: moritz.rettinger@tum.de
  organization: Logistics & Supply Chain Management, TUM School of Management, Technical University of Munich, Germany
– sequence: 2
  givenname: Christian
  surname: Mandl
  fullname: Mandl, Christian
  email: christian.mandl@th-deg.de
  organization: School of Management, Deggendorf Institute of Technology, Germany
– sequence: 3
  givenname: Stefan
  orcidid: 0000-0001-6127-8223
  surname: Minner
  fullname: Minner, Stefan
  email: stefan.minner@tum.de
  organization: Logistics & Supply Chain Management, TUM School of Management, Technical University of Munich, Germany
BookMark eNp9kMtOwzAQRb0oEm3hB1jlBxLGdhIHiU1V8ZIq2MDacuxx66i1I8eq1L_HBVYsupqHdEZzz4LMfPBIyB2FigJt74cKhxArBqyugFbA2hmZAxeiZIyKa7KYpgEAaEObOXlfFUYlVZrojugLNY4xKL0rbIhFGJM7qH2uGFVywedeeVNY55XXLk86HA7BuHQqdmi2zm9vyJVV-wlv_-qSfD0_fa5fy83Hy9t6tSl1zetUGsGEFcbYFqDXTDDddA8tN3llBAfFtbWUKsSmR9Hxrqmh71rRGuyaXgDlS9L93tUxTFNEK7VLPz-mqNxeUpBnF3KQZxfy7EICldlFRtk_dIw5Zjxdhh5_Icyhjg6jnLRDr9G4iDpJE9wl_BsdHn3Z
CitedBy_id crossref_primary_10_1080_01605682_2025_2491513
crossref_primary_10_1016_j_seps_2024_102023
crossref_primary_10_1016_j_ejor_2025_09_025
crossref_primary_10_1080_00207543_2024_2441449
Cites_doi 10.1080/00207543.2022.2051766
10.3982/ECTA5771
10.1111/j.1540-6261.1997.tb02721.x
10.1007/s10100-017-0475-x
10.1287/mnsc.1110.1430
10.1287/ijoo.2022.0086
10.1016/j.resourpol.2015.03.004
10.1287/mnsc.1090.1049
10.1287/mnsc.2020.3922
10.1287/opre.1100.0862
10.1287/mnsc.1050.0361
10.1016/j.compchemeng.2019.03.034
10.1287/opre.19.6.1434
10.2307/1913583
10.1287/mnsc.2018.3253
10.1016/j.ejor.2012.08.025
10.1007/s10287-018-0338-5
10.1198/016214501753168398
10.1111/poms.13748
10.1088/1742-5468/ac3a74
10.1057/jors.1969.29
10.1287/opre.2015.1407
10.1287/mnsc.2014.2136
10.1287/mnsc.2014.2028
10.1109/72.788640
10.1038/s41598-020-78914-x
10.2307/2330757
10.1287/mnsc.2018.3035
10.1016/j.resourpol.2012.06.014
10.1111/poms.12723
10.1093/rfs/hhm075
10.1287/opre.1090.0768
10.1287/msom.2020.0890
10.1287/opre.2018.1757
10.1111/poms.13683
10.1007/s10115-021-01605-0
10.1287/mnsc.46.7.893.12034
10.1080/21573727.2011.632096
10.1287/mnsc.2017.3008
10.1111/poms.13719
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ejor.2024.01.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EndPage 360
ExternalDocumentID 10_1016_j_ejor_2024_01_026
S0377221724000456
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
VH1
WUQ
~HD
ID FETCH-LOGICAL-c434t-d727f7ddf600bc272c58963d7ddd730a3cff11aee5be7838540b8676de85b7013
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 05:34:56 EST 2025
Tue Nov 18 21:51:09 EST 2025
Sat Feb 08 15:52:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Commodity procurement
Decision analysis
Model generalization
Data-driven optimization
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-d727f7ddf600bc272c58963d7ddd730a3cff11aee5be7838540b8676de85b7013
ORCID 0000-0001-8880-6946
0000-0001-6127-8223
OpenAccessLink https://dx.doi.org/10.1016/j.ejor.2024.01.026
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_ejor_2024_01_026
crossref_primary_10_1016_j_ejor_2024_01_026
elsevier_sciencedirect_doi_10_1016_j_ejor_2024_01_026
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Curtis, Scheinberg (b10) 2017
Bertsimas, Kallus (b3) 2020; 66
CME Group (b7) 2020
Secomandi (b41) 2010; 56
Smith, Stulz (b43) 1985; 20
Busch, Crönert, Minner, Rettinger, Sel (b5) 2022; 5
Xing, Ma, Zhao, Liu (b48) 2022; 31
Hastie, Tibshirani, Friedman (b22) 2009
Zhang, Chan, Xu (b49) 2023; 61
Garvin, Ford (b13) 2012; 2
CME Group (b6) 2019
Kalymon (b28) 1971; 19
The London Metal Exchange (b44) 2020
Wang, Wu, Yang (b47) 2015; 61
Vapnik (b45) 1998
Secomandi (b42) 2015; 63
Sánchez Lasheras, de Cos Juez, Suárez Sánchez, Krzemień, Riesgo Fernández (b38) 2015; 45
Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever (b35) 2021; 2021
Goel, Tanrisever (b19) 2017; 26
Schwartz (b39) 1997; 52
Demiguel, Garlappi, Uppal (b11) 2009; 22
Geman, Nguyen (b14) 2005; 51
Inderfurth, Kelle, Kleber (b27) 2018; 26
Nadarajah, Margot, Secomandi (b34) 2015; 61
Bousquet, Elisseeff (b4) 2002; 2
Inderfurth, Kelle, Kleber (b26) 2013; 225
Vapnik (b46) 1999; 10
Hay, Holt (b23) 1975; 43
Hu, Chu, Pei, Liu, Bian (b25) 2021; 63
Cortazar, Millard, Ortega, Schwartz (b9) 2019; 65
Goel, Gutierrez (b18) 2011; 57
Mandl, Minner (b31) 2023; 25
Mandl, Nadarajah, Minner, Gavirneni (b32) 2022; 31
Gijsbrechts, Boute, Disney, Van Mieghem (b17) 2022
Geman, Smith (b15) 2013; 38
Elmachtoub, Grigas (b12) 2022; 68
Mohri, Rostamizadeh, Talwalkar (b33) 2018
Coradi, Maldaner, Lutz, da Silva Daí, Teodoro (b8) 2020; 10
Pirrong (b37) 2011
Hansen, Yu (b21) 2001; 96
Ning, You (b36) 2019; 125
Schwartz, Smith (b40) 2000; 46
Hansen, Lunde, Nason (b20) 2011; 79
Heath (b24) 2019; 65
Ban, Rudin (b1) 2019; 67
Georghiou, Kuhn, Wiesemann (b16) 2019; 16
Lai, Margot, Secomandi (b30) 2010; 58
Berling, Martínez-de Albéniz (b2) 2011; 59
Kingsman (b29) 1969; 20
Schwartz (10.1016/j.ejor.2024.01.026_b39) 1997; 52
Goel (10.1016/j.ejor.2024.01.026_b19) 2017; 26
Inderfurth (10.1016/j.ejor.2024.01.026_b26) 2013; 225
The London Metal Exchange (10.1016/j.ejor.2024.01.026_b44) 2020
Lai (10.1016/j.ejor.2024.01.026_b30) 2010; 58
Vapnik (10.1016/j.ejor.2024.01.026_b45) 1998
Ban (10.1016/j.ejor.2024.01.026_b1) 2019; 67
Geman (10.1016/j.ejor.2024.01.026_b14) 2005; 51
Pirrong (10.1016/j.ejor.2024.01.026_b37) 2011
Elmachtoub (10.1016/j.ejor.2024.01.026_b12) 2022; 68
Curtis (10.1016/j.ejor.2024.01.026_b10) 2017
Busch (10.1016/j.ejor.2024.01.026_b5) 2022; 5
Zhang (10.1016/j.ejor.2024.01.026_b49) 2023; 61
Gijsbrechts (10.1016/j.ejor.2024.01.026_b17) 2022
Secomandi (10.1016/j.ejor.2024.01.026_b41) 2010; 56
Ning (10.1016/j.ejor.2024.01.026_b36) 2019; 125
Coradi (10.1016/j.ejor.2024.01.026_b8) 2020; 10
Nakkiran (10.1016/j.ejor.2024.01.026_b35) 2021; 2021
Geman (10.1016/j.ejor.2024.01.026_b15) 2013; 38
Hay (10.1016/j.ejor.2024.01.026_b23) 1975; 43
Mandl (10.1016/j.ejor.2024.01.026_b32) 2022; 31
Georghiou (10.1016/j.ejor.2024.01.026_b16) 2019; 16
Wang (10.1016/j.ejor.2024.01.026_b47) 2015; 61
Garvin (10.1016/j.ejor.2024.01.026_b13) 2012; 2
Inderfurth (10.1016/j.ejor.2024.01.026_b27) 2018; 26
Goel (10.1016/j.ejor.2024.01.026_b18) 2011; 57
CME Group (10.1016/j.ejor.2024.01.026_b7) 2020
Schwartz (10.1016/j.ejor.2024.01.026_b40) 2000; 46
Nadarajah (10.1016/j.ejor.2024.01.026_b34) 2015; 61
Bousquet (10.1016/j.ejor.2024.01.026_b4) 2002; 2
Mohri (10.1016/j.ejor.2024.01.026_b33) 2018
Demiguel (10.1016/j.ejor.2024.01.026_b11) 2009; 22
Secomandi (10.1016/j.ejor.2024.01.026_b42) 2015; 63
Kingsman (10.1016/j.ejor.2024.01.026_b29) 1969; 20
CME Group (10.1016/j.ejor.2024.01.026_b6) 2019
Sánchez Lasheras (10.1016/j.ejor.2024.01.026_b38) 2015; 45
Heath (10.1016/j.ejor.2024.01.026_b24) 2019; 65
Kalymon (10.1016/j.ejor.2024.01.026_b28) 1971; 19
Bertsimas (10.1016/j.ejor.2024.01.026_b3) 2020; 66
Smith (10.1016/j.ejor.2024.01.026_b43) 1985; 20
Xing (10.1016/j.ejor.2024.01.026_b48) 2022; 31
Cortazar (10.1016/j.ejor.2024.01.026_b9) 2019; 65
Mandl (10.1016/j.ejor.2024.01.026_b31) 2023; 25
Vapnik (10.1016/j.ejor.2024.01.026_b46) 1999; 10
Hansen (10.1016/j.ejor.2024.01.026_b21) 2001; 96
Hu (10.1016/j.ejor.2024.01.026_b25) 2021; 63
Berling (10.1016/j.ejor.2024.01.026_b2) 2011; 59
Hansen (10.1016/j.ejor.2024.01.026_b20) 2011; 79
Hastie (10.1016/j.ejor.2024.01.026_b22) 2009
References_xml – volume: 66
  start-page: 1025
  year: 2020
  end-page: 1044
  ident: b3
  article-title: From predictive to prescriptive analytics
  publication-title: Management Science
– volume: 45
  start-page: 37
  year: 2015
  end-page: 43
  ident: b38
  article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models
  publication-title: Resources Policy
– year: 2022
  ident: b17
  article-title: Volume flexibility at responsive suppliers in reshoring decisions: Analysis of a dual sourcing inventory model
  publication-title: Production and Operations Management
– volume: 57
  start-page: 2228
  year: 2011
  end-page: 2244
  ident: b18
  article-title: Multiechelon procurement and distribution policies for traded commodities
  publication-title: Management Science
– volume: 26
  start-page: 1924
  year: 2017
  end-page: 1945
  ident: b19
  article-title: Financial hedging and optimal procurement policies under correlated price and demand
  publication-title: Production and Operations Management
– volume: 5
  start-page: 273
  year: 2022
  end-page: 294
  ident: b5
  article-title: Deep learning for commodity procurement: non-linear data-driven optimization of hedging decisions
  publication-title: INFORMS Journal on Optimization
– volume: 38
  start-page: 18
  year: 2013
  end-page: 28
  ident: b15
  article-title: Theory of storage, inventory and volatility in the LME base metals
  publication-title: Resources Policy
– volume: 65
  start-page: 4141
  year: 2019
  end-page: 4155
  ident: b9
  article-title: Commodity price forecasts, futures prices, and pricing models
  publication-title: Management Science
– volume: 43
  start-page: 231
  year: 1975
  end-page: 259
  ident: b23
  article-title: A general solution for linear decision rules: An optimal dynamic strategy applicable under uncertainty
  publication-title: Econometrica
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: b46
  article-title: An overview of statistical learning theory
  publication-title: IEEE Transactions on Neural Networks
– volume: 61
  start-page: 2870
  year: 2015
  end-page: 2889
  ident: b47
  article-title: Hedging with futures: does anything beat the naïve hedging strategy?
  publication-title: Management Science
– volume: 125
  start-page: 434
  year: 2019
  end-page: 448
  ident: b36
  article-title: Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming
  publication-title: Computers & Chemical Engineering
– volume: 225
  start-page: 298
  year: 2013
  end-page: 309
  ident: b26
  article-title: Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 109
  year: 2011
  end-page: 124
  ident: b2
  article-title: Optimal inventory policies when purchase price and demand are stochastic
  publication-title: Operations Research
– year: 2011
  ident: b37
  article-title: Commodity price dynamics: a structural approach
– volume: 2
  start-page: 97
  year: 2012
  end-page: 108
  ident: b13
  article-title: Real options in infrastructure projects: theory, practice and prospects
  publication-title: Engineering Project Organization Journal
– volume: 26
  start-page: 93
  year: 2018
  end-page: 119
  ident: b27
  article-title: Inventory control in dual sourcing commodity procurement with price correlation
  publication-title: Central European Journal of Operations Research
– volume: 10
  year: 2020
  ident: b8
  article-title: Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales
  publication-title: Scientific Reports
– year: 2020
  ident: b44
  article-title: Warehousing charges
– volume: 20
  start-page: 59
  year: 1969
  end-page: 79
  ident: b29
  article-title: Commodity purchasing
  publication-title: Journal of the Operational Research Society
– year: 2018
  ident: b33
  article-title: Foundations of machine learning
– volume: 67
  start-page: 90
  year: 2019
  end-page: 108
  ident: b1
  article-title: The big data newsvendor: practical insights from machine learning
  publication-title: Operations Research
– year: 2020
  ident: b7
  article-title: Copper – A leading indicator for growth
– volume: 19
  start-page: 1434
  year: 1971
  end-page: 1458
  ident: b28
  article-title: Stochastic prices in a single-item inventory purchasing model
  publication-title: Operations Research
– volume: 79
  start-page: 453
  year: 2011
  end-page: 497
  ident: b20
  article-title: The model confidence set
  publication-title: Econometrica
– volume: 46
  start-page: 893
  year: 2000
  end-page: 911
  ident: b40
  article-title: Short-term variations and long-term dynamics in commodity prices
  publication-title: Management Science
– year: 1998
  ident: b45
  article-title: Statistical learning theory
– volume: 52
  start-page: 923
  year: 1997
  end-page: 973
  ident: b39
  article-title: The stochastic behavior of commodity prices: implications for valuation and hedging
  publication-title: The Journal of Finance
– volume: 96
  start-page: 746
  year: 2001
  end-page: 774
  ident: b21
  article-title: Model selection and the principle of minimum description length
  publication-title: Journal of the American Statistical Association
– volume: 51
  start-page: 1076
  year: 2005
  end-page: 1091
  ident: b14
  article-title: Soybean inventory and forward curve dynamics
  publication-title: Management Science
– volume: 16
  start-page: 545
  year: 2019
  end-page: 576
  ident: b16
  article-title: The decision rule approach to optimization under uncertainty: methodology and applications
  publication-title: Computational Management Science
– year: 2019
  ident: b6
  article-title: Premium charge for corn, mini-sized corn, soybeans, and mini- sized soybean futures contracts
– volume: 61
  start-page: 4265
  year: 2023
  end-page: 4278
  ident: b49
  article-title: Data-driven analysis on optimal purchasing decisions in combined procurement
  publication-title: International Journal of Production Research
– volume: 58
  start-page: 564
  year: 2010
  end-page: 582
  ident: b30
  article-title: An approximate dynamic programming approach to benchmark practice-based heuristics for natural gas storage valuation
  publication-title: Operations Research
– volume: 22
  start-page: 1915
  year: 2009
  end-page: 1953
  ident: b11
  article-title: Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?
  publication-title: The Review of Financial Studies
– volume: 61
  start-page: 3054
  year: 2015
  end-page: 3076
  ident: b34
  article-title: Relaxations of approximate linear programs for the real option management of commodity storage
  publication-title: Management Science
– volume: 68
  start-page: 9
  year: 2022
  end-page: 26
  ident: b12
  article-title: Smart “predict, then optimize”
  publication-title: Management Science
– volume: 56
  start-page: 449
  year: 2010
  end-page: 467
  ident: b41
  article-title: Optimal commodity trading with a capacitated storage asset
  publication-title: Management Science
– volume: 31
  start-page: 2438
  year: 2022
  end-page: 2456
  ident: b32
  article-title: Data-driven storage operations: cross-commodity backtest and structured policies
  publication-title: Production and Operations Management
– start-page: 89
  year: 2017
  end-page: 114
  ident: b10
  article-title: Optimization methods for supervised machine learning: From linear models to deep learning
  publication-title: Leading developments from INFORMs communities
– volume: 25
  start-page: 371
  year: 2023
  end-page: 390
  ident: b31
  article-title: Data-driven optimization for commodity procurement under price uncertainty
  publication-title: Manufacturing & Service Operations Management
– volume: 31
  start-page: 3233
  year: 2022
  end-page: 3263
  ident: b48
  article-title: Operational hedging or financial hedging? Strategic risk management in commodity procurement
  publication-title: Production and Operations Management
– volume: 65
  start-page: 4407
  year: 2019
  end-page: 4421
  ident: b24
  article-title: Macroeconomic factors in oil futures markets
  publication-title: Management Science
– year: 2009
  ident: b22
  article-title: The elements of statistical learning
– volume: 63
  start-page: 1131
  year: 2015
  end-page: 1143
  ident: b42
  article-title: Merchant commodity storage practice revisited
  publication-title: Operations Research
– volume: 2
  start-page: 499
  year: 2002
  end-page: 526
  ident: b4
  article-title: Stability and generalization
  publication-title: Journal of Machine Learning Research
– volume: 63
  start-page: 2585
  year: 2021
  end-page: 2619
  ident: b25
  article-title: Model complexity of deep learning: a survey
  publication-title: Knowledge and Information Systems
– volume: 2021
  year: 2021
  ident: b35
  article-title: Deep double descent: Where bigger models and more data hurt
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– volume: 20
  start-page: 391
  year: 1985
  end-page: 405
  ident: b43
  article-title: The determinants of firms’ hedging policies
  publication-title: The Journal of Financial and Quantitative Analysis
– volume: 61
  start-page: 4265
  issue: 13
  year: 2023
  ident: 10.1016/j.ejor.2024.01.026_b49
  article-title: Data-driven analysis on optimal purchasing decisions in combined procurement
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2022.2051766
– volume: 2
  start-page: 499
  issue: 1
  year: 2002
  ident: 10.1016/j.ejor.2024.01.026_b4
  article-title: Stability and generalization
  publication-title: Journal of Machine Learning Research
– volume: 79
  start-page: 453
  issue: 2
  year: 2011
  ident: 10.1016/j.ejor.2024.01.026_b20
  article-title: The model confidence set
  publication-title: Econometrica
  doi: 10.3982/ECTA5771
– volume: 52
  start-page: 923
  issue: 3
  year: 1997
  ident: 10.1016/j.ejor.2024.01.026_b39
  article-title: The stochastic behavior of commodity prices: implications for valuation and hedging
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1997.tb02721.x
– volume: 26
  start-page: 93
  issue: 1
  year: 2018
  ident: 10.1016/j.ejor.2024.01.026_b27
  article-title: Inventory control in dual sourcing commodity procurement with price correlation
  publication-title: Central European Journal of Operations Research
  doi: 10.1007/s10100-017-0475-x
– volume: 57
  start-page: 2228
  issue: 12
  year: 2011
  ident: 10.1016/j.ejor.2024.01.026_b18
  article-title: Multiechelon procurement and distribution policies for traded commodities
  publication-title: Management Science
  doi: 10.1287/mnsc.1110.1430
– year: 2019
  ident: 10.1016/j.ejor.2024.01.026_b6
– year: 1998
  ident: 10.1016/j.ejor.2024.01.026_b45
– volume: 5
  start-page: 273
  issue: 3
  year: 2022
  ident: 10.1016/j.ejor.2024.01.026_b5
  article-title: Deep learning for commodity procurement: non-linear data-driven optimization of hedging decisions
  publication-title: INFORMS Journal on Optimization
  doi: 10.1287/ijoo.2022.0086
– volume: 45
  start-page: 37
  issue: 1
  year: 2015
  ident: 10.1016/j.ejor.2024.01.026_b38
  article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models
  publication-title: Resources Policy
  doi: 10.1016/j.resourpol.2015.03.004
– volume: 56
  start-page: 449
  issue: 3
  year: 2010
  ident: 10.1016/j.ejor.2024.01.026_b41
  article-title: Optimal commodity trading with a capacitated storage asset
  publication-title: Management Science
  doi: 10.1287/mnsc.1090.1049
– volume: 68
  start-page: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.ejor.2024.01.026_b12
  article-title: Smart “predict, then optimize”
  publication-title: Management Science
  doi: 10.1287/mnsc.2020.3922
– year: 2018
  ident: 10.1016/j.ejor.2024.01.026_b33
– volume: 59
  start-page: 109
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2024.01.026_b2
  article-title: Optimal inventory policies when purchase price and demand are stochastic
  publication-title: Operations Research
  doi: 10.1287/opre.1100.0862
– volume: 51
  start-page: 1076
  issue: 7
  year: 2005
  ident: 10.1016/j.ejor.2024.01.026_b14
  article-title: Soybean inventory and forward curve dynamics
  publication-title: Management Science
  doi: 10.1287/mnsc.1050.0361
– volume: 125
  start-page: 434
  issue: 1
  year: 2019
  ident: 10.1016/j.ejor.2024.01.026_b36
  article-title: Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2019.03.034
– volume: 19
  start-page: 1434
  issue: 6
  year: 1971
  ident: 10.1016/j.ejor.2024.01.026_b28
  article-title: Stochastic prices in a single-item inventory purchasing model
  publication-title: Operations Research
  doi: 10.1287/opre.19.6.1434
– volume: 43
  start-page: 231
  issue: 2
  year: 1975
  ident: 10.1016/j.ejor.2024.01.026_b23
  article-title: A general solution for linear decision rules: An optimal dynamic strategy applicable under uncertainty
  publication-title: Econometrica
  doi: 10.2307/1913583
– start-page: 89
  year: 2017
  ident: 10.1016/j.ejor.2024.01.026_b10
  article-title: Optimization methods for supervised machine learning: From linear models to deep learning
– volume: 66
  start-page: 1025
  issue: 3
  year: 2020
  ident: 10.1016/j.ejor.2024.01.026_b3
  article-title: From predictive to prescriptive analytics
  publication-title: Management Science
  doi: 10.1287/mnsc.2018.3253
– volume: 225
  start-page: 298
  issue: 2
  year: 2013
  ident: 10.1016/j.ejor.2024.01.026_b26
  article-title: Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.08.025
– volume: 16
  start-page: 545
  issue: 4
  year: 2019
  ident: 10.1016/j.ejor.2024.01.026_b16
  article-title: The decision rule approach to optimization under uncertainty: methodology and applications
  publication-title: Computational Management Science
  doi: 10.1007/s10287-018-0338-5
– volume: 96
  start-page: 746
  issue: 454
  year: 2001
  ident: 10.1016/j.ejor.2024.01.026_b21
  article-title: Model selection and the principle of minimum description length
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753168398
– volume: 31
  start-page: 3233
  issue: 8
  year: 2022
  ident: 10.1016/j.ejor.2024.01.026_b48
  article-title: Operational hedging or financial hedging? Strategic risk management in commodity procurement
  publication-title: Production and Operations Management
  doi: 10.1111/poms.13748
– volume: 2021
  issue: 12
  year: 2021
  ident: 10.1016/j.ejor.2024.01.026_b35
  article-title: Deep double descent: Where bigger models and more data hurt
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/ac3a74
– volume: 20
  start-page: 59
  issue: 1
  year: 1969
  ident: 10.1016/j.ejor.2024.01.026_b29
  article-title: Commodity purchasing
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1969.29
– volume: 63
  start-page: 1131
  issue: 5
  year: 2015
  ident: 10.1016/j.ejor.2024.01.026_b42
  article-title: Merchant commodity storage practice revisited
  publication-title: Operations Research
  doi: 10.1287/opre.2015.1407
– year: 2011
  ident: 10.1016/j.ejor.2024.01.026_b37
– volume: 61
  start-page: 3054
  issue: 12
  year: 2015
  ident: 10.1016/j.ejor.2024.01.026_b34
  article-title: Relaxations of approximate linear programs for the real option management of commodity storage
  publication-title: Management Science
  doi: 10.1287/mnsc.2014.2136
– volume: 61
  start-page: 2870
  issue: 12
  year: 2015
  ident: 10.1016/j.ejor.2024.01.026_b47
  article-title: Hedging with futures: does anything beat the naïve hedging strategy?
  publication-title: Management Science
  doi: 10.1287/mnsc.2014.2028
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 10.1016/j.ejor.2024.01.026_b46
  article-title: An overview of statistical learning theory
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.788640
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.ejor.2024.01.026_b8
  article-title: Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-78914-x
– volume: 20
  start-page: 391
  issue: 4
  year: 1985
  ident: 10.1016/j.ejor.2024.01.026_b43
  article-title: The determinants of firms’ hedging policies
  publication-title: The Journal of Financial and Quantitative Analysis
  doi: 10.2307/2330757
– volume: 65
  start-page: 4141
  issue: 9
  year: 2019
  ident: 10.1016/j.ejor.2024.01.026_b9
  article-title: Commodity price forecasts, futures prices, and pricing models
  publication-title: Management Science
  doi: 10.1287/mnsc.2018.3035
– year: 2020
  ident: 10.1016/j.ejor.2024.01.026_b44
– volume: 38
  start-page: 18
  issue: 1
  year: 2013
  ident: 10.1016/j.ejor.2024.01.026_b15
  article-title: Theory of storage, inventory and volatility in the LME base metals
  publication-title: Resources Policy
  doi: 10.1016/j.resourpol.2012.06.014
– volume: 26
  start-page: 1924
  issue: 10
  year: 2017
  ident: 10.1016/j.ejor.2024.01.026_b19
  article-title: Financial hedging and optimal procurement policies under correlated price and demand
  publication-title: Production and Operations Management
  doi: 10.1111/poms.12723
– volume: 22
  start-page: 1915
  issue: 5
  year: 2009
  ident: 10.1016/j.ejor.2024.01.026_b11
  article-title: Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?
  publication-title: The Review of Financial Studies
  doi: 10.1093/rfs/hhm075
– year: 2020
  ident: 10.1016/j.ejor.2024.01.026_b7
– volume: 58
  start-page: 564
  issue: 3
  year: 2010
  ident: 10.1016/j.ejor.2024.01.026_b30
  article-title: An approximate dynamic programming approach to benchmark practice-based heuristics for natural gas storage valuation
  publication-title: Operations Research
  doi: 10.1287/opre.1090.0768
– volume: 25
  start-page: 371
  issue: 2
  year: 2023
  ident: 10.1016/j.ejor.2024.01.026_b31
  article-title: Data-driven optimization for commodity procurement under price uncertainty
  publication-title: Manufacturing & Service Operations Management
  doi: 10.1287/msom.2020.0890
– volume: 67
  start-page: 90
  issue: 1
  year: 2019
  ident: 10.1016/j.ejor.2024.01.026_b1
  article-title: The big data newsvendor: practical insights from machine learning
  publication-title: Operations Research
  doi: 10.1287/opre.2018.1757
– volume: 31
  start-page: 2438
  issue: 6
  year: 2022
  ident: 10.1016/j.ejor.2024.01.026_b32
  article-title: Data-driven storage operations: cross-commodity backtest and structured policies
  publication-title: Production and Operations Management
  doi: 10.1111/poms.13683
– volume: 63
  start-page: 2585
  issue: 10
  year: 2021
  ident: 10.1016/j.ejor.2024.01.026_b25
  article-title: Model complexity of deep learning: a survey
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-021-01605-0
– volume: 46
  start-page: 893
  issue: 7
  year: 2000
  ident: 10.1016/j.ejor.2024.01.026_b40
  article-title: Short-term variations and long-term dynamics in commodity prices
  publication-title: Management Science
  doi: 10.1287/mnsc.46.7.893.12034
– volume: 2
  start-page: 97
  issue: 1–2
  year: 2012
  ident: 10.1016/j.ejor.2024.01.026_b13
  article-title: Real options in infrastructure projects: theory, practice and prospects
  publication-title: Engineering Project Organization Journal
  doi: 10.1080/21573727.2011.632096
– year: 2009
  ident: 10.1016/j.ejor.2024.01.026_b22
– volume: 65
  start-page: 4407
  issue: 9
  year: 2019
  ident: 10.1016/j.ejor.2024.01.026_b24
  article-title: Macroeconomic factors in oil futures markets
  publication-title: Management Science
  doi: 10.1287/mnsc.2017.3008
– year: 2022
  ident: 10.1016/j.ejor.2024.01.026_b17
  article-title: Volume flexibility at responsive suppliers in reshoring decisions: Analysis of a dual sourcing inventory model
  publication-title: Production and Operations Management
  doi: 10.1111/poms.13719
SSID ssj0001515
Score 2.474022
Snippet Commodity price risk management has been subject to various modeling and optimization approaches. Recently, data-driven policies focusing on the decision...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Commodity procurement
Data-driven optimization
Decision analysis
Model generalization
Title A data-driven approach for optimal operational and financial commodity hedging
URI https://dx.doi.org/10.1016/j.ejor.2024.01.026
Volume 316
WOSCitedRecordID wos001206587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001515
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLY6mKbtMLZuE7Ax-bAb8tTace0eKwTaJqimiU29RUlsb1QlqUJAiOP-cp7rHw2sIDjsElVW4qZ5X58_v7z3PYQ-MV0YmnFBMqDHBPYbmuSGMSILJoCOGNFbZLv_OhTjsZxMht87nb-hFuZiJspSXl4O5__V1DAGxrals48wd5wUBuAzGB2OYHY4Psjwo12b9UlUbf1Y1AxfpBNW4B9OLfuc6zoEAW3g3ETZDbih00pZZv5Hq99hWVsVufcstj2VFw6KAeYfepFU7UBxVNUnzdUyAF6q2VLcoIXRo2UzsEYbP-7DEjSJKayxHEsIQqkrzAyulrm6yhuYco6TOfkrvwYz12PgH_fuIg3Tz3paWS1XmjjJ1RVa2rfWuJh5GJLapqmdI7VzpL1-CnM8QetU8CE49_XR1_3Jt7ieW8q3eBflf5AvvXJZgrfvZDW9aVGW41fopd9r4JHDyGvU0WUXPQulDl20EVp6YO_hu-hFS5_yDRqPcAtLOGAJA5awxxJuAQCDUXHEEo5Ywh5Lb9HPg_3jvS_EN-AgRcKShiggt0YoZYAV5wUVtOASHLaCIQUrQ8YKY_r9TGueayGZBPafy4EYKC15LmBz8Q6tlVWpNxG25w16itrHlliNOS6E4hy8RMYHMk-2UD88t7Tw6vS2ScosvdtiW2g3XjN32iz3ns2DOVLPLh1rTAFd91y3_ahveY-eL_8NH9BaU5_rHfS0uGhOzuqPHlrXBRidHw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+approach+for+optimal+operational+and+financial+commodity+hedging&rft.jtitle=European+journal+of+operational+research&rft.au=Rettinger%2C+Moritz&rft.au=Mandl%2C+Christian&rft.au=Minner%2C+Stefan&rft.date=2024-07-01&rft.issn=0377-2217&rft.volume=316&rft.issue=1&rft.spage=341&rft.epage=360&rft_id=info:doi/10.1016%2Fj.ejor.2024.01.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2024_01_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon