Model interatomic potentials and lattice strain in a high-entropy alloy
A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes d...
Uloženo v:
| Vydáno v: | Journal of materials research Ročník 33; číslo 19; s. 3218 - 3225 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, USA
Cambridge University Press
14.10.2018
Springer International Publishing Springer Nature B.V |
| Témata: | |
| ISSN: | 0884-2914, 2044-5326 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa. |
|---|---|
| AbstractList | A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa. |
| Author | Farkas, Diana Caro, Alfredo |
| Author_xml | – sequence: 1 givenname: Diana surname: Farkas fullname: Farkas, Diana email: diana@vt.edu organization: Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA – sequence: 2 givenname: Alfredo surname: Caro fullname: Caro, Alfredo organization: †Science and Technology Campus, George Washington University, Ashburn, Virginia 20147, USA |
| BookMark | eNqFkEFLwzAYhoNMcJve_AEFr7YmaZImRxk6hYkXPYc0TbeMNqlpdti_N2MDQZievsvzvu_HMwMT550B4BbBAlFaPWz7UGCIeIEJvQBTDAnJaYnZBEwh5yTHApErMBvHLYSIwopMwfLNN6bLrIsmqOh7q7PBR-OiVd2YKddknYrRapONMSjrEpmpbGPXmzxBwQ_7THWd31-DyzYlzM3pzsHn89PH4iVfvS9fF4-rXJOSxFybltRVXSmimcBctLxUrDSixRRTznnLDTRUGMW4NoKSWnGqVc0bQVFdNqycg7tj7xD8186MUW79Lrg0KTEnlJWCUfwnhZCoKGOcJur-SOngxzGYVg7B9irsJYLyIFQmofIgVCahCce_cG2jita7g5nuXCg_hsbU7dYm_Hxyhi9OI6qvg23W5p_AN6JmmWI |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e36064 crossref_primary_10_1016_j_matchemphys_2023_128489 crossref_primary_10_1016_j_intermet_2023_108041 crossref_primary_10_1016_j_commatsci_2024_112836 crossref_primary_10_1007_s42243_025_01441_4 crossref_primary_10_1007_s44210_025_00055_5 crossref_primary_10_1016_j_actamat_2021_116886 crossref_primary_10_1016_j_physb_2025_417319 crossref_primary_10_1088_1361_651X_acf9bd crossref_primary_10_1088_1402_4896_adbd08 crossref_primary_10_1016_j_engfracmech_2022_108809 crossref_primary_10_1016_j_matdes_2022_111178 crossref_primary_10_1007_s10853_021_06314_1 crossref_primary_10_1016_j_jnucmat_2024_155514 crossref_primary_10_1016_j_mser_2021_100645 crossref_primary_10_1002_adem_202201066 crossref_primary_10_2140_jomms_2024_19_635 crossref_primary_10_3390_nano12122113 crossref_primary_10_1038_s41524_024_01260_3 crossref_primary_10_1016_j_mtcomm_2021_102464 crossref_primary_10_1061_JENMDT_EMENG_7838 crossref_primary_10_1002_adem_202001044 crossref_primary_10_1016_j_jallcom_2025_179955 crossref_primary_10_1016_j_actamat_2024_120508 crossref_primary_10_1016_j_mtcomm_2024_108187 crossref_primary_10_1063_5_0142135 crossref_primary_10_1007_s00707_024_04179_4 crossref_primary_10_1080_10667857_2023_2200660 crossref_primary_10_3390_nano15161223 crossref_primary_10_1016_j_scriptamat_2021_114330 crossref_primary_10_1063_5_0185982 crossref_primary_10_1016_j_mtcomm_2025_112065 crossref_primary_10_1016_j_mtla_2025_102531 crossref_primary_10_1016_j_physleta_2020_126516 crossref_primary_10_3390_ma14216523 crossref_primary_10_1016_j_matpr_2023_03_168 crossref_primary_10_1016_j_vacuum_2024_113369 crossref_primary_10_1016_j_commatsci_2021_110389 crossref_primary_10_1016_j_mtla_2020_100628 crossref_primary_10_1134_S0021364022100095 crossref_primary_10_1016_j_triboint_2022_107435 crossref_primary_10_1016_j_ijmecsci_2022_107065 crossref_primary_10_1016_j_jmst_2024_03_027 crossref_primary_10_1134_S0021364020120097 crossref_primary_10_1016_j_jmst_2023_06_035 crossref_primary_10_1016_j_mechmat_2024_105132 crossref_primary_10_1016_j_mtcomm_2022_103273 crossref_primary_10_1063_5_0231284 crossref_primary_10_1016_j_ijmecsci_2022_107859 crossref_primary_10_1016_j_matt_2023_09_010 crossref_primary_10_1016_j_ijmecsci_2022_107855 crossref_primary_10_1016_j_ijmecsci_2022_108026 crossref_primary_10_1016_j_ijplas_2023_103679 crossref_primary_10_1016_j_intermet_2025_108832 crossref_primary_10_1016_j_commatsci_2022_111386 crossref_primary_10_1088_1361_6528_abf7eb crossref_primary_10_1016_j_scriptamat_2021_114117 crossref_primary_10_1016_j_msea_2022_143959 crossref_primary_10_1007_s40195_022_01397_4 crossref_primary_10_1016_j_ijmecsci_2022_107800 crossref_primary_10_1016_j_msea_2021_141124 crossref_primary_10_1088_1402_4896_aceec2 crossref_primary_10_1016_j_actamat_2023_119398 crossref_primary_10_1016_j_commatsci_2023_112241 crossref_primary_10_1039_D5CP00109A crossref_primary_10_1016_j_mtla_2019_100565 crossref_primary_10_1007_s40195_023_01577_w crossref_primary_10_1088_1402_4896_ac3f6a crossref_primary_10_1016_j_physb_2025_417586 crossref_primary_10_1016_S1003_6326_23_66172_2 crossref_primary_10_3390_met11060922 crossref_primary_10_1007_s12666_024_03410_z crossref_primary_10_3390_nano15151177 crossref_primary_10_1063_5_0106637 crossref_primary_10_1016_j_vacuum_2023_112124 crossref_primary_10_3389_fmats_2022_1118952 crossref_primary_10_1016_j_commatsci_2022_111402 crossref_primary_10_1016_j_ijmecsci_2022_107597 crossref_primary_10_1016_j_matlet_2020_129206 crossref_primary_10_1016_j_commatsci_2022_111763 crossref_primary_10_1016_j_mtcomm_2024_110455 crossref_primary_10_1016_j_commatsci_2022_111762 crossref_primary_10_1038_s41467_022_32134_1 crossref_primary_10_1016_j_surfcoat_2020_126325 crossref_primary_10_1016_j_mtla_2023_101966 crossref_primary_10_1038_s41524_025_01600_x crossref_primary_10_3389_fmats_2021_673574 crossref_primary_10_3390_ma18051001 crossref_primary_10_1016_j_ijmecsci_2022_107828 crossref_primary_10_1016_j_jmst_2020_12_017 crossref_primary_10_1007_s11831_024_10201_8 crossref_primary_10_1016_j_apsusc_2021_151236 crossref_primary_10_1016_j_actamat_2022_118201 crossref_primary_10_1016_j_ijmecsci_2025_110408 crossref_primary_10_1016_j_nimb_2024_165378 crossref_primary_10_1016_j_actamat_2023_119163 crossref_primary_10_1016_j_jnucmat_2025_155837 crossref_primary_10_1016_j_mtcomm_2025_113241 crossref_primary_10_1007_s00419_021_02100_2 crossref_primary_10_1007_s10853_023_08568_3 crossref_primary_10_1063_5_0082835 crossref_primary_10_1016_j_jnoncrysol_2022_121557 crossref_primary_10_3390_jcs8040139 crossref_primary_10_1063_5_0043034 crossref_primary_10_1016_j_jallcom_2020_156533 crossref_primary_10_1063_5_0280842 crossref_primary_10_1016_j_ijplas_2024_104185 crossref_primary_10_1016_j_commatsci_2024_113640 crossref_primary_10_3390_nano13060968 crossref_primary_10_1103_PhysRevMaterials_6_093602 crossref_primary_10_1016_j_commatsci_2019_109366 crossref_primary_10_1016_j_euromechsol_2025_105762 crossref_primary_10_1016_j_jallcom_2022_168003 crossref_primary_10_1557_s43578_022_00557_7 crossref_primary_10_1007_s44210_025_00059_1 crossref_primary_10_1038_s41598_023_36899_3 crossref_primary_10_1016_j_commatsci_2022_111218 crossref_primary_10_1016_j_apmate_2023_100114 crossref_primary_10_1088_1361_651X_ad0316 crossref_primary_10_1016_j_matdes_2023_112387 crossref_primary_10_1038_s41529_024_00536_9 crossref_primary_10_1016_j_mtcomm_2025_113658 crossref_primary_10_1016_j_mtcomm_2024_110096 crossref_primary_10_1088_1361_648X_abaf93 crossref_primary_10_3390_app13064013 crossref_primary_10_1088_1742_6596_2980_1_012037 crossref_primary_10_1080_10667857_2023_2299903 crossref_primary_10_1016_j_jallcom_2022_164572 crossref_primary_10_1016_j_msea_2020_140501 crossref_primary_10_1021_acs_jpcc_4c06508 crossref_primary_10_1016_j_matchemphys_2022_125997 crossref_primary_10_1063_5_0101548 crossref_primary_10_1007_s10853_025_10781_1 crossref_primary_10_1016_j_euromechsol_2025_105662 crossref_primary_10_1093_pnasnexus_pgae117 crossref_primary_10_1016_j_matchemphys_2022_126725 crossref_primary_10_1016_j_mtcomm_2023_106337 crossref_primary_10_1557_jmr_2020_294 crossref_primary_10_1016_j_mtcomm_2023_107664 crossref_primary_10_1016_j_jallcom_2023_170952 crossref_primary_10_1016_j_jnucmat_2022_153738 crossref_primary_10_1002_pssa_202300326 crossref_primary_10_1016_j_actamat_2022_118368 crossref_primary_10_1039_D4RA08595G crossref_primary_10_1016_j_jmrt_2025_05_084 crossref_primary_10_1016_j_commatsci_2022_111551 crossref_primary_10_1016_j_matpr_2022_03_607 crossref_primary_10_1016_j_commatsci_2023_112263 crossref_primary_10_1007_s10338_023_00445_5 crossref_primary_10_1016_j_msea_2022_142854 crossref_primary_10_1016_j_matlet_2020_128024 crossref_primary_10_1080_08927022_2023_2219761 crossref_primary_10_1016_j_mtcomm_2022_104884 crossref_primary_10_1016_j_mtcomm_2024_109457 crossref_primary_10_1016_j_cossms_2024_101146 crossref_primary_10_1016_j_msea_2023_145110 crossref_primary_10_1016_j_mtcomm_2023_106562 crossref_primary_10_1088_1361_651X_ac336a crossref_primary_10_2320_matertrans_MT_Z2025001 crossref_primary_10_1016_j_mtphys_2022_100800 crossref_primary_10_1007_s40195_024_01795_w crossref_primary_10_1016_j_commatsci_2023_112758 crossref_primary_10_1016_j_mtcomm_2022_104975 crossref_primary_10_1016_j_mtcomm_2023_106759 crossref_primary_10_1016_j_jallcom_2023_169650 crossref_primary_10_1016_j_physb_2024_416667 crossref_primary_10_1039_D0RA00518E crossref_primary_10_1007_s11431_023_2589_3 crossref_primary_10_1063_5_0241905 crossref_primary_10_1016_j_jmst_2025_04_005 crossref_primary_10_1016_j_vacuum_2022_111322 crossref_primary_10_1016_j_surfcoat_2022_129136 crossref_primary_10_1007_s11661_021_06151_6 crossref_primary_10_1016_j_jmrt_2025_05_257 crossref_primary_10_1088_1361_6528_ab99ef crossref_primary_10_1016_j_commatsci_2021_110618 crossref_primary_10_1039_D3RA04759H crossref_primary_10_1557_s43578_022_00545_x crossref_primary_10_1016_j_vacuum_2024_113232 crossref_primary_10_1016_j_actamat_2021_116951 crossref_primary_10_1016_j_mtcomm_2023_105414 crossref_primary_10_1016_j_mtla_2021_101307 crossref_primary_10_1103_PhysRevMaterials_5_113601 crossref_primary_10_1016_j_msea_2025_149096 crossref_primary_10_1016_j_actamat_2022_118511 crossref_primary_10_1016_j_commatsci_2023_112191 crossref_primary_10_1016_j_commatsci_2024_113341 crossref_primary_10_1088_2515_7639_ad2983 crossref_primary_10_1007_s44210_022_00004_6 crossref_primary_10_1016_j_jmst_2022_08_033 crossref_primary_10_1016_j_commatsci_2023_112057 crossref_primary_10_1016_j_jallcom_2022_166525 crossref_primary_10_1088_1361_651X_ac860d crossref_primary_10_1016_j_ijplas_2024_103949 crossref_primary_10_1016_j_scriptamat_2022_114810 crossref_primary_10_1007_s11664_021_09343_3 crossref_primary_10_1016_j_mtcomm_2023_107627 crossref_primary_10_1016_j_matdes_2021_109950 crossref_primary_10_1557_s43578_020_00030_3 crossref_primary_10_1016_j_jmst_2025_04_022 crossref_primary_10_1557_s43580_022_00284_5 crossref_primary_10_1088_1402_4896_ad5a48 crossref_primary_10_1007_s12598_025_03531_4 crossref_primary_10_1063_5_0149734 crossref_primary_10_1063_5_0181330 crossref_primary_10_1007_s10853_022_07862_w crossref_primary_10_1016_j_msea_2025_148358 crossref_primary_10_1088_1402_4896_adbdff crossref_primary_10_1016_j_intermet_2024_108469 crossref_primary_10_1016_j_commatsci_2023_112185 crossref_primary_10_1016_j_jnucmat_2025_155797 crossref_primary_10_3390_ma17112504 crossref_primary_10_1016_j_jallcom_2023_169427 crossref_primary_10_1063_5_0024014 crossref_primary_10_1007_s11661_021_06185_w crossref_primary_10_1007_s10853_020_04387_y crossref_primary_10_1016_j_mtcomm_2023_106523 crossref_primary_10_1016_j_pmatsci_2024_101359 crossref_primary_10_1116_6_0001394 crossref_primary_10_1016_j_triboint_2022_107748 crossref_primary_10_1016_j_intermet_2025_108756 crossref_primary_10_1016_j_matdes_2024_112676 crossref_primary_10_1016_j_jallcom_2023_170084 crossref_primary_10_1016_j_jmst_2024_07_042 |
| Cites_doi | 10.1088/1367-2630/15/11/115016 10.1088/0965-0393/4/1/004 10.1007/s11837-017-2524-2 10.1007/s11837-017-2540-2 10.1080/01418619908210339 10.1016/j.intermet.2014.04.019 10.1016/j.actamat.2015.08.015 10.1103/PhysRevB.59.3393 10.1103/PhysRevMaterials.1.023404 10.3390/e15104504 10.1016/j.intermet.2013.05.002 10.1557/mrc.2014.11 10.1016/j.cossms.2017.02.002 10.1088/0965-0393/18/1/015012 10.1016/j.actamat.2016.09.032 10.1016/j.eml.2017.09.015 10.1126/science.1254581 10.1002/adem.200300567 10.1007/s11661-013-2097-9 10.1016/j.msea.2003.10.257 10.1557/jmr.2017.366 10.1088/0965-0393/4/4/003 10.1016/1359-6454(95)00145-5 10.1016/j.actamat.2013.01.042 10.1016/j.cossms.2017.08.003 10.1103/PhysRevB.60.22 10.1016/S0921-5093(98)00912-5 10.1016/j.cossms.2013.03.003 10.1016/j.pmatsci.2013.10.001 10.1557/jmr.2016.269 10.1038/ncomms9736 10.1007/s11837-017-2484-6 10.1016/j.commatsci.2018.01.055 10.1088/0965-0393/3/2/005 10.1016/j.actamat.2016.08.081 10.1016/j.intermet.2014.04.001 10.1016/B978-0-12-800251-3.00002-X 10.3389/fmats.2017.00036 10.1006/jcph.1995.1039 10.1103/PhysRevB.42.9622 10.1007/s11837-017-2461-0 10.3390/e18090321 10.1016/j.scriptamat.2012.12.002 10.1016/j.actamat.2014.04.033 |
| ContentType | Journal Article |
| Copyright | Copyright © Materials Research Society 2018 The Materials Research Society 2018 The Materials Research Society 2018. |
| Copyright_xml | – notice: Copyright © Materials Research Society 2018 – notice: The Materials Research Society 2018 – notice: The Materials Research Society 2018. |
| DBID | AAYXX CITATION 3V. 7SR 7WY 7WZ 7XB 87Z 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G HCIFZ JG9 K60 K6~ KB. L.- L.0 M0C PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0W |
| DOI | 10.1557/jmr.2018.245 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Materials Research Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences Engineered Materials Abstracts ABI/INFORM Professional Standard ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection METADEX ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| DocumentTitleAlternate | D. Farkas et al.: Model interatomic potentials and lattice strain in a high-entropy alloy |
| EISSN | 2044-5326 |
| EndPage | 3225 |
| ExternalDocumentID | 10_1557_jmr_2018_245 |
| GroupedDBID | -2P -E. -~X .DC .FH 0E1 0R~ 2JN 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8FL 8UJ 8WZ A6W AAAZR AABES AABWE AACJH AAEED AAFGU AAGFV AAHNG AAIKC AAKTX AAMNW AARAB AASVR AATID AATNV AAUKB AAYFA ABBXD ABECU ABEFU ABGDZ ABJCF ABJNI ABKAS ABKKG ABMQK ABMWE ABMYL ABQTM ABROB ABTEG ABTKH ABTMW ABUWG ABZCX ACAOD ACBEA ACBEK ACBMC ACCHT ACGFO ACGFS ACHSB ACIGE ACIHN ACIMK ACIWK ACQFJ ACQPF ACREK ACTTH ACUIJ ACUYZ ACVWB ACWGA ACWMK ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADGEJ ADOCW ADOXG AEAQA AEBAK AEFTE AEHGV AEMSY AEMTW AENEX AENGE AESKC AESTI AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFNRJ AFUTZ AGLWM AGMZJ AGOOT AGQEE AHQXX AIGNW AIHIV AIOIP AISIE AJCYY AJDOV AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ATUCA AUXHV AYIQA BBLKV BENPR BEZIV BGHMG BGLVJ BMAJL BPHCQ C0O CBIIA CCPQU CFAFE CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 DWQXO EBS EJD F5P FIGPU FRNLG HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ K60 K6~ KB. KC. KCGVB KFECR L98 LLZTM M-V M0C M7~ NIKVX NPVJJ NQJWS O9- P2P PDBOC PQBIZ PQQKQ PROAC PYCCK RAMDC RCA RNS RR0 RSV S0W S6- S6U SAAAG SJN SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 WH7 WQ3 WXU WXY YQT ZMEZD ZMTXR ZYDXJ ~02 -2V 3V. AACDK AAEWM AAJBT AASML AATMM ABAKF ABDPE ABZUI ACDTI ACETC ACPIV ACRPL ADNMO ADOVH ADOVT AEFQL AEMFK AI. AIGIU AKZCZ ARZZG BCGOX BESQT BJBOZ BQFHP CCUQV CFBFF CGQII EBLON GROUPED_ABI_INFORM_COMPLETE KAFGG LHUNA M8. PKN PQBZA ROL SCG SCLPG SJYHP VH1 VOH ZDLDU ZE2 ZJOSE ~V1 AAUYE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 L.- L.0 PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 249 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452650400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-2914 |
| IngestDate | Thu Sep 18 00:01:59 EDT 2025 Wed Sep 17 23:55:05 EDT 2025 Sat Nov 29 05:54:45 EST 2025 Tue Nov 18 22:54:58 EST 2025 Fri Feb 21 02:43:31 EST 2025 Wed Mar 13 05:42:17 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | alloy simulation interatomic arrangements |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2119756685 |
| PQPubID | 626330 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2845639652 proquest_journals_2119756685 crossref_primary_10_1557_jmr_2018_245 crossref_citationtrail_10_1557_jmr_2018_245 springer_journals_10_1557_jmr_2018_245 cambridge_journals_10_1557_jmr_2018_245 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-14 |
| PublicationDateYYYYMMDD | 2018-10-14 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, USA |
| PublicationPlace_xml | – name: New York, USA – name: Cham – name: Warrendale |
| PublicationTitle | Journal of materials research |
| PublicationTitleAbbrev | Journal of Materials Research |
| PublicationTitleAlternate | J. Mater. Res |
| PublicationYear | 2018 |
| Publisher | Cambridge University Press Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Cambridge University Press – name: Springer International Publishing – name: Springer Nature B.V |
| References | Pollock, LeSar 2013; 17 Zhang, Lu, Ma, Liaw, Tang, Cheng, Gao 2014; 4 Macdonald, Fu, Zheng, Chen, Lin, Chen, Zhang, Ivanisenko, Zhou, Hahn, Lavernia 2017; 69 Van Swygenhoven, Spaczer, Caro, Farkas 1999; 60 Farkas, Mutasa, Vailhe, Ternes 1995; 3 Zhang, Stocks, Jin, Lu, Bei, Sales, Wang, Beland, Stoller, Samolyuk, Caro, Caro, Weber 2015; 6 Otto, Yang, Bei, George 2013; 61 Vailhe, Farkas 1999; 79 Farkas, Jones 1996; 4 Song, Tian, Hu, Vitos, Wang, Shen, Chen 2017; 1 Dong, Lu, Jiang, Wang, Li 2014; 52 Plimpton 1995; 117 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie 2014; 345 Vailhe, Farkas 1998; 258 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu 2014; 61 Gao, Alman 2013; 15 Owen, Pickering, Playford, Stone, Tucker, Jones 2017; 122 Poletti, Battezzati 2014; 75 Zhang, Jin, Xue, Lu, Olsen, Beland, Ullah, Zhao, Bei, Aidhy, Samolyuk, Wang, Caro, Caro, Stocks, Larson, Robertson, Correa, Weber 2016; 31 Miracle, Senkov 2017; 122 Zaddach, Niu, Koch, Irving 2013; 65 Tamm, Aabloo, Klintenberg, Stocks, Caro 2015; 99 Yeh, Chang, Tsai, Wang, Yeh, Kuo 2014; 45A Farkas, Roqueta, Vilette, Ternes 1996; 4 Zhang, Zhao, Weber, Nordlund, Granberg, Djurabekova 2017; 21 Oh, Ma, Leyson, Grabowski, Park, Kormann, Raabe 2016; 18 Toda-Caraballo, Wrobel, Nguyen-Manh, Perez, Rivera-Diaz-Del-Castillo 2017; 69 Tian 2017; 4 Liu, Wu, He, Nieh, Lu 2013; 68 Smith, Farkas 2018; 147 Singh, Kumar, Dwivedi, Subramaniam 2014; 53 Zhao, Weber, Zhang 2017; 69 Wei, Ferreira, Bernard, Zunger 1990; 42 Cantor, Chang, Knight, Vincent 2004; 375 Farkas, Schon, DeLima, Goldenstein 1996; 44 Guo, Hu, Ng, Liu 2013; 41 Wang, Wu, Liu, Wang 2017; 17 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang 2004; 6 Diao, Feng, Dahmen, Liaw 2017; 21 Li, Raabe 2017; 69 Mishin, Farkas, Mehl, Papaconstantopoulos 1999; 59 Stukowski 2010; 18 Gao, Gao, Hawk, Ouyang, Alman, Widom 2017; 32 GaoMCAlmanDESearching for next single-phase high-entropy alloy compositionsEntropy20131545041:CAS:528:DC%2BC2cXltlyjt7o%3D10.3390/e15104504 ZhaoSJWeberWJZhangYWUnique challenges for modeling defect dynamics in concentrated solid-solution alloysJOM201769208410.1007/s11837-017-2461-0 FarkasDJonesCInteratomic potentials for ternary Nb–Ti–Al alloysModell. Simul. Mater. Sci. Eng.19964231:CAS:528:DyaK28XivFWmsLk%3D10.1088/0965-0393/4/1/004 OhHSMaDLeysonGPGrabowskiBParkESKormannFRaabeDLattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experimentEntropy20161832110.3390/e18090321 OwenLRPickeringEJPlayfordHYStoneHJTuckerMGJonesNGAn assessment of the lattice strain in the CrMnFeCoNi high-entropy alloyActa Mater.2017122111:CAS:528:DC%2BC28XhsFOmtb7O10.1016/j.actamat.2016.09.032 VailheCFarkasDTransition from dislocation core spreading to dislocation dissociation in a series of B2 compoundsPhilos. Mag. A1999799211:CAS:528:DyaK1MXitlGksrg%3D10.1080/01418619908210339 GaoMCGaoPHawkJAOuyangLZAlmanDEWidomMComputational modeling of high-entropy alloys: Structures, thermodynamics and elasticityJ. Mater. Res.20173236271:CAS:528:DC%2BC2sXhs1CktbjJ10.1557/jmr.2017.366 GuoSHuQNgCLiuCTMore than entropy in high-entropy alloys. Forming solid solutions or amorphous phaseIntermetallics2013419610.1016/j.intermet.2013.05.002 MiracleDBSenkovONA critical review of high entropy alloys and related conceptsActa Mater.20171224481:CAS:528:DC%2BC28Xhslagu7vJ10.1016/j.actamat.2016.08.081 PolettiMGBattezzatiLElectronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systemsActa Mater.2014752971:CAS:528:DC%2BC2cXhtV2qtbfF10.1016/j.actamat.2014.04.033 SinghAKKumarNDwivediASubramaniamAA geometrical parameter for the formation of disordered solid solutions in multi-component alloysIntermetallics2014531121:CAS:528:DC%2BC2cXpslGhtrg%3D10.1016/j.intermet.2014.04.019 StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the open visualization toolModell. Simul. Mater. Sci. Eng.20101801501210.1088/0965-0393/18/1/015012 PlimptonSFast parallel algorithms for short-range molecular-dynamicsJ. Comput. Phys.199511711:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039 TianFYA review of solid-solution models of high-entropy alloys based on ab lnitio calculationsFront. Mater.201743610.3389/fmats.2017.00036 ZaddachAJNiuCKochCCIrvingDLMechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloyJ. Mater.20136517801:CAS:528:DC%2BC3sXhs1ertrzP Toda-CaraballoIWrobelJSNguyen-ManhDPerezPRivera-Diaz-Del-CastilloPEJSimulation and modeling in high entropy alloysJOM201769213710.1007/s11837-017-2524-2 HammerschmidtTBialonAFPettiforDDrautzRTopologically close-packed phases in binary transition-metal compounds: matching high-throughput ab initio calculations to an empirical structure mapNew J. Phys.20131511501610.1088/1367-2630/15/11/115016 YehJWChenSKLinSJGanJYChinTSShunTTTsauCHChangSYNanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomesAdv. Eng. Mater.200462991:CAS:528:DC%2BD2cXlsFCrtL4%3D10.1002/adem.200300567 WeiSHFerreiraLGBernardJEZungerAElectronic properties of random alloys: Special quasirandom structuresPhys. Rev. B19904296221:CAS:528:DyaK3MXkvFygtg%3D%3D10.1103/PhysRevB.42.9622 ZhangYWJinKXueHZLuCYOlsenRJBelandLKUllahMWZhaoSJBeiHBAidhyDSSamolyukGDWangLMCaroMCaroAStocksGMLarsonBCRobertsonIMCorreaAAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in advanced alloysJ. Mater. Res.201631236310.1557/jmr.2016.269 ZhangYZuoTTTangZGaoMCDahmenKALiawPKLuZPMicrostructures and properties of high-entropy alloysProg. Mater. Sci.201461110.1016/j.pmatsci.2013.10.001 ZhangYWStocksGMJinKLuCYBeiHBSalesBCWangLMBelandLKStollerRESamolyukGDCaroMCaroAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloysNat. Commun.2015687361:CAS:528:DC%2BC2MXhslCnt7jN10.1038/ncomms9736 YehA-CChangY-JTsaiC-WWangY-CYehJ-WKuoC-MOn the solidification and phase stability of a Co–Cr–Fe–Ni–Ti high-entropy alloyMetall. Mater. Trans. A201445A18410.1007/s11661-013-2097-9 MishinYFarkasDMehlMJPapaconstantopoulosDAInteratomic potentials for monoatomic metals from experimental data and ab initio calculationsPhys. Rev. B19995933931:CAS:528:DyaK1MXmvFGmug%3D%3D10.1103/PhysRevB.59.3393 FarkasDRoquetaDViletteATernesKAtomistic simulations in ternary Ni–Ti–Al alloysModell. Simul. Mater. Sci. Eng.199643591:CAS:528:DyaK28XmvVylsbo%3D10.1088/0965-0393/4/4/003 DongYLuYPJiangLWangTMLiTJEffects of electro-negativity on the stability of topologically close-packed phase in high entropy alloysIntermetallics2014521051:CAS:528:DC%2BC2cXotFWqtrk%3D10.1016/j.intermet.2014.04.001 MacdonaldBEFuZZhengBChenWLinYChenFZhangLIvanisenkoJZhouYHahnHLaverniaEJRecent progress in high entropy alloy ResearchJOM201769202410.1007/s11837-017-2484-6 PollockTMLeSarRThe feedback loop between theory, simulation and experiment for plasticity and property modelingCurr. Opin. Solid State Mater. Sci.201317101:CAS:528:DC%2BC3sXms1KnsL4%3D10.1016/j.cossms.2013.03.003 VailheCFarkasDInteratomic potentials and dislocation simulation for the ternary B2 Ni–35Al–12Fe alloyMater. Sci. Eng., A19982582610.1016/S0921-5093(98)00912-5 CantorBChangITHKnightPVincentAJBMicrostructural development in equiatomic multicomponent alloysMater. Sci. Eng., A200437521310.1016/j.msea.2003.10.257 Van SwygenhovenHSpaczerMCaroAFarkasDCompeting plastic deformation mechanisms in nanophase metalsPhys. Rev. B1999602210.1103/PhysRevB.60.22 OttoFYangYBeiHGeorgeEPRelative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloysActa Mater.20136126281:CAS:528:DC%2BC3sXisVShtbg%3D10.1016/j.actamat.2013.01.042 MurtyBSYehJWRanganathanSHigh-Entropy Alloys2014Oxford, United KingdomElsevier WangPWuYLiuJBWangHTImpacts of atomic scale lattice distortion on dislocation activity in high-entropy alloysExtreme Mech. Lett.2017173810.1016/j.eml.2017.09.015 GludovatzBHohenwarterACatoorDChangEHGeorgeEPRitchieROA fracture-resistant high-entropy alloy for cryogenic applicationsScience201434511531:CAS:528:DC%2BC2cXhsVGhtLbL10.1126/science.1254581 SongHQTianFYHuQMVitosLWangYDShenJChenNXLocal lattice distortion in high-entropy alloysPhys. Rev. Mater.2017102340410.1103/PhysRevMaterials.1.023404 TammAAablooAKlintenbergMStocksMCaroAAtomic-scale properties of Ni-based FCC ternary, and quaternary alloysActa Mater.2015993071:CAS:528:DC%2BC2MXhsVajur%2FJ10.1016/j.actamat.2015.08.015 LiZMRaabeDStrong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical propertiesJOM20176920991:CAS:528:DC%2BC2sXhsVWksLjO10.1007/s11837-017-2540-2 FarkasDMutasaBVailheCTernesKInteratomic potentials for B2 nial and martensitic phasesModell. Simul. Mater. Sci. Eng.199532011:CAS:528:DyaK2MXlvVKlu7c%3D10.1088/0965-0393/3/2/005 DiaoHYFengRDahmenKALiawPKFundamental deformation behavior in high-entropy alloys: An overviewCurr. Opin. Solid State Mater. Sci.2017212521:CAS:528:DC%2BC2sXhsVyrtrzK10.1016/j.cossms.2017.08.003 ZhangYWZhaoSJWeberWJNordlundKGranbergFDjurabekovaFAtomic-level heterogeneity and defect dynamics in concentrated solid-solution alloysCurr. Opin. Solid State Mater. Sci.2017212211:CAS:528:DC%2BC2sXltlKhtrc%3D10.1016/j.cossms.2017.02.002 LiuWHWuYHeJYNiehTGLuZPGrain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloyScr. Mater.2013685261:CAS:528:DC%2BC38XhvFWhsL3P10.1016/j.scriptamat.2012.12.002 FarkasDSchonCGDeLimaMSFGoldensteinHEmbedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe–Cr alloysActa Mater.1996444091:CAS:528:DyaK28XhvFWktQ%3D%3D10.1016/1359-6454(95)00145-5 SmithLFarkasDConnecting interatomic potential characteristics with deformation response in FCC materialsComput. Mater. Sci.2018147181:CAS:528:DC%2BC1cXisVyitbc%3D10.1016/j.commatsci.2018.01.055 ZhangYLuZPMaSGLiawPKTangZChengYQGaoMCGuidelines in predicting phase formation of high-entropy alloysMRS Commun.20144571:CAS:528:DC%2BC2cXhtVCrur3P10.1557/mrc.2014.11 Zaddach (S0884291418002455_ref9) 2013; 65 S0884291418002455_ref20 S0884291418002455_ref42 S0884291418002455_ref21 S0884291418002455_ref43 S0884291418002455_ref22 S0884291418002455_ref44 S0884291418002455_ref45 S0884291418002455_ref23 S0884291418002455_ref40 S0884291418002455_ref41 S0884291418002455_ref6 S0884291418002455_ref17 S0884291418002455_ref39 S0884291418002455_ref7 S0884291418002455_ref18 S0884291418002455_ref19 S0884291418002455_ref8 S0884291418002455_ref35 S0884291418002455_ref13 S0884291418002455_ref14 S0884291418002455_ref36 S0884291418002455_ref37 S0884291418002455_ref15 S0884291418002455_ref16 S0884291418002455_ref38 S0884291418002455_ref1 S0884291418002455_ref2 S0884291418002455_ref3 S0884291418002455_ref4 S0884291418002455_ref5 S0884291418002455_ref31 S0884291418002455_ref10 S0884291418002455_ref32 S0884291418002455_ref11 S0884291418002455_ref33 S0884291418002455_ref34 S0884291418002455_ref12 S0884291418002455_ref30 S0884291418002455_ref28 S0884291418002455_ref29 S0884291418002455_ref24 S0884291418002455_ref25 S0884291418002455_ref26 S0884291418002455_ref27 |
| References_xml | – volume: 6 start-page: 299 year: 2004 article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 79 start-page: 921 year: 1999 article-title: Transition from dislocation core spreading to dislocation dissociation in a series of B2 compounds publication-title: Philos. Mag. A – volume: 32 start-page: 3627 year: 2017 article-title: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity publication-title: J. Mater. Res. – volume: 61 start-page: 1 year: 2014 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 122 start-page: 11 year: 2017 article-title: An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. – volume: 6 start-page: 8736 year: 2015 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun. – volume: 69 start-page: 2084 year: 2017 article-title: Unique challenges for modeling defect dynamics in concentrated solid-solution alloys publication-title: JOM – volume: 60 start-page: 22 year: 1999 article-title: Competing plastic deformation mechanisms in nanophase metals publication-title: Phys. Rev. B – volume: 31 start-page: 2363 year: 2016 article-title: Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys publication-title: J. Mater. Res. – volume: 258 start-page: 26 year: 1998 article-title: Interatomic potentials and dislocation simulation for the ternary B2 Ni–35Al–12Fe alloy publication-title: Mater. Sci. Eng., A – volume: 17 start-page: 10 year: 2013 article-title: The feedback loop between theory, simulation and experiment for plasticity and property modeling publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 53 start-page: 112 year: 2014 article-title: A geometrical parameter for the formation of disordered solid solutions in multi-component alloys publication-title: Intermetallics – volume: 42 start-page: 9622 year: 1990 article-title: Electronic properties of random alloys: Special quasirandom structures publication-title: Phys. Rev. B – volume: 69 start-page: 2137 year: 2017 article-title: Simulation and modeling in high entropy alloys publication-title: JOM – volume: 68 start-page: 526 year: 2013 article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy publication-title: Scr. Mater. – volume: 375 start-page: 213 year: 2004 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng., A – volume: 69 start-page: 2024 year: 2017 article-title: Recent progress in high entropy alloy Research publication-title: JOM – volume: 52 start-page: 105 year: 2014 article-title: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys publication-title: Intermetallics – volume: 122 start-page: 448 year: 2017 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 41 start-page: 96 year: 2013 article-title: More than entropy in high-entropy alloys. Forming solid solutions or amorphous phase publication-title: Intermetallics – volume: 15 start-page: 4504 year: 2013 article-title: Searching for next single-phase high-entropy alloy compositions publication-title: Entropy – volume: 117 start-page: 1 year: 1995 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys. – volume: 18 start-page: 015012 year: 2010 article-title: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 147 start-page: 18 year: 2018 article-title: Connecting interatomic potential characteristics with deformation response in FCC materials publication-title: Comput. Mater. Sci. – volume: 3 start-page: 201 year: 1995 article-title: Interatomic potentials for B2 nial and martensitic phases publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 1 start-page: 023404 year: 2017 article-title: Local lattice distortion in high-entropy alloys publication-title: Phys. Rev. Mater. – volume: 21 start-page: 252 year: 2017 article-title: Fundamental deformation behavior in high-entropy alloys: An overview publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 65 start-page: 1780 year: 2013 article-title: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy publication-title: J. Mater. – volume: 61 start-page: 2628 year: 2013 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater. – volume: 21 start-page: 221 year: 2017 article-title: Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 17 start-page: 38 year: 2017 article-title: Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys publication-title: Extreme Mech. Lett. – volume: 345 start-page: 1153 year: 2014 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 69 start-page: 2099 year: 2017 article-title: Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties publication-title: JOM – volume: 4 start-page: 359 year: 1996 article-title: Atomistic simulations in ternary Ni–Ti–Al alloys publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 4 start-page: 57 year: 2014 article-title: Guidelines in predicting phase formation of high-entropy alloys publication-title: MRS Commun. – volume: 75 start-page: 297 year: 2014 article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems publication-title: Acta Mater. – volume: 4 start-page: 23 year: 1996 article-title: Interatomic potentials for ternary Nb–Ti–Al alloys publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 45A start-page: 184 year: 2014 article-title: On the solidification and phase stability of a Co–Cr–Fe–Ni–Ti high-entropy alloy publication-title: Metall. Mater. Trans. A – volume: 4 start-page: 36 year: 2017 article-title: A review of solid-solution models of high-entropy alloys based on ab lnitio calculations publication-title: Front. Mater. – volume: 44 start-page: 409 year: 1996 article-title: Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe–Cr alloys publication-title: Acta Mater. – volume: 59 start-page: 3393 year: 1999 article-title: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations publication-title: Phys. Rev. B – volume: 99 start-page: 307 year: 2015 article-title: Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys publication-title: Acta Mater. – volume: 18 start-page: 321 year: 2016 article-title: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment publication-title: Entropy – reference: YehJWChenSKLinSJGanJYChinTSShunTTTsauCHChangSYNanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomesAdv. Eng. Mater.200462991:CAS:528:DC%2BD2cXlsFCrtL4%3D10.1002/adem.200300567 – reference: ZaddachAJNiuCKochCCIrvingDLMechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloyJ. Mater.20136517801:CAS:528:DC%2BC3sXhs1ertrzP – reference: ZhangYLuZPMaSGLiawPKTangZChengYQGaoMCGuidelines in predicting phase formation of high-entropy alloysMRS Commun.20144571:CAS:528:DC%2BC2cXhtVCrur3P10.1557/mrc.2014.11 – reference: VailheCFarkasDInteratomic potentials and dislocation simulation for the ternary B2 Ni–35Al–12Fe alloyMater. Sci. Eng., A19982582610.1016/S0921-5093(98)00912-5 – reference: SinghAKKumarNDwivediASubramaniamAA geometrical parameter for the formation of disordered solid solutions in multi-component alloysIntermetallics2014531121:CAS:528:DC%2BC2cXpslGhtrg%3D10.1016/j.intermet.2014.04.019 – reference: WangPWuYLiuJBWangHTImpacts of atomic scale lattice distortion on dislocation activity in high-entropy alloysExtreme Mech. Lett.2017173810.1016/j.eml.2017.09.015 – reference: OwenLRPickeringEJPlayfordHYStoneHJTuckerMGJonesNGAn assessment of the lattice strain in the CrMnFeCoNi high-entropy alloyActa Mater.2017122111:CAS:528:DC%2BC28XhsFOmtb7O10.1016/j.actamat.2016.09.032 – reference: OttoFYangYBeiHGeorgeEPRelative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloysActa Mater.20136126281:CAS:528:DC%2BC3sXisVShtbg%3D10.1016/j.actamat.2013.01.042 – reference: Van SwygenhovenHSpaczerMCaroAFarkasDCompeting plastic deformation mechanisms in nanophase metalsPhys. Rev. B1999602210.1103/PhysRevB.60.22 – reference: DongYLuYPJiangLWangTMLiTJEffects of electro-negativity on the stability of topologically close-packed phase in high entropy alloysIntermetallics2014521051:CAS:528:DC%2BC2cXotFWqtrk%3D10.1016/j.intermet.2014.04.001 – reference: FarkasDMutasaBVailheCTernesKInteratomic potentials for B2 nial and martensitic phasesModell. Simul. Mater. Sci. Eng.199532011:CAS:528:DyaK2MXlvVKlu7c%3D10.1088/0965-0393/3/2/005 – reference: ZhangYWZhaoSJWeberWJNordlundKGranbergFDjurabekovaFAtomic-level heterogeneity and defect dynamics in concentrated solid-solution alloysCurr. Opin. Solid State Mater. Sci.2017212211:CAS:528:DC%2BC2sXltlKhtrc%3D10.1016/j.cossms.2017.02.002 – reference: HammerschmidtTBialonAFPettiforDDrautzRTopologically close-packed phases in binary transition-metal compounds: matching high-throughput ab initio calculations to an empirical structure mapNew J. Phys.20131511501610.1088/1367-2630/15/11/115016 – reference: GuoSHuQNgCLiuCTMore than entropy in high-entropy alloys. Forming solid solutions or amorphous phaseIntermetallics2013419610.1016/j.intermet.2013.05.002 – reference: MurtyBSYehJWRanganathanSHigh-Entropy Alloys2014Oxford, United KingdomElsevier – reference: ZhaoSJWeberWJZhangYWUnique challenges for modeling defect dynamics in concentrated solid-solution alloysJOM201769208410.1007/s11837-017-2461-0 – reference: GaoMCAlmanDESearching for next single-phase high-entropy alloy compositionsEntropy20131545041:CAS:528:DC%2BC2cXltlyjt7o%3D10.3390/e15104504 – reference: ZhangYWStocksGMJinKLuCYBeiHBSalesBCWangLMBelandLKStollerRESamolyukGDCaroMCaroAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloysNat. Commun.2015687361:CAS:528:DC%2BC2MXhslCnt7jN10.1038/ncomms9736 – reference: WeiSHFerreiraLGBernardJEZungerAElectronic properties of random alloys: Special quasirandom structuresPhys. Rev. B19904296221:CAS:528:DyaK3MXkvFygtg%3D%3D10.1103/PhysRevB.42.9622 – reference: LiZMRaabeDStrong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical propertiesJOM20176920991:CAS:528:DC%2BC2sXhsVWksLjO10.1007/s11837-017-2540-2 – reference: MishinYFarkasDMehlMJPapaconstantopoulosDAInteratomic potentials for monoatomic metals from experimental data and ab initio calculationsPhys. Rev. B19995933931:CAS:528:DyaK1MXmvFGmug%3D%3D10.1103/PhysRevB.59.3393 – reference: StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the open visualization toolModell. Simul. Mater. Sci. Eng.20101801501210.1088/0965-0393/18/1/015012 – reference: GludovatzBHohenwarterACatoorDChangEHGeorgeEPRitchieROA fracture-resistant high-entropy alloy for cryogenic applicationsScience201434511531:CAS:528:DC%2BC2cXhsVGhtLbL10.1126/science.1254581 – reference: TianFYA review of solid-solution models of high-entropy alloys based on ab lnitio calculationsFront. Mater.201743610.3389/fmats.2017.00036 – reference: MacdonaldBEFuZZhengBChenWLinYChenFZhangLIvanisenkoJZhouYHahnHLaverniaEJRecent progress in high entropy alloy ResearchJOM201769202410.1007/s11837-017-2484-6 – reference: OhHSMaDLeysonGPGrabowskiBParkESKormannFRaabeDLattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experimentEntropy20161832110.3390/e18090321 – reference: MiracleDBSenkovONA critical review of high entropy alloys and related conceptsActa Mater.20171224481:CAS:528:DC%2BC28Xhslagu7vJ10.1016/j.actamat.2016.08.081 – reference: CantorBChangITHKnightPVincentAJBMicrostructural development in equiatomic multicomponent alloysMater. Sci. Eng., A200437521310.1016/j.msea.2003.10.257 – reference: VailheCFarkasDTransition from dislocation core spreading to dislocation dissociation in a series of B2 compoundsPhilos. Mag. A1999799211:CAS:528:DyaK1MXitlGksrg%3D10.1080/01418619908210339 – reference: LiuWHWuYHeJYNiehTGLuZPGrain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloyScr. Mater.2013685261:CAS:528:DC%2BC38XhvFWhsL3P10.1016/j.scriptamat.2012.12.002 – reference: FarkasDSchonCGDeLimaMSFGoldensteinHEmbedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe–Cr alloysActa Mater.1996444091:CAS:528:DyaK28XhvFWktQ%3D%3D10.1016/1359-6454(95)00145-5 – reference: GaoMCGaoPHawkJAOuyangLZAlmanDEWidomMComputational modeling of high-entropy alloys: Structures, thermodynamics and elasticityJ. Mater. Res.20173236271:CAS:528:DC%2BC2sXhs1CktbjJ10.1557/jmr.2017.366 – reference: FarkasDRoquetaDViletteATernesKAtomistic simulations in ternary Ni–Ti–Al alloysModell. Simul. Mater. Sci. Eng.199643591:CAS:528:DyaK28XmvVylsbo%3D10.1088/0965-0393/4/4/003 – reference: TammAAablooAKlintenbergMStocksMCaroAAtomic-scale properties of Ni-based FCC ternary, and quaternary alloysActa Mater.2015993071:CAS:528:DC%2BC2MXhsVajur%2FJ10.1016/j.actamat.2015.08.015 – reference: SmithLFarkasDConnecting interatomic potential characteristics with deformation response in FCC materialsComput. Mater. Sci.2018147181:CAS:528:DC%2BC1cXisVyitbc%3D10.1016/j.commatsci.2018.01.055 – reference: ZhangYWJinKXueHZLuCYOlsenRJBelandLKUllahMWZhaoSJBeiHBAidhyDSSamolyukGDWangLMCaroMCaroAStocksGMLarsonBCRobertsonIMCorreaAAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in advanced alloysJ. Mater. Res.201631236310.1557/jmr.2016.269 – reference: Toda-CaraballoIWrobelJSNguyen-ManhDPerezPRivera-Diaz-Del-CastilloPEJSimulation and modeling in high entropy alloysJOM201769213710.1007/s11837-017-2524-2 – reference: YehA-CChangY-JTsaiC-WWangY-CYehJ-WKuoC-MOn the solidification and phase stability of a Co–Cr–Fe–Ni–Ti high-entropy alloyMetall. Mater. Trans. A201445A18410.1007/s11661-013-2097-9 – reference: SongHQTianFYHuQMVitosLWangYDShenJChenNXLocal lattice distortion in high-entropy alloysPhys. Rev. Mater.2017102340410.1103/PhysRevMaterials.1.023404 – reference: PolettiMGBattezzatiLElectronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systemsActa Mater.2014752971:CAS:528:DC%2BC2cXhtV2qtbfF10.1016/j.actamat.2014.04.033 – reference: ZhangYZuoTTTangZGaoMCDahmenKALiawPKLuZPMicrostructures and properties of high-entropy alloysProg. Mater. Sci.201461110.1016/j.pmatsci.2013.10.001 – reference: DiaoHYFengRDahmenKALiawPKFundamental deformation behavior in high-entropy alloys: An overviewCurr. Opin. Solid State Mater. Sci.2017212521:CAS:528:DC%2BC2sXhsVyrtrzK10.1016/j.cossms.2017.08.003 – reference: FarkasDJonesCInteratomic potentials for ternary Nb–Ti–Al alloysModell. Simul. Mater. Sci. Eng.19964231:CAS:528:DyaK28XivFWmsLk%3D10.1088/0965-0393/4/1/004 – reference: PollockTMLeSarRThe feedback loop between theory, simulation and experiment for plasticity and property modelingCurr. Opin. Solid State Mater. Sci.201317101:CAS:528:DC%2BC3sXms1KnsL4%3D10.1016/j.cossms.2013.03.003 – reference: PlimptonSFast parallel algorithms for short-range molecular-dynamicsJ. Comput. Phys.199511711:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039 – ident: S0884291418002455_ref41 doi: 10.1088/1367-2630/15/11/115016 – ident: S0884291418002455_ref36 doi: 10.1088/0965-0393/4/1/004 – ident: S0884291418002455_ref28 doi: 10.1007/s11837-017-2524-2 – ident: S0884291418002455_ref44 doi: 10.1007/s11837-017-2540-2 – ident: S0884291418002455_ref30 doi: 10.1080/01418619908210339 – volume: 65 start-page: 1780 year: 2013 ident: S0884291418002455_ref9 article-title: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy publication-title: J. Mater. – ident: S0884291418002455_ref15 doi: 10.1016/j.intermet.2014.04.019 – ident: S0884291418002455_ref22 doi: 10.1016/j.actamat.2015.08.015 – ident: S0884291418002455_ref34 doi: 10.1103/PhysRevB.59.3393 – ident: S0884291418002455_ref19 doi: 10.1103/PhysRevMaterials.1.023404 – ident: S0884291418002455_ref14 doi: 10.3390/e15104504 – ident: S0884291418002455_ref33 doi: 10.1016/j.intermet.2013.05.002 – ident: S0884291418002455_ref11 doi: 10.1557/mrc.2014.11 – ident: S0884291418002455_ref45 doi: 10.1016/j.cossms.2017.02.002 – ident: S0884291418002455_ref40 doi: 10.1088/0965-0393/18/1/015012 – ident: S0884291418002455_ref43 doi: 10.1016/j.actamat.2016.09.032 – ident: S0884291418002455_ref18 doi: 10.1016/j.eml.2017.09.015 – ident: S0884291418002455_ref10 doi: 10.1126/science.1254581 – ident: S0884291418002455_ref7 doi: 10.1002/adem.200300567 – ident: S0884291418002455_ref12 doi: 10.1007/s11661-013-2097-9 – ident: S0884291418002455_ref5 doi: 10.1016/j.msea.2003.10.257 – ident: S0884291418002455_ref24 doi: 10.1557/jmr.2017.366 – ident: S0884291418002455_ref37 doi: 10.1088/0965-0393/4/4/003 – ident: S0884291418002455_ref38 doi: 10.1016/1359-6454(95)00145-5 – ident: S0884291418002455_ref6 doi: 10.1016/j.actamat.2013.01.042 – ident: S0884291418002455_ref17 doi: 10.1016/j.cossms.2017.08.003 – ident: S0884291418002455_ref29 doi: 10.1103/PhysRevB.60.22 – ident: S0884291418002455_ref31 doi: 10.1016/S0921-5093(98)00912-5 – ident: S0884291418002455_ref25 doi: 10.1016/j.cossms.2013.03.003 – ident: S0884291418002455_ref2 doi: 10.1016/j.pmatsci.2013.10.001 – ident: S0884291418002455_ref21 doi: 10.1557/jmr.2016.269 – ident: S0884291418002455_ref23 doi: 10.1038/ncomms9736 – ident: S0884291418002455_ref4 doi: 10.1007/s11837-017-2484-6 – ident: S0884291418002455_ref32 doi: 10.1016/j.commatsci.2018.01.055 – ident: S0884291418002455_ref35 doi: 10.1088/0965-0393/3/2/005 – ident: S0884291418002455_ref3 doi: 10.1016/j.actamat.2016.08.081 – ident: S0884291418002455_ref13 doi: 10.1016/j.intermet.2014.04.001 – ident: S0884291418002455_ref1 doi: 10.1016/B978-0-12-800251-3.00002-X – ident: S0884291418002455_ref42 doi: 10.3389/fmats.2017.00036 – ident: S0884291418002455_ref39 doi: 10.1006/jcph.1995.1039 – ident: S0884291418002455_ref27 doi: 10.1103/PhysRevB.42.9622 – ident: S0884291418002455_ref26 doi: 10.1007/s11837-017-2461-0 – ident: S0884291418002455_ref20 doi: 10.3390/e18090321 – ident: S0884291418002455_ref8 doi: 10.1016/j.scriptamat.2012.12.002 – ident: S0884291418002455_ref16 doi: 10.1016/j.actamat.2014.04.033 |
| SSID | ssj0015074 |
| Score | 2.6402524 |
| Snippet | A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to... |
| SourceID | proquest crossref springer cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3218 |
| SubjectTerms | Alloys Applied and Technical Physics Biomaterials Chromium Computer simulation Copper Deformation Embedded atom method Energy Entropy Grain size Heat of mixing High entropy alloys Inorganic Chemistry Intermetallic compounds Lattice strain Materials Engineering Materials research Materials Science Mechanical properties Mixtures Nanotechnology Nickel Phase separation Simulation Solid solutions Strain hardening Temperature Trends Values |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZggAQH3ojxUg48DqjA2qRNTggQjwOaEALErUrSTBoa21gLEv8eu8s2QMCFcyzFrd34c-x-BtgWNtSRcZyqupigWK0CRAkucDZLMEAZGZd0DA_XSb0uHx_Vjb9wy31b5eBMLA_qrGPpjvyQmMgSxB5SHHdfApoaRdVVP0JjHCZonVdg4vS8fnM7rCMg2uF9HMmDUNW4b30XIjl8eiY60Jo8COlXphGxwtcANUKd3wqlZfy5mPuv5vMw65EnO-m7ygKMufYizHziI1yEqbIf1OZLcEkz0lqMyCSoDv_ctKzbKaizCN2V6XbGWrqgvjmWl0MmUJJpRtzHAV0Xd7rvjCr678twf3F-d3YV-JkLgeURLwLrGtwkJtHcxgqTsYaMdBw51QhFKDBbbkh35IRyOpbWKcGNlsJqIzNEaibK4mgFKu1O260CS4xWxrmQSqlcJ04ZRE-ZiYgwH_P5sAp7w5ee-i8nTykpQfOkaJ6UzJOieaqwPzBJaj11OT1c6xfpnaF0t0_Z8YvcxsBeo-1Hxvp5WSLgjFQsUPvdgUP8rfza39uswzRJUjis8Q2oFL1XtwmT9q1o5r0t788fXmj9aw priority: 102 providerName: ProQuest |
| Title | Model interatomic potentials and lattice strain in a high-entropy alloy |
| URI | https://www.cambridge.org/core/product/identifier/S0884291418002455/type/journal_article https://link.springer.com/article/10.1557/jmr.2018.245 https://www.proquest.com/docview/2119756685 https://www.proquest.com/docview/2845639652 |
| Volume | 33 |
| WOSCitedRecordID | wos000452650400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: 7WY dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: M0C dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: KB. dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2044-5326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB6sB-iDR1WsR9kHjwdJsckm2X1UqQpqEc_6FHY3W1BqW5oo-O-dSZN6QEVfQkImZDO7yXyTb_gGYNs3rvK05cTqYoJilHQQJVjHmjjEAKVFkMkx3F-EzaZoteRVnigmRbV7QUlmX-qsRw-m7c8vJN9ZFzWX-yWYwkAn6EW8vrkfsQaIbfgQNXLHlXWeF7r_vPqrjML3cPSJMX_Qolm0OVn47zgXYT7HlexwuBCWYMJ2yzD3RW2wDDNZtadJluGUOqB1GElFEMv-8mRYv5dS3RAuRqa6MeuolKriWJK1kEBLphgpGzv0M7jXf2fE17-vwN1J4_b4zMk7KjiGezx1jG1zHepQcRNITLXawlOBZ2Xb9V0fc-G2sAfWl1YFwljpc62Eb5QWMeIw7cWBtwqT3V7XrgELtZLaWpeIUq5CKzVio1h7JIeP2bpbgb2Rk6P8vUgiSjnQSRE6KSInReikCuwXUxCZXJicHq4zxnpnZN0fCnKMsdssZvPz9iRnFyKAFWNOC4STngx8HP1uMbm_D379r4YbMEu7FPbqfBMm08Gr3YJp85Y-JYMqlMKHxypMHTWaV9d4dH5Uw-3lwXE1W-Ef8Af0BQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PU9QwFH6DoIMcUBFHfqg5iB6cCpsmbXJgGAZFGNYdD-hwq0n6dgZn2V1phdl_ir-R97rtrjrCjYPnpk3SfEm-l_fyPYDXOkgXe1Ts1SUDJTgbEUvACEOe0gblTVLJMXxrp52OOTmxX2bgqrkLw2GVzZpYLdT5IPAZ-SYrkaXEPYzeGf6MOGsUe1ebFBpjWBzh6JJMtmL78AON74aU-x-P9w6iOqtAFFSsyihgV_nUp06FxJK50TWxS2K0XamlJnuwa3ALtUWXmIBWK--MDs6bnLiIj_Mkpu_egzmlaDpwqODW3sRrQdxKjVmriqRtqTrQXut088cZi4-2zHvJF6emMg5_bodTjvuXW7ba7fYf_W__6TEs1rxa7I4nwhOYwf4SLPymtrgED6po11A8hU-cAa4nWCqDowzOToMYDkqOm6LJKFw_Fz1XclSgKKoUGlRSOMHKzhEfhg-GI8HxCqNl-HonfXoGs_1BH5-DSL2zHlGyo1i5FK0nbpj7mNMBoJdyBd5OBjmr14UiY5OL4JARHDKGQ0ZwWIF3DQSyUAuzc-d6N5TemJQejgVJbii33uBjWv0UHP9-bIhOxzbR1Po3DQBvb_zq7dW8gvmD48_trH3YOVqDh_wWb_wttQ6z5fkvfAH3w0V5Wpy_rGaSgO93DclrvMtaTw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAceBQQhQI-UDigsKxjx_YBIURZqFqteuDRnoLtTKSi7e7SBND-NX4dM9lkFxDtrQfOcWI7_mx_4xl_A_BIR-nTgIq9umSgRO8SYgmYYCwMbVDBZo0cw8ddMxza_X23twI_u7swHFbZrYnNQl1MIp-R91iJzBD3sLpXtmERe1uDl9OvCWeQYk9rl05jDpEdnP0g8616sb1FY70p5eDN-9fvkjbDQBJVquokYqmCCcarmDkyPUqb-ixFV0otNdmGpcXnqB36zEZ0WgVvdfTBFsRLQlpkKX33HJw3jHuaS-bTwcKDQTxLzRmsSqTrqzboXmvT-3LEQqR9-0zyJaqlpMOfW-OS7_7lom12vsG1__mfXYerLd8Wr-YT5Aas4HgNrvymwrgGF5so2FjdhLecGW4kWEKDow-ODqOYTmqOp6JJKvy4ECNfc7SgqJrUGlRSeMGKzwkfkk-mM8FxDLNb8OFM-nQbVseTMd4BYYJ3AVGyA1l5gy4QZyxCymkCMEi5Dk8WA56360WVsylG0MgJGjlDIydorMPTDg55bAXbuXOjE0pvLkpP50IlJ5Tb6LCyrH4JlH8_tkSzU5dpav3jDoynN_7u6dU8hEuExHx3e7hzDy7zS8wH-moDVuvjb3gfLsTv9WF1_KCZVAI-nzUifwFnFmNs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+interatomic+potentials+and+lattice+strain+in+a+high-entropy+alloy&rft.jtitle=Journal+of+materials+research&rft.au=Farkas%2C+Diana&rft.au=Caro%2C+Alfredo&rft.date=2018-10-14&rft.pub=Springer+Nature+B.V&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=33&rft.issue=19&rft.spage=3218&rft.epage=3225&rft_id=info:doi/10.1557%2Fjmr.2018.245&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |