Model interatomic potentials and lattice strain in a high-entropy alloy

A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of materials research Ročník 33; číslo 19; s. 3218 - 3225
Hlavní autoři: Farkas, Diana, Caro, Alfredo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 14.10.2018
Springer International Publishing
Springer Nature B.V
Témata:
ISSN:0884-2914, 2044-5326
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa.
AbstractList A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa.
Author Farkas, Diana
Caro, Alfredo
Author_xml – sequence: 1
  givenname: Diana
  surname: Farkas
  fullname: Farkas, Diana
  email: diana@vt.edu
  organization: Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 2
  givenname: Alfredo
  surname: Caro
  fullname: Caro, Alfredo
  organization: †Science and Technology Campus, George Washington University, Ashburn, Virginia 20147, USA
BookMark eNqFkEFLwzAYhoNMcJve_AEFr7YmaZImRxk6hYkXPYc0TbeMNqlpdti_N2MDQZievsvzvu_HMwMT550B4BbBAlFaPWz7UGCIeIEJvQBTDAnJaYnZBEwh5yTHApErMBvHLYSIwopMwfLNN6bLrIsmqOh7q7PBR-OiVd2YKddknYrRapONMSjrEpmpbGPXmzxBwQ_7THWd31-DyzYlzM3pzsHn89PH4iVfvS9fF4-rXJOSxFybltRVXSmimcBctLxUrDSixRRTznnLDTRUGMW4NoKSWnGqVc0bQVFdNqycg7tj7xD8186MUW79Lrg0KTEnlJWCUfwnhZCoKGOcJur-SOngxzGYVg7B9irsJYLyIFQmofIgVCahCce_cG2jita7g5nuXCg_hsbU7dYm_Hxyhi9OI6qvg23W5p_AN6JmmWI
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e36064
crossref_primary_10_1016_j_matchemphys_2023_128489
crossref_primary_10_1016_j_intermet_2023_108041
crossref_primary_10_1016_j_commatsci_2024_112836
crossref_primary_10_1007_s42243_025_01441_4
crossref_primary_10_1007_s44210_025_00055_5
crossref_primary_10_1016_j_actamat_2021_116886
crossref_primary_10_1016_j_physb_2025_417319
crossref_primary_10_1088_1361_651X_acf9bd
crossref_primary_10_1088_1402_4896_adbd08
crossref_primary_10_1016_j_engfracmech_2022_108809
crossref_primary_10_1016_j_matdes_2022_111178
crossref_primary_10_1007_s10853_021_06314_1
crossref_primary_10_1016_j_jnucmat_2024_155514
crossref_primary_10_1016_j_mser_2021_100645
crossref_primary_10_1002_adem_202201066
crossref_primary_10_2140_jomms_2024_19_635
crossref_primary_10_3390_nano12122113
crossref_primary_10_1038_s41524_024_01260_3
crossref_primary_10_1016_j_mtcomm_2021_102464
crossref_primary_10_1061_JENMDT_EMENG_7838
crossref_primary_10_1002_adem_202001044
crossref_primary_10_1016_j_jallcom_2025_179955
crossref_primary_10_1016_j_actamat_2024_120508
crossref_primary_10_1016_j_mtcomm_2024_108187
crossref_primary_10_1063_5_0142135
crossref_primary_10_1007_s00707_024_04179_4
crossref_primary_10_1080_10667857_2023_2200660
crossref_primary_10_3390_nano15161223
crossref_primary_10_1016_j_scriptamat_2021_114330
crossref_primary_10_1063_5_0185982
crossref_primary_10_1016_j_mtcomm_2025_112065
crossref_primary_10_1016_j_mtla_2025_102531
crossref_primary_10_1016_j_physleta_2020_126516
crossref_primary_10_3390_ma14216523
crossref_primary_10_1016_j_matpr_2023_03_168
crossref_primary_10_1016_j_vacuum_2024_113369
crossref_primary_10_1016_j_commatsci_2021_110389
crossref_primary_10_1016_j_mtla_2020_100628
crossref_primary_10_1134_S0021364022100095
crossref_primary_10_1016_j_triboint_2022_107435
crossref_primary_10_1016_j_ijmecsci_2022_107065
crossref_primary_10_1016_j_jmst_2024_03_027
crossref_primary_10_1134_S0021364020120097
crossref_primary_10_1016_j_jmst_2023_06_035
crossref_primary_10_1016_j_mechmat_2024_105132
crossref_primary_10_1016_j_mtcomm_2022_103273
crossref_primary_10_1063_5_0231284
crossref_primary_10_1016_j_ijmecsci_2022_107859
crossref_primary_10_1016_j_matt_2023_09_010
crossref_primary_10_1016_j_ijmecsci_2022_107855
crossref_primary_10_1016_j_ijmecsci_2022_108026
crossref_primary_10_1016_j_ijplas_2023_103679
crossref_primary_10_1016_j_intermet_2025_108832
crossref_primary_10_1016_j_commatsci_2022_111386
crossref_primary_10_1088_1361_6528_abf7eb
crossref_primary_10_1016_j_scriptamat_2021_114117
crossref_primary_10_1016_j_msea_2022_143959
crossref_primary_10_1007_s40195_022_01397_4
crossref_primary_10_1016_j_ijmecsci_2022_107800
crossref_primary_10_1016_j_msea_2021_141124
crossref_primary_10_1088_1402_4896_aceec2
crossref_primary_10_1016_j_actamat_2023_119398
crossref_primary_10_1016_j_commatsci_2023_112241
crossref_primary_10_1039_D5CP00109A
crossref_primary_10_1016_j_mtla_2019_100565
crossref_primary_10_1007_s40195_023_01577_w
crossref_primary_10_1088_1402_4896_ac3f6a
crossref_primary_10_1016_j_physb_2025_417586
crossref_primary_10_1016_S1003_6326_23_66172_2
crossref_primary_10_3390_met11060922
crossref_primary_10_1007_s12666_024_03410_z
crossref_primary_10_3390_nano15151177
crossref_primary_10_1063_5_0106637
crossref_primary_10_1016_j_vacuum_2023_112124
crossref_primary_10_3389_fmats_2022_1118952
crossref_primary_10_1016_j_commatsci_2022_111402
crossref_primary_10_1016_j_ijmecsci_2022_107597
crossref_primary_10_1016_j_matlet_2020_129206
crossref_primary_10_1016_j_commatsci_2022_111763
crossref_primary_10_1016_j_mtcomm_2024_110455
crossref_primary_10_1016_j_commatsci_2022_111762
crossref_primary_10_1038_s41467_022_32134_1
crossref_primary_10_1016_j_surfcoat_2020_126325
crossref_primary_10_1016_j_mtla_2023_101966
crossref_primary_10_1038_s41524_025_01600_x
crossref_primary_10_3389_fmats_2021_673574
crossref_primary_10_3390_ma18051001
crossref_primary_10_1016_j_ijmecsci_2022_107828
crossref_primary_10_1016_j_jmst_2020_12_017
crossref_primary_10_1007_s11831_024_10201_8
crossref_primary_10_1016_j_apsusc_2021_151236
crossref_primary_10_1016_j_actamat_2022_118201
crossref_primary_10_1016_j_ijmecsci_2025_110408
crossref_primary_10_1016_j_nimb_2024_165378
crossref_primary_10_1016_j_actamat_2023_119163
crossref_primary_10_1016_j_jnucmat_2025_155837
crossref_primary_10_1016_j_mtcomm_2025_113241
crossref_primary_10_1007_s00419_021_02100_2
crossref_primary_10_1007_s10853_023_08568_3
crossref_primary_10_1063_5_0082835
crossref_primary_10_1016_j_jnoncrysol_2022_121557
crossref_primary_10_3390_jcs8040139
crossref_primary_10_1063_5_0043034
crossref_primary_10_1016_j_jallcom_2020_156533
crossref_primary_10_1063_5_0280842
crossref_primary_10_1016_j_ijplas_2024_104185
crossref_primary_10_1016_j_commatsci_2024_113640
crossref_primary_10_3390_nano13060968
crossref_primary_10_1103_PhysRevMaterials_6_093602
crossref_primary_10_1016_j_commatsci_2019_109366
crossref_primary_10_1016_j_euromechsol_2025_105762
crossref_primary_10_1016_j_jallcom_2022_168003
crossref_primary_10_1557_s43578_022_00557_7
crossref_primary_10_1007_s44210_025_00059_1
crossref_primary_10_1038_s41598_023_36899_3
crossref_primary_10_1016_j_commatsci_2022_111218
crossref_primary_10_1016_j_apmate_2023_100114
crossref_primary_10_1088_1361_651X_ad0316
crossref_primary_10_1016_j_matdes_2023_112387
crossref_primary_10_1038_s41529_024_00536_9
crossref_primary_10_1016_j_mtcomm_2025_113658
crossref_primary_10_1016_j_mtcomm_2024_110096
crossref_primary_10_1088_1361_648X_abaf93
crossref_primary_10_3390_app13064013
crossref_primary_10_1088_1742_6596_2980_1_012037
crossref_primary_10_1080_10667857_2023_2299903
crossref_primary_10_1016_j_jallcom_2022_164572
crossref_primary_10_1016_j_msea_2020_140501
crossref_primary_10_1021_acs_jpcc_4c06508
crossref_primary_10_1016_j_matchemphys_2022_125997
crossref_primary_10_1063_5_0101548
crossref_primary_10_1007_s10853_025_10781_1
crossref_primary_10_1016_j_euromechsol_2025_105662
crossref_primary_10_1093_pnasnexus_pgae117
crossref_primary_10_1016_j_matchemphys_2022_126725
crossref_primary_10_1016_j_mtcomm_2023_106337
crossref_primary_10_1557_jmr_2020_294
crossref_primary_10_1016_j_mtcomm_2023_107664
crossref_primary_10_1016_j_jallcom_2023_170952
crossref_primary_10_1016_j_jnucmat_2022_153738
crossref_primary_10_1002_pssa_202300326
crossref_primary_10_1016_j_actamat_2022_118368
crossref_primary_10_1039_D4RA08595G
crossref_primary_10_1016_j_jmrt_2025_05_084
crossref_primary_10_1016_j_commatsci_2022_111551
crossref_primary_10_1016_j_matpr_2022_03_607
crossref_primary_10_1016_j_commatsci_2023_112263
crossref_primary_10_1007_s10338_023_00445_5
crossref_primary_10_1016_j_msea_2022_142854
crossref_primary_10_1016_j_matlet_2020_128024
crossref_primary_10_1080_08927022_2023_2219761
crossref_primary_10_1016_j_mtcomm_2022_104884
crossref_primary_10_1016_j_mtcomm_2024_109457
crossref_primary_10_1016_j_cossms_2024_101146
crossref_primary_10_1016_j_msea_2023_145110
crossref_primary_10_1016_j_mtcomm_2023_106562
crossref_primary_10_1088_1361_651X_ac336a
crossref_primary_10_2320_matertrans_MT_Z2025001
crossref_primary_10_1016_j_mtphys_2022_100800
crossref_primary_10_1007_s40195_024_01795_w
crossref_primary_10_1016_j_commatsci_2023_112758
crossref_primary_10_1016_j_mtcomm_2022_104975
crossref_primary_10_1016_j_mtcomm_2023_106759
crossref_primary_10_1016_j_jallcom_2023_169650
crossref_primary_10_1016_j_physb_2024_416667
crossref_primary_10_1039_D0RA00518E
crossref_primary_10_1007_s11431_023_2589_3
crossref_primary_10_1063_5_0241905
crossref_primary_10_1016_j_jmst_2025_04_005
crossref_primary_10_1016_j_vacuum_2022_111322
crossref_primary_10_1016_j_surfcoat_2022_129136
crossref_primary_10_1007_s11661_021_06151_6
crossref_primary_10_1016_j_jmrt_2025_05_257
crossref_primary_10_1088_1361_6528_ab99ef
crossref_primary_10_1016_j_commatsci_2021_110618
crossref_primary_10_1039_D3RA04759H
crossref_primary_10_1557_s43578_022_00545_x
crossref_primary_10_1016_j_vacuum_2024_113232
crossref_primary_10_1016_j_actamat_2021_116951
crossref_primary_10_1016_j_mtcomm_2023_105414
crossref_primary_10_1016_j_mtla_2021_101307
crossref_primary_10_1103_PhysRevMaterials_5_113601
crossref_primary_10_1016_j_msea_2025_149096
crossref_primary_10_1016_j_actamat_2022_118511
crossref_primary_10_1016_j_commatsci_2023_112191
crossref_primary_10_1016_j_commatsci_2024_113341
crossref_primary_10_1088_2515_7639_ad2983
crossref_primary_10_1007_s44210_022_00004_6
crossref_primary_10_1016_j_jmst_2022_08_033
crossref_primary_10_1016_j_commatsci_2023_112057
crossref_primary_10_1016_j_jallcom_2022_166525
crossref_primary_10_1088_1361_651X_ac860d
crossref_primary_10_1016_j_ijplas_2024_103949
crossref_primary_10_1016_j_scriptamat_2022_114810
crossref_primary_10_1007_s11664_021_09343_3
crossref_primary_10_1016_j_mtcomm_2023_107627
crossref_primary_10_1016_j_matdes_2021_109950
crossref_primary_10_1557_s43578_020_00030_3
crossref_primary_10_1016_j_jmst_2025_04_022
crossref_primary_10_1557_s43580_022_00284_5
crossref_primary_10_1088_1402_4896_ad5a48
crossref_primary_10_1007_s12598_025_03531_4
crossref_primary_10_1063_5_0149734
crossref_primary_10_1063_5_0181330
crossref_primary_10_1007_s10853_022_07862_w
crossref_primary_10_1016_j_msea_2025_148358
crossref_primary_10_1088_1402_4896_adbdff
crossref_primary_10_1016_j_intermet_2024_108469
crossref_primary_10_1016_j_commatsci_2023_112185
crossref_primary_10_1016_j_jnucmat_2025_155797
crossref_primary_10_3390_ma17112504
crossref_primary_10_1016_j_jallcom_2023_169427
crossref_primary_10_1063_5_0024014
crossref_primary_10_1007_s11661_021_06185_w
crossref_primary_10_1007_s10853_020_04387_y
crossref_primary_10_1016_j_mtcomm_2023_106523
crossref_primary_10_1016_j_pmatsci_2024_101359
crossref_primary_10_1116_6_0001394
crossref_primary_10_1016_j_triboint_2022_107748
crossref_primary_10_1016_j_intermet_2025_108756
crossref_primary_10_1016_j_matdes_2024_112676
crossref_primary_10_1016_j_jallcom_2023_170084
crossref_primary_10_1016_j_jmst_2024_07_042
Cites_doi 10.1088/1367-2630/15/11/115016
10.1088/0965-0393/4/1/004
10.1007/s11837-017-2524-2
10.1007/s11837-017-2540-2
10.1080/01418619908210339
10.1016/j.intermet.2014.04.019
10.1016/j.actamat.2015.08.015
10.1103/PhysRevB.59.3393
10.1103/PhysRevMaterials.1.023404
10.3390/e15104504
10.1016/j.intermet.2013.05.002
10.1557/mrc.2014.11
10.1016/j.cossms.2017.02.002
10.1088/0965-0393/18/1/015012
10.1016/j.actamat.2016.09.032
10.1016/j.eml.2017.09.015
10.1126/science.1254581
10.1002/adem.200300567
10.1007/s11661-013-2097-9
10.1016/j.msea.2003.10.257
10.1557/jmr.2017.366
10.1088/0965-0393/4/4/003
10.1016/1359-6454(95)00145-5
10.1016/j.actamat.2013.01.042
10.1016/j.cossms.2017.08.003
10.1103/PhysRevB.60.22
10.1016/S0921-5093(98)00912-5
10.1016/j.cossms.2013.03.003
10.1016/j.pmatsci.2013.10.001
10.1557/jmr.2016.269
10.1038/ncomms9736
10.1007/s11837-017-2484-6
10.1016/j.commatsci.2018.01.055
10.1088/0965-0393/3/2/005
10.1016/j.actamat.2016.08.081
10.1016/j.intermet.2014.04.001
10.1016/B978-0-12-800251-3.00002-X
10.3389/fmats.2017.00036
10.1006/jcph.1995.1039
10.1103/PhysRevB.42.9622
10.1007/s11837-017-2461-0
10.3390/e18090321
10.1016/j.scriptamat.2012.12.002
10.1016/j.actamat.2014.04.033
ContentType Journal Article
Copyright Copyright © Materials Research Society 2018
The Materials Research Society 2018
The Materials Research Society 2018.
Copyright_xml – notice: Copyright © Materials Research Society 2018
– notice: The Materials Research Society 2018
– notice: The Materials Research Society 2018.
DBID AAYXX
CITATION
3V.
7SR
7WY
7WZ
7XB
87Z
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
HCIFZ
JG9
K60
K6~
KB.
L.-
L.0
M0C
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0W
DOI 10.1557/jmr.2018.245
DatabaseName CrossRef
ProQuest Central (Corporate)
Engineered Materials Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ABI/INFORM Professional Standard
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
METADEX
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate D. Farkas et al.: Model interatomic potentials and lattice strain in a high-entropy alloy
EISSN 2044-5326
EndPage 3225
ExternalDocumentID 10_1557_jmr_2018_245
GroupedDBID -2P
-E.
-~X
.DC
.FH
0E1
0R~
2JN
4.4
406
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8FL
8UJ
8WZ
A6W
AAAZR
AABES
AABWE
AACJH
AAEED
AAFGU
AAGFV
AAHNG
AAIKC
AAKTX
AAMNW
AARAB
AASVR
AATID
AATNV
AAUKB
AAYFA
ABBXD
ABECU
ABEFU
ABGDZ
ABJCF
ABJNI
ABKAS
ABKKG
ABMQK
ABMWE
ABMYL
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABUWG
ABZCX
ACAOD
ACBEA
ACBEK
ACBMC
ACCHT
ACGFO
ACGFS
ACHSB
ACIGE
ACIHN
ACIMK
ACIWK
ACQFJ
ACQPF
ACREK
ACTTH
ACUIJ
ACUYZ
ACVWB
ACWGA
ACWMK
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
ADGEJ
ADOCW
ADOXG
AEAQA
AEBAK
AEFTE
AEHGV
AEMSY
AEMTW
AENEX
AENGE
AESKC
AESTI
AEYYC
AFBBN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFNRJ
AFUTZ
AGLWM
AGMZJ
AGOOT
AGQEE
AHQXX
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJDOV
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ATUCA
AUXHV
AYIQA
BBLKV
BENPR
BEZIV
BGHMG
BGLVJ
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CFAFE
CS3
CZ9
D1I
DC4
DOHLZ
DPUIP
DU5
DWQXO
EBS
EJD
F5P
FIGPU
FRNLG
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXTQ
IOEEP
IOO
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JZLTJ
K60
K6~
KB.
KC.
KCGVB
KFECR
L98
LLZTM
M-V
M0C
M7~
NIKVX
NPVJJ
NQJWS
O9-
P2P
PDBOC
PQBIZ
PQQKQ
PROAC
PYCCK
RAMDC
RCA
RNS
RR0
RSV
S0W
S6-
S6U
SAAAG
SJN
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TAE
TN5
TWZ
UPT
UT1
WH7
WQ3
WXU
WXY
YQT
ZMEZD
ZMTXR
ZYDXJ
~02
-2V
3V.
AACDK
AAEWM
AAJBT
AASML
AATMM
ABAKF
ABDPE
ABZUI
ACDTI
ACETC
ACPIV
ACRPL
ADNMO
ADOVH
ADOVT
AEFQL
AEMFK
AI.
AIGIU
AKZCZ
ARZZG
BCGOX
BESQT
BJBOZ
BQFHP
CCUQV
CFBFF
CGQII
EBLON
GROUPED_ABI_INFORM_COMPLETE
KAFGG
LHUNA
M8.
PKN
PQBZA
ROL
SCG
SCLPG
SJYHP
VH1
VOH
ZDLDU
ZE2
ZJOSE
~V1
AAUYE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
L.-
L.0
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63
IEDL.DBID RSV
ISICitedReferencesCount 249
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452650400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-2914
IngestDate Thu Sep 18 00:01:59 EDT 2025
Wed Sep 17 23:55:05 EDT 2025
Sat Nov 29 05:54:45 EST 2025
Tue Nov 18 22:54:58 EST 2025
Fri Feb 21 02:43:31 EST 2025
Wed Mar 13 05:42:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords alloy
simulation
interatomic arrangements
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2119756685
PQPubID 626330
PageCount 8
ParticipantIDs proquest_journals_2845639652
proquest_journals_2119756685
crossref_primary_10_1557_jmr_2018_245
crossref_citationtrail_10_1557_jmr_2018_245
springer_journals_10_1557_jmr_2018_245
cambridge_journals_10_1557_jmr_2018_245
PublicationCentury 2000
PublicationDate 2018-10-14
PublicationDateYYYYMMDD 2018-10-14
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-14
  day: 14
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cham
– name: Warrendale
PublicationTitle Journal of materials research
PublicationTitleAbbrev Journal of Materials Research
PublicationTitleAlternate J. Mater. Res
PublicationYear 2018
Publisher Cambridge University Press
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Cambridge University Press
– name: Springer International Publishing
– name: Springer Nature B.V
References Pollock, LeSar 2013; 17
Zhang, Lu, Ma, Liaw, Tang, Cheng, Gao 2014; 4
Macdonald, Fu, Zheng, Chen, Lin, Chen, Zhang, Ivanisenko, Zhou, Hahn, Lavernia 2017; 69
Van Swygenhoven, Spaczer, Caro, Farkas 1999; 60
Farkas, Mutasa, Vailhe, Ternes 1995; 3
Zhang, Stocks, Jin, Lu, Bei, Sales, Wang, Beland, Stoller, Samolyuk, Caro, Caro, Weber 2015; 6
Otto, Yang, Bei, George 2013; 61
Vailhe, Farkas 1999; 79
Farkas, Jones 1996; 4
Song, Tian, Hu, Vitos, Wang, Shen, Chen 2017; 1
Dong, Lu, Jiang, Wang, Li 2014; 52
Plimpton 1995; 117
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie 2014; 345
Vailhe, Farkas 1998; 258
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu 2014; 61
Gao, Alman 2013; 15
Owen, Pickering, Playford, Stone, Tucker, Jones 2017; 122
Poletti, Battezzati 2014; 75
Zhang, Jin, Xue, Lu, Olsen, Beland, Ullah, Zhao, Bei, Aidhy, Samolyuk, Wang, Caro, Caro, Stocks, Larson, Robertson, Correa, Weber 2016; 31
Miracle, Senkov 2017; 122
Zaddach, Niu, Koch, Irving 2013; 65
Tamm, Aabloo, Klintenberg, Stocks, Caro 2015; 99
Yeh, Chang, Tsai, Wang, Yeh, Kuo 2014; 45A
Farkas, Roqueta, Vilette, Ternes 1996; 4
Zhang, Zhao, Weber, Nordlund, Granberg, Djurabekova 2017; 21
Oh, Ma, Leyson, Grabowski, Park, Kormann, Raabe 2016; 18
Toda-Caraballo, Wrobel, Nguyen-Manh, Perez, Rivera-Diaz-Del-Castillo 2017; 69
Tian 2017; 4
Liu, Wu, He, Nieh, Lu 2013; 68
Smith, Farkas 2018; 147
Singh, Kumar, Dwivedi, Subramaniam 2014; 53
Zhao, Weber, Zhang 2017; 69
Wei, Ferreira, Bernard, Zunger 1990; 42
Cantor, Chang, Knight, Vincent 2004; 375
Farkas, Schon, DeLima, Goldenstein 1996; 44
Guo, Hu, Ng, Liu 2013; 41
Wang, Wu, Liu, Wang 2017; 17
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang 2004; 6
Diao, Feng, Dahmen, Liaw 2017; 21
Li, Raabe 2017; 69
Mishin, Farkas, Mehl, Papaconstantopoulos 1999; 59
Stukowski 2010; 18
Gao, Gao, Hawk, Ouyang, Alman, Widom 2017; 32
GaoMCAlmanDESearching for next single-phase high-entropy alloy compositionsEntropy20131545041:CAS:528:DC%2BC2cXltlyjt7o%3D10.3390/e15104504
ZhaoSJWeberWJZhangYWUnique challenges for modeling defect dynamics in concentrated solid-solution alloysJOM201769208410.1007/s11837-017-2461-0
FarkasDJonesCInteratomic potentials for ternary Nb–Ti–Al alloysModell. Simul. Mater. Sci. Eng.19964231:CAS:528:DyaK28XivFWmsLk%3D10.1088/0965-0393/4/1/004
OhHSMaDLeysonGPGrabowskiBParkESKormannFRaabeDLattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experimentEntropy20161832110.3390/e18090321
OwenLRPickeringEJPlayfordHYStoneHJTuckerMGJonesNGAn assessment of the lattice strain in the CrMnFeCoNi high-entropy alloyActa Mater.2017122111:CAS:528:DC%2BC28XhsFOmtb7O10.1016/j.actamat.2016.09.032
VailheCFarkasDTransition from dislocation core spreading to dislocation dissociation in a series of B2 compoundsPhilos. Mag. A1999799211:CAS:528:DyaK1MXitlGksrg%3D10.1080/01418619908210339
GaoMCGaoPHawkJAOuyangLZAlmanDEWidomMComputational modeling of high-entropy alloys: Structures, thermodynamics and elasticityJ. Mater. Res.20173236271:CAS:528:DC%2BC2sXhs1CktbjJ10.1557/jmr.2017.366
GuoSHuQNgCLiuCTMore than entropy in high-entropy alloys. Forming solid solutions or amorphous phaseIntermetallics2013419610.1016/j.intermet.2013.05.002
MiracleDBSenkovONA critical review of high entropy alloys and related conceptsActa Mater.20171224481:CAS:528:DC%2BC28Xhslagu7vJ10.1016/j.actamat.2016.08.081
PolettiMGBattezzatiLElectronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systemsActa Mater.2014752971:CAS:528:DC%2BC2cXhtV2qtbfF10.1016/j.actamat.2014.04.033
SinghAKKumarNDwivediASubramaniamAA geometrical parameter for the formation of disordered solid solutions in multi-component alloysIntermetallics2014531121:CAS:528:DC%2BC2cXpslGhtrg%3D10.1016/j.intermet.2014.04.019
StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the open visualization toolModell. Simul. Mater. Sci. Eng.20101801501210.1088/0965-0393/18/1/015012
PlimptonSFast parallel algorithms for short-range molecular-dynamicsJ. Comput. Phys.199511711:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039
TianFYA review of solid-solution models of high-entropy alloys based on ab lnitio calculationsFront. Mater.201743610.3389/fmats.2017.00036
ZaddachAJNiuCKochCCIrvingDLMechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloyJ. Mater.20136517801:CAS:528:DC%2BC3sXhs1ertrzP
Toda-CaraballoIWrobelJSNguyen-ManhDPerezPRivera-Diaz-Del-CastilloPEJSimulation and modeling in high entropy alloysJOM201769213710.1007/s11837-017-2524-2
HammerschmidtTBialonAFPettiforDDrautzRTopologically close-packed phases in binary transition-metal compounds: matching high-throughput ab initio calculations to an empirical structure mapNew J. Phys.20131511501610.1088/1367-2630/15/11/115016
YehJWChenSKLinSJGanJYChinTSShunTTTsauCHChangSYNanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomesAdv. Eng. Mater.200462991:CAS:528:DC%2BD2cXlsFCrtL4%3D10.1002/adem.200300567
WeiSHFerreiraLGBernardJEZungerAElectronic properties of random alloys: Special quasirandom structuresPhys. Rev. B19904296221:CAS:528:DyaK3MXkvFygtg%3D%3D10.1103/PhysRevB.42.9622
ZhangYWJinKXueHZLuCYOlsenRJBelandLKUllahMWZhaoSJBeiHBAidhyDSSamolyukGDWangLMCaroMCaroAStocksGMLarsonBCRobertsonIMCorreaAAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in advanced alloysJ. Mater. Res.201631236310.1557/jmr.2016.269
ZhangYZuoTTTangZGaoMCDahmenKALiawPKLuZPMicrostructures and properties of high-entropy alloysProg. Mater. Sci.201461110.1016/j.pmatsci.2013.10.001
ZhangYWStocksGMJinKLuCYBeiHBSalesBCWangLMBelandLKStollerRESamolyukGDCaroMCaroAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloysNat. Commun.2015687361:CAS:528:DC%2BC2MXhslCnt7jN10.1038/ncomms9736
YehA-CChangY-JTsaiC-WWangY-CYehJ-WKuoC-MOn the solidification and phase stability of a Co–Cr–Fe–Ni–Ti high-entropy alloyMetall. Mater. Trans. A201445A18410.1007/s11661-013-2097-9
MishinYFarkasDMehlMJPapaconstantopoulosDAInteratomic potentials for monoatomic metals from experimental data and ab initio calculationsPhys. Rev. B19995933931:CAS:528:DyaK1MXmvFGmug%3D%3D10.1103/PhysRevB.59.3393
FarkasDRoquetaDViletteATernesKAtomistic simulations in ternary Ni–Ti–Al alloysModell. Simul. Mater. Sci. Eng.199643591:CAS:528:DyaK28XmvVylsbo%3D10.1088/0965-0393/4/4/003
DongYLuYPJiangLWangTMLiTJEffects of electro-negativity on the stability of topologically close-packed phase in high entropy alloysIntermetallics2014521051:CAS:528:DC%2BC2cXotFWqtrk%3D10.1016/j.intermet.2014.04.001
MacdonaldBEFuZZhengBChenWLinYChenFZhangLIvanisenkoJZhouYHahnHLaverniaEJRecent progress in high entropy alloy ResearchJOM201769202410.1007/s11837-017-2484-6
PollockTMLeSarRThe feedback loop between theory, simulation and experiment for plasticity and property modelingCurr. Opin. Solid State Mater. Sci.201317101:CAS:528:DC%2BC3sXms1KnsL4%3D10.1016/j.cossms.2013.03.003
VailheCFarkasDInteratomic potentials and dislocation simulation for the ternary B2 Ni–35Al–12Fe alloyMater. Sci. Eng., A19982582610.1016/S0921-5093(98)00912-5
CantorBChangITHKnightPVincentAJBMicrostructural development in equiatomic multicomponent alloysMater. Sci. Eng., A200437521310.1016/j.msea.2003.10.257
Van SwygenhovenHSpaczerMCaroAFarkasDCompeting plastic deformation mechanisms in nanophase metalsPhys. Rev. B1999602210.1103/PhysRevB.60.22
OttoFYangYBeiHGeorgeEPRelative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloysActa Mater.20136126281:CAS:528:DC%2BC3sXisVShtbg%3D10.1016/j.actamat.2013.01.042
MurtyBSYehJWRanganathanSHigh-Entropy Alloys2014Oxford, United KingdomElsevier
WangPWuYLiuJBWangHTImpacts of atomic scale lattice distortion on dislocation activity in high-entropy alloysExtreme Mech. Lett.2017173810.1016/j.eml.2017.09.015
GludovatzBHohenwarterACatoorDChangEHGeorgeEPRitchieROA fracture-resistant high-entropy alloy for cryogenic applicationsScience201434511531:CAS:528:DC%2BC2cXhsVGhtLbL10.1126/science.1254581
SongHQTianFYHuQMVitosLWangYDShenJChenNXLocal lattice distortion in high-entropy alloysPhys. Rev. Mater.2017102340410.1103/PhysRevMaterials.1.023404
TammAAablooAKlintenbergMStocksMCaroAAtomic-scale properties of Ni-based FCC ternary, and quaternary alloysActa Mater.2015993071:CAS:528:DC%2BC2MXhsVajur%2FJ10.1016/j.actamat.2015.08.015
LiZMRaabeDStrong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical propertiesJOM20176920991:CAS:528:DC%2BC2sXhsVWksLjO10.1007/s11837-017-2540-2
FarkasDMutasaBVailheCTernesKInteratomic potentials for B2 nial and martensitic phasesModell. Simul. Mater. Sci. Eng.199532011:CAS:528:DyaK2MXlvVKlu7c%3D10.1088/0965-0393/3/2/005
DiaoHYFengRDahmenKALiawPKFundamental deformation behavior in high-entropy alloys: An overviewCurr. Opin. Solid State Mater. Sci.2017212521:CAS:528:DC%2BC2sXhsVyrtrzK10.1016/j.cossms.2017.08.003
ZhangYWZhaoSJWeberWJNordlundKGranbergFDjurabekovaFAtomic-level heterogeneity and defect dynamics in concentrated solid-solution alloysCurr. Opin. Solid State Mater. Sci.2017212211:CAS:528:DC%2BC2sXltlKhtrc%3D10.1016/j.cossms.2017.02.002
LiuWHWuYHeJYNiehTGLuZPGrain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloyScr. Mater.2013685261:CAS:528:DC%2BC38XhvFWhsL3P10.1016/j.scriptamat.2012.12.002
FarkasDSchonCGDeLimaMSFGoldensteinHEmbedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe–Cr alloysActa Mater.1996444091:CAS:528:DyaK28XhvFWktQ%3D%3D10.1016/1359-6454(95)00145-5
SmithLFarkasDConnecting interatomic potential characteristics with deformation response in FCC materialsComput. Mater. Sci.2018147181:CAS:528:DC%2BC1cXisVyitbc%3D10.1016/j.commatsci.2018.01.055
ZhangYLuZPMaSGLiawPKTangZChengYQGaoMCGuidelines in predicting phase formation of high-entropy alloysMRS Commun.20144571:CAS:528:DC%2BC2cXhtVCrur3P10.1557/mrc.2014.11
Zaddach (S0884291418002455_ref9) 2013; 65
S0884291418002455_ref20
S0884291418002455_ref42
S0884291418002455_ref21
S0884291418002455_ref43
S0884291418002455_ref22
S0884291418002455_ref44
S0884291418002455_ref45
S0884291418002455_ref23
S0884291418002455_ref40
S0884291418002455_ref41
S0884291418002455_ref6
S0884291418002455_ref17
S0884291418002455_ref39
S0884291418002455_ref7
S0884291418002455_ref18
S0884291418002455_ref19
S0884291418002455_ref8
S0884291418002455_ref35
S0884291418002455_ref13
S0884291418002455_ref14
S0884291418002455_ref36
S0884291418002455_ref37
S0884291418002455_ref15
S0884291418002455_ref16
S0884291418002455_ref38
S0884291418002455_ref1
S0884291418002455_ref2
S0884291418002455_ref3
S0884291418002455_ref4
S0884291418002455_ref5
S0884291418002455_ref31
S0884291418002455_ref10
S0884291418002455_ref32
S0884291418002455_ref11
S0884291418002455_ref33
S0884291418002455_ref34
S0884291418002455_ref12
S0884291418002455_ref30
S0884291418002455_ref28
S0884291418002455_ref29
S0884291418002455_ref24
S0884291418002455_ref25
S0884291418002455_ref26
S0884291418002455_ref27
References_xml – volume: 6
  start-page: 299
  year: 2004
  article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 79
  start-page: 921
  year: 1999
  article-title: Transition from dislocation core spreading to dislocation dissociation in a series of B2 compounds
  publication-title: Philos. Mag. A
– volume: 32
  start-page: 3627
  year: 2017
  article-title: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity
  publication-title: J. Mater. Res.
– volume: 61
  start-page: 1
  year: 2014
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 122
  start-page: 11
  year: 2017
  article-title: An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 6
  start-page: 8736
  year: 2015
  article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys
  publication-title: Nat. Commun.
– volume: 69
  start-page: 2084
  year: 2017
  article-title: Unique challenges for modeling defect dynamics in concentrated solid-solution alloys
  publication-title: JOM
– volume: 60
  start-page: 22
  year: 1999
  article-title: Competing plastic deformation mechanisms in nanophase metals
  publication-title: Phys. Rev. B
– volume: 31
  start-page: 2363
  year: 2016
  article-title: Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys
  publication-title: J. Mater. Res.
– volume: 258
  start-page: 26
  year: 1998
  article-title: Interatomic potentials and dislocation simulation for the ternary B2 Ni–35Al–12Fe alloy
  publication-title: Mater. Sci. Eng., A
– volume: 17
  start-page: 10
  year: 2013
  article-title: The feedback loop between theory, simulation and experiment for plasticity and property modeling
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 53
  start-page: 112
  year: 2014
  article-title: A geometrical parameter for the formation of disordered solid solutions in multi-component alloys
  publication-title: Intermetallics
– volume: 42
  start-page: 9622
  year: 1990
  article-title: Electronic properties of random alloys: Special quasirandom structures
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 2137
  year: 2017
  article-title: Simulation and modeling in high entropy alloys
  publication-title: JOM
– volume: 68
  start-page: 526
  year: 2013
  article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy
  publication-title: Scr. Mater.
– volume: 375
  start-page: 213
  year: 2004
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng., A
– volume: 69
  start-page: 2024
  year: 2017
  article-title: Recent progress in high entropy alloy Research
  publication-title: JOM
– volume: 52
  start-page: 105
  year: 2014
  article-title: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys
  publication-title: Intermetallics
– volume: 122
  start-page: 448
  year: 2017
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 41
  start-page: 96
  year: 2013
  article-title: More than entropy in high-entropy alloys. Forming solid solutions or amorphous phase
  publication-title: Intermetallics
– volume: 15
  start-page: 4504
  year: 2013
  article-title: Searching for next single-phase high-entropy alloy compositions
  publication-title: Entropy
– volume: 117
  start-page: 1
  year: 1995
  article-title: Fast parallel algorithms for short-range molecular-dynamics
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 015012
  year: 2010
  article-title: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 147
  start-page: 18
  year: 2018
  article-title: Connecting interatomic potential characteristics with deformation response in FCC materials
  publication-title: Comput. Mater. Sci.
– volume: 3
  start-page: 201
  year: 1995
  article-title: Interatomic potentials for B2 nial and martensitic phases
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 1
  start-page: 023404
  year: 2017
  article-title: Local lattice distortion in high-entropy alloys
  publication-title: Phys. Rev. Mater.
– volume: 21
  start-page: 252
  year: 2017
  article-title: Fundamental deformation behavior in high-entropy alloys: An overview
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 65
  start-page: 1780
  year: 2013
  article-title: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy
  publication-title: J. Mater.
– volume: 61
  start-page: 2628
  year: 2013
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
  publication-title: Acta Mater.
– volume: 21
  start-page: 221
  year: 2017
  article-title: Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 17
  start-page: 38
  year: 2017
  article-title: Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys
  publication-title: Extreme Mech. Lett.
– volume: 345
  start-page: 1153
  year: 2014
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 69
  start-page: 2099
  year: 2017
  article-title: Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties
  publication-title: JOM
– volume: 4
  start-page: 359
  year: 1996
  article-title: Atomistic simulations in ternary Ni–Ti–Al alloys
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 4
  start-page: 57
  year: 2014
  article-title: Guidelines in predicting phase formation of high-entropy alloys
  publication-title: MRS Commun.
– volume: 75
  start-page: 297
  year: 2014
  article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems
  publication-title: Acta Mater.
– volume: 4
  start-page: 23
  year: 1996
  article-title: Interatomic potentials for ternary Nb–Ti–Al alloys
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 45A
  start-page: 184
  year: 2014
  article-title: On the solidification and phase stability of a Co–Cr–Fe–Ni–Ti high-entropy alloy
  publication-title: Metall. Mater. Trans. A
– volume: 4
  start-page: 36
  year: 2017
  article-title: A review of solid-solution models of high-entropy alloys based on ab lnitio calculations
  publication-title: Front. Mater.
– volume: 44
  start-page: 409
  year: 1996
  article-title: Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe–Cr alloys
  publication-title: Acta Mater.
– volume: 59
  start-page: 3393
  year: 1999
  article-title: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 307
  year: 2015
  article-title: Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys
  publication-title: Acta Mater.
– volume: 18
  start-page: 321
  year: 2016
  article-title: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment
  publication-title: Entropy
– reference: YehJWChenSKLinSJGanJYChinTSShunTTTsauCHChangSYNanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomesAdv. Eng. Mater.200462991:CAS:528:DC%2BD2cXlsFCrtL4%3D10.1002/adem.200300567
– reference: ZaddachAJNiuCKochCCIrvingDLMechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloyJ. Mater.20136517801:CAS:528:DC%2BC3sXhs1ertrzP
– reference: ZhangYLuZPMaSGLiawPKTangZChengYQGaoMCGuidelines in predicting phase formation of high-entropy alloysMRS Commun.20144571:CAS:528:DC%2BC2cXhtVCrur3P10.1557/mrc.2014.11
– reference: VailheCFarkasDInteratomic potentials and dislocation simulation for the ternary B2 Ni–35Al–12Fe alloyMater. Sci. Eng., A19982582610.1016/S0921-5093(98)00912-5
– reference: SinghAKKumarNDwivediASubramaniamAA geometrical parameter for the formation of disordered solid solutions in multi-component alloysIntermetallics2014531121:CAS:528:DC%2BC2cXpslGhtrg%3D10.1016/j.intermet.2014.04.019
– reference: WangPWuYLiuJBWangHTImpacts of atomic scale lattice distortion on dislocation activity in high-entropy alloysExtreme Mech. Lett.2017173810.1016/j.eml.2017.09.015
– reference: OwenLRPickeringEJPlayfordHYStoneHJTuckerMGJonesNGAn assessment of the lattice strain in the CrMnFeCoNi high-entropy alloyActa Mater.2017122111:CAS:528:DC%2BC28XhsFOmtb7O10.1016/j.actamat.2016.09.032
– reference: OttoFYangYBeiHGeorgeEPRelative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloysActa Mater.20136126281:CAS:528:DC%2BC3sXisVShtbg%3D10.1016/j.actamat.2013.01.042
– reference: Van SwygenhovenHSpaczerMCaroAFarkasDCompeting plastic deformation mechanisms in nanophase metalsPhys. Rev. B1999602210.1103/PhysRevB.60.22
– reference: DongYLuYPJiangLWangTMLiTJEffects of electro-negativity on the stability of topologically close-packed phase in high entropy alloysIntermetallics2014521051:CAS:528:DC%2BC2cXotFWqtrk%3D10.1016/j.intermet.2014.04.001
– reference: FarkasDMutasaBVailheCTernesKInteratomic potentials for B2 nial and martensitic phasesModell. Simul. Mater. Sci. Eng.199532011:CAS:528:DyaK2MXlvVKlu7c%3D10.1088/0965-0393/3/2/005
– reference: ZhangYWZhaoSJWeberWJNordlundKGranbergFDjurabekovaFAtomic-level heterogeneity and defect dynamics in concentrated solid-solution alloysCurr. Opin. Solid State Mater. Sci.2017212211:CAS:528:DC%2BC2sXltlKhtrc%3D10.1016/j.cossms.2017.02.002
– reference: HammerschmidtTBialonAFPettiforDDrautzRTopologically close-packed phases in binary transition-metal compounds: matching high-throughput ab initio calculations to an empirical structure mapNew J. Phys.20131511501610.1088/1367-2630/15/11/115016
– reference: GuoSHuQNgCLiuCTMore than entropy in high-entropy alloys. Forming solid solutions or amorphous phaseIntermetallics2013419610.1016/j.intermet.2013.05.002
– reference: MurtyBSYehJWRanganathanSHigh-Entropy Alloys2014Oxford, United KingdomElsevier
– reference: ZhaoSJWeberWJZhangYWUnique challenges for modeling defect dynamics in concentrated solid-solution alloysJOM201769208410.1007/s11837-017-2461-0
– reference: GaoMCAlmanDESearching for next single-phase high-entropy alloy compositionsEntropy20131545041:CAS:528:DC%2BC2cXltlyjt7o%3D10.3390/e15104504
– reference: ZhangYWStocksGMJinKLuCYBeiHBSalesBCWangLMBelandLKStollerRESamolyukGDCaroMCaroAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloysNat. Commun.2015687361:CAS:528:DC%2BC2MXhslCnt7jN10.1038/ncomms9736
– reference: WeiSHFerreiraLGBernardJEZungerAElectronic properties of random alloys: Special quasirandom structuresPhys. Rev. B19904296221:CAS:528:DyaK3MXkvFygtg%3D%3D10.1103/PhysRevB.42.9622
– reference: LiZMRaabeDStrong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical propertiesJOM20176920991:CAS:528:DC%2BC2sXhsVWksLjO10.1007/s11837-017-2540-2
– reference: MishinYFarkasDMehlMJPapaconstantopoulosDAInteratomic potentials for monoatomic metals from experimental data and ab initio calculationsPhys. Rev. B19995933931:CAS:528:DyaK1MXmvFGmug%3D%3D10.1103/PhysRevB.59.3393
– reference: StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the open visualization toolModell. Simul. Mater. Sci. Eng.20101801501210.1088/0965-0393/18/1/015012
– reference: GludovatzBHohenwarterACatoorDChangEHGeorgeEPRitchieROA fracture-resistant high-entropy alloy for cryogenic applicationsScience201434511531:CAS:528:DC%2BC2cXhsVGhtLbL10.1126/science.1254581
– reference: TianFYA review of solid-solution models of high-entropy alloys based on ab lnitio calculationsFront. Mater.201743610.3389/fmats.2017.00036
– reference: MacdonaldBEFuZZhengBChenWLinYChenFZhangLIvanisenkoJZhouYHahnHLaverniaEJRecent progress in high entropy alloy ResearchJOM201769202410.1007/s11837-017-2484-6
– reference: OhHSMaDLeysonGPGrabowskiBParkESKormannFRaabeDLattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experimentEntropy20161832110.3390/e18090321
– reference: MiracleDBSenkovONA critical review of high entropy alloys and related conceptsActa Mater.20171224481:CAS:528:DC%2BC28Xhslagu7vJ10.1016/j.actamat.2016.08.081
– reference: CantorBChangITHKnightPVincentAJBMicrostructural development in equiatomic multicomponent alloysMater. Sci. Eng., A200437521310.1016/j.msea.2003.10.257
– reference: VailheCFarkasDTransition from dislocation core spreading to dislocation dissociation in a series of B2 compoundsPhilos. Mag. A1999799211:CAS:528:DyaK1MXitlGksrg%3D10.1080/01418619908210339
– reference: LiuWHWuYHeJYNiehTGLuZPGrain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloyScr. Mater.2013685261:CAS:528:DC%2BC38XhvFWhsL3P10.1016/j.scriptamat.2012.12.002
– reference: FarkasDSchonCGDeLimaMSFGoldensteinHEmbedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe–Cr alloysActa Mater.1996444091:CAS:528:DyaK28XhvFWktQ%3D%3D10.1016/1359-6454(95)00145-5
– reference: GaoMCGaoPHawkJAOuyangLZAlmanDEWidomMComputational modeling of high-entropy alloys: Structures, thermodynamics and elasticityJ. Mater. Res.20173236271:CAS:528:DC%2BC2sXhs1CktbjJ10.1557/jmr.2017.366
– reference: FarkasDRoquetaDViletteATernesKAtomistic simulations in ternary Ni–Ti–Al alloysModell. Simul. Mater. Sci. Eng.199643591:CAS:528:DyaK28XmvVylsbo%3D10.1088/0965-0393/4/4/003
– reference: TammAAablooAKlintenbergMStocksMCaroAAtomic-scale properties of Ni-based FCC ternary, and quaternary alloysActa Mater.2015993071:CAS:528:DC%2BC2MXhsVajur%2FJ10.1016/j.actamat.2015.08.015
– reference: SmithLFarkasDConnecting interatomic potential characteristics with deformation response in FCC materialsComput. Mater. Sci.2018147181:CAS:528:DC%2BC1cXisVyitbc%3D10.1016/j.commatsci.2018.01.055
– reference: ZhangYWJinKXueHZLuCYOlsenRJBelandLKUllahMWZhaoSJBeiHBAidhyDSSamolyukGDWangLMCaroMCaroAStocksGMLarsonBCRobertsonIMCorreaAAWeberWJInfluence of chemical disorder on energy dissipation and defect evolution in advanced alloysJ. Mater. Res.201631236310.1557/jmr.2016.269
– reference: Toda-CaraballoIWrobelJSNguyen-ManhDPerezPRivera-Diaz-Del-CastilloPEJSimulation and modeling in high entropy alloysJOM201769213710.1007/s11837-017-2524-2
– reference: YehA-CChangY-JTsaiC-WWangY-CYehJ-WKuoC-MOn the solidification and phase stability of a Co–Cr–Fe–Ni–Ti high-entropy alloyMetall. Mater. Trans. A201445A18410.1007/s11661-013-2097-9
– reference: SongHQTianFYHuQMVitosLWangYDShenJChenNXLocal lattice distortion in high-entropy alloysPhys. Rev. Mater.2017102340410.1103/PhysRevMaterials.1.023404
– reference: PolettiMGBattezzatiLElectronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systemsActa Mater.2014752971:CAS:528:DC%2BC2cXhtV2qtbfF10.1016/j.actamat.2014.04.033
– reference: ZhangYZuoTTTangZGaoMCDahmenKALiawPKLuZPMicrostructures and properties of high-entropy alloysProg. Mater. Sci.201461110.1016/j.pmatsci.2013.10.001
– reference: DiaoHYFengRDahmenKALiawPKFundamental deformation behavior in high-entropy alloys: An overviewCurr. Opin. Solid State Mater. Sci.2017212521:CAS:528:DC%2BC2sXhsVyrtrzK10.1016/j.cossms.2017.08.003
– reference: FarkasDJonesCInteratomic potentials for ternary Nb–Ti–Al alloysModell. Simul. Mater. Sci. Eng.19964231:CAS:528:DyaK28XivFWmsLk%3D10.1088/0965-0393/4/1/004
– reference: PollockTMLeSarRThe feedback loop between theory, simulation and experiment for plasticity and property modelingCurr. Opin. Solid State Mater. Sci.201317101:CAS:528:DC%2BC3sXms1KnsL4%3D10.1016/j.cossms.2013.03.003
– reference: PlimptonSFast parallel algorithms for short-range molecular-dynamicsJ. Comput. Phys.199511711:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039
– ident: S0884291418002455_ref41
  doi: 10.1088/1367-2630/15/11/115016
– ident: S0884291418002455_ref36
  doi: 10.1088/0965-0393/4/1/004
– ident: S0884291418002455_ref28
  doi: 10.1007/s11837-017-2524-2
– ident: S0884291418002455_ref44
  doi: 10.1007/s11837-017-2540-2
– ident: S0884291418002455_ref30
  doi: 10.1080/01418619908210339
– volume: 65
  start-page: 1780
  year: 2013
  ident: S0884291418002455_ref9
  article-title: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy
  publication-title: J. Mater.
– ident: S0884291418002455_ref15
  doi: 10.1016/j.intermet.2014.04.019
– ident: S0884291418002455_ref22
  doi: 10.1016/j.actamat.2015.08.015
– ident: S0884291418002455_ref34
  doi: 10.1103/PhysRevB.59.3393
– ident: S0884291418002455_ref19
  doi: 10.1103/PhysRevMaterials.1.023404
– ident: S0884291418002455_ref14
  doi: 10.3390/e15104504
– ident: S0884291418002455_ref33
  doi: 10.1016/j.intermet.2013.05.002
– ident: S0884291418002455_ref11
  doi: 10.1557/mrc.2014.11
– ident: S0884291418002455_ref45
  doi: 10.1016/j.cossms.2017.02.002
– ident: S0884291418002455_ref40
  doi: 10.1088/0965-0393/18/1/015012
– ident: S0884291418002455_ref43
  doi: 10.1016/j.actamat.2016.09.032
– ident: S0884291418002455_ref18
  doi: 10.1016/j.eml.2017.09.015
– ident: S0884291418002455_ref10
  doi: 10.1126/science.1254581
– ident: S0884291418002455_ref7
  doi: 10.1002/adem.200300567
– ident: S0884291418002455_ref12
  doi: 10.1007/s11661-013-2097-9
– ident: S0884291418002455_ref5
  doi: 10.1016/j.msea.2003.10.257
– ident: S0884291418002455_ref24
  doi: 10.1557/jmr.2017.366
– ident: S0884291418002455_ref37
  doi: 10.1088/0965-0393/4/4/003
– ident: S0884291418002455_ref38
  doi: 10.1016/1359-6454(95)00145-5
– ident: S0884291418002455_ref6
  doi: 10.1016/j.actamat.2013.01.042
– ident: S0884291418002455_ref17
  doi: 10.1016/j.cossms.2017.08.003
– ident: S0884291418002455_ref29
  doi: 10.1103/PhysRevB.60.22
– ident: S0884291418002455_ref31
  doi: 10.1016/S0921-5093(98)00912-5
– ident: S0884291418002455_ref25
  doi: 10.1016/j.cossms.2013.03.003
– ident: S0884291418002455_ref2
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: S0884291418002455_ref21
  doi: 10.1557/jmr.2016.269
– ident: S0884291418002455_ref23
  doi: 10.1038/ncomms9736
– ident: S0884291418002455_ref4
  doi: 10.1007/s11837-017-2484-6
– ident: S0884291418002455_ref32
  doi: 10.1016/j.commatsci.2018.01.055
– ident: S0884291418002455_ref35
  doi: 10.1088/0965-0393/3/2/005
– ident: S0884291418002455_ref3
  doi: 10.1016/j.actamat.2016.08.081
– ident: S0884291418002455_ref13
  doi: 10.1016/j.intermet.2014.04.001
– ident: S0884291418002455_ref1
  doi: 10.1016/B978-0-12-800251-3.00002-X
– ident: S0884291418002455_ref42
  doi: 10.3389/fmats.2017.00036
– ident: S0884291418002455_ref39
  doi: 10.1006/jcph.1995.1039
– ident: S0884291418002455_ref27
  doi: 10.1103/PhysRevB.42.9622
– ident: S0884291418002455_ref26
  doi: 10.1007/s11837-017-2461-0
– ident: S0884291418002455_ref20
  doi: 10.3390/e18090321
– ident: S0884291418002455_ref8
  doi: 10.1016/j.scriptamat.2012.12.002
– ident: S0884291418002455_ref16
  doi: 10.1016/j.actamat.2014.04.033
SSID ssj0015074
Score 2.6402524
Snippet A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to...
SourceID proquest
crossref
springer
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3218
SubjectTerms Alloys
Applied and Technical Physics
Biomaterials
Chromium
Computer simulation
Copper
Deformation
Embedded atom method
Energy
Entropy
Grain size
Heat of mixing
High entropy alloys
Inorganic Chemistry
Intermetallic compounds
Lattice strain
Materials Engineering
Materials research
Materials Science
Mechanical properties
Mixtures
Nanotechnology
Nickel
Phase separation
Simulation
Solid solutions
Strain hardening
Temperature
Trends
Values
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZggAQH3ojxUg48DqjA2qRNTggQjwOaEALErUrSTBoa21gLEv8eu8s2QMCFcyzFrd34c-x-BtgWNtSRcZyqupigWK0CRAkucDZLMEAZGZd0DA_XSb0uHx_Vjb9wy31b5eBMLA_qrGPpjvyQmMgSxB5SHHdfApoaRdVVP0JjHCZonVdg4vS8fnM7rCMg2uF9HMmDUNW4b30XIjl8eiY60Jo8COlXphGxwtcANUKd3wqlZfy5mPuv5vMw65EnO-m7ygKMufYizHziI1yEqbIf1OZLcEkz0lqMyCSoDv_ctKzbKaizCN2V6XbGWrqgvjmWl0MmUJJpRtzHAV0Xd7rvjCr678twf3F-d3YV-JkLgeURLwLrGtwkJtHcxgqTsYaMdBw51QhFKDBbbkh35IRyOpbWKcGNlsJqIzNEaibK4mgFKu1O260CS4xWxrmQSqlcJ04ZRE-ZiYgwH_P5sAp7w5ee-i8nTykpQfOkaJ6UzJOieaqwPzBJaj11OT1c6xfpnaF0t0_Z8YvcxsBeo-1Hxvp5WSLgjFQsUPvdgUP8rfza39uswzRJUjis8Q2oFL1XtwmT9q1o5r0t788fXmj9aw
  priority: 102
  providerName: ProQuest
Title Model interatomic potentials and lattice strain in a high-entropy alloy
URI https://www.cambridge.org/core/product/identifier/S0884291418002455/type/journal_article
https://link.springer.com/article/10.1557/jmr.2018.245
https://www.proquest.com/docview/2119756685
https://www.proquest.com/docview/2845639652
Volume 33
WOSCitedRecordID wos000452650400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: 7WY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: M0C
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: KB.
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB6sB-iDR1WsR9kHjwdJsckm2X1UqQpqEc_6FHY3W1BqW5oo-O-dSZN6QEVfQkImZDO7yXyTb_gGYNs3rvK05cTqYoJilHQQJVjHmjjEAKVFkMkx3F-EzaZoteRVnigmRbV7QUlmX-qsRw-m7c8vJN9ZFzWX-yWYwkAn6EW8vrkfsQaIbfgQNXLHlXWeF7r_vPqrjML3cPSJMX_Qolm0OVn47zgXYT7HlexwuBCWYMJ2yzD3RW2wDDNZtadJluGUOqB1GElFEMv-8mRYv5dS3RAuRqa6MeuolKriWJK1kEBLphgpGzv0M7jXf2fE17-vwN1J4_b4zMk7KjiGezx1jG1zHepQcRNITLXawlOBZ2Xb9V0fc-G2sAfWl1YFwljpc62Eb5QWMeIw7cWBtwqT3V7XrgELtZLaWpeIUq5CKzVio1h7JIeP2bpbgb2Rk6P8vUgiSjnQSRE6KSInReikCuwXUxCZXJicHq4zxnpnZN0fCnKMsdssZvPz9iRnFyKAFWNOC4STngx8HP1uMbm_D379r4YbMEu7FPbqfBMm08Gr3YJp85Y-JYMqlMKHxypMHTWaV9d4dH5Uw-3lwXE1W-Ef8Af0BQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PU9QwFH6DoIMcUBFHfqg5iB6cCpsmbXJgGAZFGNYdD-hwq0n6dgZn2V1phdl_ir-R97rtrjrCjYPnpk3SfEm-l_fyPYDXOkgXe1Ts1SUDJTgbEUvACEOe0gblTVLJMXxrp52OOTmxX2bgqrkLw2GVzZpYLdT5IPAZ-SYrkaXEPYzeGf6MOGsUe1ebFBpjWBzh6JJMtmL78AON74aU-x-P9w6iOqtAFFSsyihgV_nUp06FxJK50TWxS2K0XamlJnuwa3ALtUWXmIBWK--MDs6bnLiIj_Mkpu_egzmlaDpwqODW3sRrQdxKjVmriqRtqTrQXut088cZi4-2zHvJF6emMg5_bodTjvuXW7ba7fYf_W__6TEs1rxa7I4nwhOYwf4SLPymtrgED6po11A8hU-cAa4nWCqDowzOToMYDkqOm6LJKFw_Fz1XclSgKKoUGlRSOMHKzhEfhg-GI8HxCqNl-HonfXoGs_1BH5-DSL2zHlGyo1i5FK0nbpj7mNMBoJdyBd5OBjmr14UiY5OL4JARHDKGQ0ZwWIF3DQSyUAuzc-d6N5TemJQejgVJbii33uBjWv0UHP9-bIhOxzbR1Po3DQBvb_zq7dW8gvmD48_trH3YOVqDh_wWb_wttQ6z5fkvfAH3w0V5Wpy_rGaSgO93DclrvMtaTw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAceBQQhQI-UDigsKxjx_YBIURZqFqteuDRnoLtTKSi7e7SBND-NX4dM9lkFxDtrQfOcWI7_mx_4xl_A_BIR-nTgIq9umSgRO8SYgmYYCwMbVDBZo0cw8ddMxza_X23twI_u7swHFbZrYnNQl1MIp-R91iJzBD3sLpXtmERe1uDl9OvCWeQYk9rl05jDpEdnP0g8616sb1FY70p5eDN-9fvkjbDQBJVquokYqmCCcarmDkyPUqb-ixFV0otNdmGpcXnqB36zEZ0WgVvdfTBFsRLQlpkKX33HJw3jHuaS-bTwcKDQTxLzRmsSqTrqzboXmvT-3LEQqR9-0zyJaqlpMOfW-OS7_7lom12vsG1__mfXYerLd8Wr-YT5Aas4HgNrvymwrgGF5so2FjdhLecGW4kWEKDow-ODqOYTmqOp6JJKvy4ECNfc7SgqJrUGlRSeMGKzwkfkk-mM8FxDLNb8OFM-nQbVseTMd4BYYJ3AVGyA1l5gy4QZyxCymkCMEi5Dk8WA56360WVsylG0MgJGjlDIydorMPTDg55bAXbuXOjE0pvLkpP50IlJ5Tb6LCyrH4JlH8_tkSzU5dpav3jDoynN_7u6dU8hEuExHx3e7hzDy7zS8wH-moDVuvjb3gfLsTv9WF1_KCZVAI-nzUifwFnFmNs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+interatomic+potentials+and+lattice+strain+in+a+high-entropy+alloy&rft.jtitle=Journal+of+materials+research&rft.au=Farkas%2C+Diana&rft.au=Caro%2C+Alfredo&rft.date=2018-10-14&rft.pub=Springer+Nature+B.V&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=33&rft.issue=19&rft.spage=3218&rft.epage=3225&rft_id=info:doi/10.1557%2Fjmr.2018.245&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon