Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study
Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant features in datasets negatively influences algorithms and leads to decreases in the performance of the algorithms. Using effective features in data...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 10; číslo 11; s. 1929 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2022
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant features in datasets negatively influences algorithms and leads to decreases in the performance of the algorithms. Using effective features in data mining and analyzing tasks such as classification can increase the accuracy of the results and relevant decisions made by decision-makers using them. This increase can become more acute when dealing with challenging, large-scale problems in medical applications. Nature-inspired metaheuristics show superior performance in finding optimal feature subsets in the literature. As a seminal attempt, a wrapper feature selection approach is presented on the basis of the newly proposed Aquila optimizer (AO) in this work. In this regard, the wrapper approach uses AO as a search algorithm in order to discover the most effective feature subset. S-shaped binary Aquila optimizer (SBAO) and V-shaped binary Aquila optimizer (VBAO) are two binary algorithms suggested for feature selection in medical datasets. Binary position vectors are generated utilizing S- and V-shaped transfer functions while the search space stays continuous. The suggested algorithms are compared to six recent binary optimization algorithms on seven benchmark medical datasets. In comparison to the comparative algorithms, the gained results demonstrate that using both proposed BAO variants can improve the classification accuracy on these medical datasets. The proposed algorithm is also tested on the real-dataset COVID-19. The findings testified that SBAO outperforms comparative algorithms regarding the least number of selected features with the highest accuracy. |
|---|---|
| AbstractList | Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant features in datasets negatively influences algorithms and leads to decreases in the performance of the algorithms. Using effective features in data mining and analyzing tasks such as classification can increase the accuracy of the results and relevant decisions made by decision-makers using them. This increase can become more acute when dealing with challenging, large-scale problems in medical applications. Nature-inspired metaheuristics show superior performance in finding optimal feature subsets in the literature. As a seminal attempt, a wrapper feature selection approach is presented on the basis of the newly proposed Aquila optimizer (AO) in this work. In this regard, the wrapper approach uses AO as a search algorithm in order to discover the most effective feature subset. S-shaped binary Aquila optimizer (SBAO) and V-shaped binary Aquila optimizer (VBAO) are two binary algorithms suggested for feature selection in medical datasets. Binary position vectors are generated utilizing S- and V-shaped transfer functions while the search space stays continuous. The suggested algorithms are compared to six recent binary optimization algorithms on seven benchmark medical datasets. In comparison to the comparative algorithms, the gained results demonstrate that using both proposed BAO variants can improve the classification accuracy on these medical datasets. The proposed algorithm is also tested on the real-dataset COVID-19. The findings testified that SBAO outperforms comparative algorithms regarding the least number of selected features with the highest accuracy. |
| Audience | Academic |
| Author | Abualigah, Laith Nadimi-Shahraki, Mohammad H. Taghian, Shokooh Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Mohammad H. orcidid: 0000-0002-0135-1115 surname: Nadimi-Shahraki fullname: Nadimi-Shahraki, Mohammad H. – sequence: 2 givenname: Shokooh orcidid: 0000-0002-8872-8455 surname: Taghian fullname: Taghian, Shokooh – sequence: 3 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali – sequence: 4 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith |
| BookMark | eNptUU1v1DAQjVCRKKU3foAlrqT4K3HMbdm2sFLRHkp7tSbOePEqibeOU6n8erwsoqWq5-DRzHtvZvTeFkdjGLEo3jN6JoSmnwZIPxlljGmuXxXHnHNVqtw4epK_KU6naUvz00w0Uh8X8MWPEB_I4m72PZD1LvnB_8JIXIjkGnu0yY8bcuHcPrtHcomQ5ogTcTEM5Dt23kJPziHBZ7Igy_Xt6rxkmixhQnKd5u7hXfHaQT_h6d__pLi5vPix_FZerb-ulour0kohU9l2gnLV8U4iOOVQN52sGnACWoYOmHIcqkpRkXevtaodQy5aqKVskSJwcVKsDrpdgK3ZRT_ku0wAb_4UQtwYiMnbHk0lEJtaVtRiJZsOWi2h5pqrSlYcaZW1Phy0djHczTglsw1zHPP6htdKCsWU4o-oDWRRP7qQItjBT9YsFG-UoFLttc5eQOXocPA2e-h8rv9H-Hgg2BimKaL7dwyjZm-1eWp1hvNncOsTJB_GPMf3L5N-A_cQqoc |
| CitedBy_id | crossref_primary_10_1007_s42979_024_02632_8 crossref_primary_10_1007_s00500_025_10445_x crossref_primary_10_1007_s10586_024_04721_y crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1111_exsy_13458 crossref_primary_10_1007_s11831_023_09945_6 crossref_primary_10_1016_j_knosys_2025_113695 crossref_primary_10_1093_jcde_qwad009 crossref_primary_10_3389_fmed_2023_1103083 crossref_primary_10_1016_j_compbiomed_2022_106155 crossref_primary_10_3390_s23187857 crossref_primary_10_1016_j_eswa_2025_127012 crossref_primary_10_3390_app14062302 crossref_primary_10_3390_math10214154 crossref_primary_10_3233_JIFS_221348 crossref_primary_10_1007_s10586_024_04614_0 crossref_primary_10_1007_s10586_024_04448_w crossref_primary_10_1016_j_heliyon_2024_e32270 crossref_primary_10_1007_s11831_025_10281_0 crossref_primary_10_1016_j_cma_2024_117251 crossref_primary_10_1155_2023_9161763 crossref_primary_10_1007_s13042_024_02308_y crossref_primary_10_1016_j_jksuci_2023_101757 crossref_primary_10_1371_journal_pone_0280006 crossref_primary_10_3390_math11194200 crossref_primary_10_1007_s10462_022_10328_9 crossref_primary_10_1155_2022_3861161 crossref_primary_10_1016_j_eswa_2024_123871 crossref_primary_10_1007_s00357_024_09468_0 crossref_primary_10_1038_s41598_024_80648_z crossref_primary_10_32604_cmc_2023_036865 crossref_primary_10_1016_j_compbiomed_2023_107825 crossref_primary_10_1016_j_compeleceng_2024_109578 crossref_primary_10_1016_j_knosys_2025_113156 crossref_primary_10_1007_s00500_023_09299_y crossref_primary_10_1007_s41870_023_01581_4 crossref_primary_10_1007_s42979_024_02674_y crossref_primary_10_3390_math11183982 crossref_primary_10_1007_s10586_024_04447_x crossref_primary_10_3390_diagnostics13203244 crossref_primary_10_1109_ACCESS_2023_3272556 crossref_primary_10_3390_math10234509 crossref_primary_10_3390_s23073714 crossref_primary_10_1007_s42235_023_00387_1 crossref_primary_10_1016_j_asoc_2023_110583 crossref_primary_10_1007_s11831_023_09901_4 crossref_primary_10_1007_s10586_024_04602_4 crossref_primary_10_3390_app13179802 crossref_primary_10_3390_electronics12092042 |
| Cites_doi | 10.1016/j.compbiomed.2021.105027 10.1016/j.asoc.2019.105763 10.1007/s12652-020-01902-6 10.1016/j.patcog.2007.02.007 10.1016/j.egyr.2021.12.023 10.1016/S0004-3702(97)00043-X 10.1016/j.oceaneng.2021.110121 10.1007/s42235-022-00185-1 10.1016/j.knosys.2014.03.015 10.1016/j.asoc.2017.09.038 10.1016/j.apm.2020.12.016 10.1016/j.future.2020.08.036 10.1016/j.eswa.2010.09.133 10.1007/s11042-020-09639-2 10.1016/j.advengsoft.2017.03.014 10.3390/math9182321 10.1016/j.ins.2008.12.001 10.1016/j.eswa.2018.12.033 10.1007/978-1-4615-5725-8 10.1111/exsy.12779 10.1002/9781119347569 10.1007/s10462-021-09957-3 10.1108/K-02-2013-0018 10.1016/j.jobe.2021.102935 10.1007/s10898-007-9149-x 10.1016/j.asoc.2020.106761 10.1016/j.eswa.2013.09.033 10.1016/j.eswa.2020.113249 10.5121/acij.2019.10501 10.1016/j.swevo.2011.02.002 10.1016/j.geoderma.2009.07.010 10.1016/j.knosys.2020.106270 10.3390/electronics10232975 10.3390/e23121637 10.1016/j.eswa.2021.115499 10.1016/j.jocs.2022.101636 10.1016/j.neucom.2017.07.050 10.1016/j.compbiomed.2022.105349 10.3390/en14113029 10.1016/j.asoc.2018.04.033 10.1016/j.eswa.2018.08.051 10.1016/j.fuel.2022.123348 10.1016/j.compbiomed.2021.105152 10.1007/s00366-021-01294-x 10.1016/j.neucom.2016.07.080 10.1109/IDAP.2018.8620828 10.1016/j.eswa.2017.02.042 10.1080/0952813X.2015.1020519 10.1002/9780470496916 10.1016/j.energy.2014.05.011 10.3390/su14020929 10.3390/a14110314 10.1007/s11047-009-9175-3 10.1016/j.knosys.2021.107297 10.1016/j.apenergy.2017.01.043 10.1016/j.compeleceng.2017.12.032 10.1109/ACCESS.2020.2986232 10.1016/j.eswa.2021.115690 10.1155/2022/6078986 10.1007/s10489-019-01423-6 10.1016/j.eswa.2009.02.038 10.1016/j.swevo.2012.09.002 10.3390/math10050761 10.1109/ICTCS.2017.43 10.1109/TEVC.2008.919004 10.3390/app10113706 10.1023/A:1008202821328 10.1016/j.eswa.2008.01.009 10.1016/j.swevo.2020.100661 10.1109/IDAP.2018.8620933 10.1016/j.knosys.2018.08.030 10.1016/j.asoc.2020.107026 10.1007/s10489-020-02038-y 10.1109/4235.771163 10.1016/j.ins.2020.03.112 10.1016/j.enconman.2021.114002 10.1109/SIBGRAPI.2012.47 10.1007/s00366-017-0523-0 10.1109/ACCESS.2020.2985986 10.1007/s00170-009-2363-6 10.1111/coin.12397 10.1016/j.jksuci.2021.12.018 10.1109/TSTE.2015.2441747 10.3389/fpubh.2020.00357 10.1016/j.neucom.2015.06.083 10.1016/j.jobe.2021.103032 10.1007/978-3-642-12538-6_6 10.1109/CEC.2007.4424711 10.1016/j.compbiomed.2021.104984 10.1016/j.swevo.2021.101022 10.1016/j.asoc.2021.107302 10.1016/j.comnet.2020.107247 10.3233/IDA-1997-1302 10.1007/978-981-15-3290-0_19 10.3390/sym13122388 10.3390/computers10110136 10.1016/j.advengsoft.2005.04.005 10.1016/j.sigpro.2008.07.001 10.1016/j.bspc.2021.103401 10.1016/j.snb.2015.02.025 10.1016/j.asoc.2007.12.003 10.3390/pr9091551 10.3390/math10071100 10.1109/4235.585893 10.1016/j.cie.2021.107250 10.1126/science.220.4598.671 10.1016/j.asoc.2021.107866 10.1016/j.eswa.2020.113917 10.1038/scientificamerican0792-66 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math10111929 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Engineering |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_53ee86450ce548dab94a629275452e05 A728730475 10_3390_math10111929 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c434t-bd3027d2d4eaf7fe98d458af3ab1efa17f2a557030096976f1e23ba644be0ea23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 18:59:36 EDT 2025 Fri Jul 25 11:52:52 EDT 2025 Tue Nov 11 11:11:30 EST 2025 Tue Nov 04 18:35:00 EST 2025 Tue Nov 18 21:50:22 EST 2025 Sat Nov 29 07:17:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-bd3027d2d4eaf7fe98d458af3ab1efa17f2a557030096976f1e23ba644be0ea23 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0000-0002-2203-4549 0000-0002-1443-9458 0000-0002-8872-8455 0000-0002-0135-1115 |
| OpenAccessLink | https://doaj.org/article/53ee86450ce548dab94a629275452e05 |
| PQID | 2674371772 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_53ee86450ce548dab94a629275452e05 proquest_journals_2674371772 gale_infotracmisc_A728730475 gale_infotracacademiconefile_A728730475 crossref_primary_10_3390_math10111929 crossref_citationtrail_10_3390_math10111929 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_90 ref_14 ref_10 ref_98 ref_97 Zhou (ref_74) 2020; 174 Catal (ref_76) 2009; 179 ref_19 ref_17 Derrac (ref_118) 2011; 1 Kohavi (ref_3) 1997; 97 Zhu (ref_120) 2007; 40 Wang (ref_79) 2014; 41 Akay (ref_87) 2009; 36 Lu (ref_94) 2017; 256 Emary (ref_105) 2016; 172 Li (ref_69) 2021; 185 Jain (ref_93) 2018; 62 ref_20 Dash (ref_7) 1997; 1 Karaboga (ref_61) 2007; 39 Guyon (ref_1) 2003; 3 Luukka (ref_6) 2011; 38 Asghari (ref_40) 2021; 38 ref_28 Chatterjee (ref_89) 2022; 141 Li (ref_109) 2021; 106 ref_72 Zhang (ref_84) 2014; 64 Liu (ref_78) 2018; 273 Arora (ref_106) 2019; 116 Shukla (ref_12) 2020; 54 Yao (ref_56) 1999; 3 Taghian (ref_68) 2020; 97 Oussalah (ref_42) 2014; 43 Camarena (ref_39) 2021; 93 Kirkpatrick (ref_63) 1983; 220 Behrens (ref_86) 2010; 155 Chakraborty (ref_26) 2021; 139 Feng (ref_95) 2017; 190 Awadallah (ref_111) 2022; 141 Xie (ref_21) 2019; 84 Chakraborty (ref_29) 2021; 113 Storn (ref_55) 1997; 11 Simon (ref_58) 2008; 12 Jadhav (ref_81) 2018; 69 Wolpert (ref_67) 1997; 1 Cai (ref_48) 2021; 242 Holland (ref_57) 1992; 267 Varaee (ref_38) 2021; 43 Houssein (ref_27) 2022; 73 He (ref_101) 2021; 69 Alboaneen (ref_43) 2021; 115 Taghian (ref_52) 2021; 166 Zhang (ref_15) 2021; 228 Mohammadzadeh (ref_85) 2021; 37 Lee (ref_82) 2009; 36 ref_53 Iwendi (ref_121) 2020; 8 Hosseinalipour (ref_83) 2021; 51 Kundu (ref_103) 2022; 144 ref_59 Mergos (ref_33) 2022; 15 Neshat (ref_50) 2021; 236 Trinh (ref_24) 2022; 55 Neshat (ref_51) 2020; 534 Masegosa (ref_11) 2019; 49 Oliva (ref_13) 2014; 72 ref_60 Yan (ref_91) 2015; 212 Rahnema (ref_23) 2020; 79 Masdari (ref_22) 2020; 11 Ali (ref_16) 2022; 8 Erol (ref_65) 2006; 37 Dashti (ref_45) 2016; 28 Satpathy (ref_46) 2018; 69 Alazzam (ref_73) 2020; 148 Barakat (ref_9) 2020; 8 ref_62 Sayarshad (ref_36) 2010; 48 Ghasemi (ref_41) 2018; 34 Li (ref_96) 2015; 6 Abualigah (ref_71) 2021; 157 Oliva (ref_25) 2017; 79 Taghian (ref_108) 2019; 8 Zhang (ref_107) 2020; 8 Mirjalili (ref_99) 2013; 9 Rashedi (ref_104) 2010; 9 ref_115 ref_114 ref_117 ref_116 ref_119 Mergos (ref_18) 2021; 44 Albashish (ref_112) 2021; 101 ref_35 ref_34 ref_32 Kaveh (ref_64) 2017; 110 ref_31 ref_110 ref_30 Turabieh (ref_75) 2019; 122 ref_113 ref_37 Huang (ref_92) 2022; 316 Rechenberg (ref_54) 1973; 104 Jiang (ref_49) 2021; 185 Ververidis (ref_77) 2008; 88 ref_47 ref_44 Shaban (ref_88) 2020; 205 ref_100 ref_102 Zhao (ref_66) 2019; 163 ref_2 Taghian (ref_70) 2022; 61 ref_8 Ravi (ref_80) 2008; 8 ref_5 ref_4 |
| References_xml | – volume: 141 start-page: 105027 year: 2022 ident: ref_89 article-title: Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105027 – volume: 84 start-page: 105763 year: 2019 ident: ref_21 article-title: Improving K-means clustering with enhanced firefly algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105763 – volume: 11 start-page: 5459 year: 2020 ident: ref_22 article-title: Discrete teaching–learning-based optimization algorithm for clustering in wireless sensor networks publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-01902-6 – volume: 40 start-page: 3236 year: 2007 ident: ref_120 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.02.007 – volume: 8 start-page: 582 year: 2022 ident: ref_16 article-title: An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.12.023 – volume: 97 start-page: 273 year: 1997 ident: ref_3 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 242 start-page: 110121 year: 2021 ident: ref_48 article-title: A meta-heuristic assisted underwater glider path planning method publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2021.110121 – ident: ref_32 doi: 10.1007/s42235-022-00185-1 – volume: 64 start-page: 22 year: 2014 ident: ref_84 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.03.015 – volume: 62 start-page: 203 year: 2018 ident: ref_93 article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.038 – volume: 93 start-page: 226 year: 2021 ident: ref_39 article-title: Group-based synchronous-asynchronous Grey Wolf Optimizer publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.12.016 – volume: 115 start-page: 201 year: 2021 ident: ref_43 article-title: A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.08.036 – volume: 38 start-page: 4600 year: 2011 ident: ref_6 article-title: Feature selection using fuzzy entropy measures with similarity classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.133 – volume: 79 start-page: 32169 year: 2020 ident: ref_23 article-title: An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09639-2 – volume: 110 start-page: 69 year: 2017 ident: ref_64 article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – ident: ref_90 doi: 10.3390/math9182321 – ident: ref_31 – volume: 3 start-page: 1157 year: 2003 ident: ref_1 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 179 start-page: 1040 year: 2009 ident: ref_76 article-title: Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.12.001 – volume: 122 start-page: 27 year: 2019 ident: ref_75 article-title: Iterated feature selection algorithms with layered recurrent neural network for software fault prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.033 – ident: ref_10 – ident: ref_4 doi: 10.1007/978-1-4615-5725-8 – volume: 38 start-page: e12779 year: 2021 ident: ref_40 article-title: Multi-swarm and chaotic whale-particle swarm optimization algorithm with a selection method based on roulette wheel publication-title: Expert Syst. doi: 10.1111/exsy.12779 – ident: ref_5 doi: 10.1002/9781119347569 – volume: 8 start-page: 168 year: 2019 ident: ref_108 article-title: A Binary Metaheuristic Algorithm for Wrapper Feature Selection publication-title: Int. J. Comput. Sci. Eng. (IJCSE) – volume: 55 start-page: 1915 year: 2022 ident: ref_24 article-title: Optimized fuzzy clustering using moth-flame optimization algorithm in wireless sensor networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09957-3 – volume: 43 start-page: 1262 year: 2014 ident: ref_42 article-title: Job scheduling in the Expert Cloud based on genetic algorithms publication-title: Kybernetes doi: 10.1108/K-02-2013-0018 – volume: 44 start-page: 102935 year: 2021 ident: ref_18 article-title: Optimum design of 3D reinforced concrete building frames with the flower pollination algorithm publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.102935 – volume: 39 start-page: 459 year: 2007 ident: ref_61 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 104 start-page: 15 year: 1973 ident: ref_54 article-title: Evolution Strategy: Optimization of Technical systems by means of biological evolution publication-title: Holzboog Stuttg. – volume: 97 start-page: 106761 year: 2020 ident: ref_68 article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106761 – volume: 41 start-page: 2353 year: 2014 ident: ref_79 article-title: An improved boosting based on feature selection for corporate bankruptcy prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.033 – volume: 148 start-page: 113249 year: 2020 ident: ref_73 article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113249 – ident: ref_59 – ident: ref_117 doi: 10.5121/acij.2019.10501 – ident: ref_53 – volume: 1 start-page: 3 year: 2011 ident: ref_118 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 155 start-page: 175 year: 2010 ident: ref_86 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2009.07.010 – volume: 205 start-page: 106270 year: 2020 ident: ref_88 article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106270 – ident: ref_14 doi: 10.3390/electronics10232975 – ident: ref_34 doi: 10.3390/e23121637 – volume: 185 start-page: 115499 year: 2021 ident: ref_69 article-title: Enhanced Harris hawks optimization with multi-strategy for global optimization tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115499 – volume: 61 start-page: 101636 year: 2022 ident: ref_70 article-title: GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2022.101636 – volume: 273 start-page: 271 year: 2018 ident: ref_78 article-title: Speech emotion recognition based on feature selection and extreme learning machine decision tree publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.050 – volume: 144 start-page: 105349 year: 2022 ident: ref_103 article-title: AltWOA: Altruistic Whale Optimization Algorithm for feature selection on microarray datasets publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105349 – ident: ref_37 doi: 10.3390/en14113029 – volume: 69 start-page: 541 year: 2018 ident: ref_81 article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.033 – volume: 116 start-page: 147 year: 2019 ident: ref_106 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.051 – volume: 316 start-page: 123348 year: 2022 ident: ref_92 article-title: Modeling the effects of biodiesel chemical composition on iodine value using novel machine learning algorithm publication-title: Fuel doi: 10.1016/j.fuel.2022.123348 – volume: 141 start-page: 105152 year: 2022 ident: ref_111 article-title: Binary Horse herd optimization algorithm with crossover operators for feature selection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105152 – ident: ref_17 doi: 10.1007/s00366-021-01294-x – volume: 256 start-page: 56 year: 2017 ident: ref_94 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – ident: ref_97 doi: 10.1109/IDAP.2018.8620828 – volume: 79 start-page: 164 year: 2017 ident: ref_25 article-title: Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.042 – volume: 28 start-page: 97 year: 2016 ident: ref_45 article-title: Dynamic VMs placement for energy efficiency by PSO in cloud computing publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2015.1020519 – ident: ref_8 doi: 10.1002/9780470496916 – volume: 72 start-page: 93 year: 2014 ident: ref_13 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Energy doi: 10.1016/j.energy.2014.05.011 – ident: ref_113 doi: 10.3390/su14020929 – ident: ref_20 doi: 10.3390/a14110314 – volume: 9 start-page: 727 year: 2010 ident: ref_104 article-title: BGSA: Binary gravitational search algorithm publication-title: Nat. Comput. doi: 10.1007/s11047-009-9175-3 – volume: 228 start-page: 107297 year: 2021 ident: ref_15 article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107297 – volume: 190 start-page: 1245 year: 2017 ident: ref_95 article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.043 – volume: 69 start-page: 334 year: 2018 ident: ref_46 article-title: Crow search based virtual machine placement strategy in cloud data centers with live migration publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.12.032 – volume: 8 start-page: 66989 year: 2020 ident: ref_9 article-title: Improved feature selection model for big data analytics publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986232 – volume: 185 start-page: 115690 year: 2021 ident: ref_49 article-title: A diversified group teaching optimization algorithm with segment-based fitness strategy for unmanned aerial vehicle route planning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115690 – ident: ref_19 doi: 10.1155/2022/6078986 – volume: 49 start-page: 2807 year: 2019 ident: ref_11 article-title: Ensemble classification for imbalanced data based on feature space partitioning and hybrid metaheuristics publication-title: Appl. Intell. doi: 10.1007/s10489-019-01423-6 – volume: 36 start-page: 10896 year: 2009 ident: ref_82 article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.038 – volume: 9 start-page: 1 year: 2013 ident: ref_99 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – ident: ref_35 doi: 10.3390/math10050761 – ident: ref_116 doi: 10.1109/ICTCS.2017.43 – ident: ref_98 – volume: 12 start-page: 702 year: 2008 ident: ref_58 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – ident: ref_72 doi: 10.3390/app10113706 – volume: 11 start-page: 341 year: 1997 ident: ref_55 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 36 start-page: 3240 year: 2009 ident: ref_87 article-title: Support vector machines combined with feature selection for breast cancer diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.009 – volume: 54 start-page: 100661 year: 2020 ident: ref_12 article-title: Gene selection for cancer types classification using novel hybrid metaheuristics approach publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100661 – volume: 15 start-page: 1 year: 2022 ident: ref_33 article-title: Flower pollination algorithm with pollinator attraction publication-title: Evol. Intell. – ident: ref_47 doi: 10.1109/IDAP.2018.8620933 – volume: 163 start-page: 283 year: 2019 ident: ref_66 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.08.030 – volume: 101 start-page: 107026 year: 2021 ident: ref_112 article-title: Binary biogeography-based optimization based SVM-RFE for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107026 – volume: 51 start-page: 4824 year: 2021 ident: ref_83 article-title: A novel binary farmland fertility algorithm for feature selection in analysis of the text psychology publication-title: Appl. Intell. doi: 10.1007/s10489-020-02038-y – volume: 3 start-page: 82 year: 1999 ident: ref_56 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 534 start-page: 218 year: 2020 ident: ref_51 article-title: A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.03.112 – volume: 236 start-page: 114002 year: 2021 ident: ref_50 article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114002 – ident: ref_115 doi: 10.1109/SIBGRAPI.2012.47 – volume: 34 start-page: 91 year: 2018 ident: ref_41 article-title: Enhanced IGMM optimization algorithm based on vibration for numerical and engineering problems publication-title: Eng. Comput. doi: 10.1007/s00366-017-0523-0 – volume: 8 start-page: 67799 year: 2020 ident: ref_107 article-title: OEbBOA: A novel improved binary butterfly optimization approaches with various strategies for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985986 – volume: 48 start-page: 1009 year: 2010 ident: ref_36 article-title: Using bees algorithm for material handling equipment planning in manufacturing systems publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2363-6 – volume: 37 start-page: 176 year: 2021 ident: ref_85 article-title: A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detection publication-title: Comput. Intell. doi: 10.1111/coin.12397 – ident: ref_28 doi: 10.1016/j.jksuci.2021.12.018 – volume: 6 start-page: 1447 year: 2015 ident: ref_96 article-title: Wind power forecasting using neural network ensembles with feature selection publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2015.2441747 – volume: 8 start-page: 357 year: 2020 ident: ref_121 article-title: COVID-19 patient health prediction using boosted random forest algorithm publication-title: Front. Public Health doi: 10.3389/fpubh.2020.00357 – volume: 172 start-page: 371 year: 2016 ident: ref_105 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – ident: ref_119 – volume: 43 start-page: 103032 year: 2021 ident: ref_38 article-title: The life-cycle cost analysis based on probabilistic optimization using a novel algorithm publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103032 – ident: ref_62 doi: 10.1007/978-3-642-12538-6_6 – ident: ref_102 doi: 10.1109/CEC.2007.4424711 – volume: 139 start-page: 104984 year: 2021 ident: ref_26 article-title: COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104984 – volume: 69 start-page: 101022 year: 2021 ident: ref_101 article-title: Novel binary differential evolution algorithm based on Taper-shaped transfer functions for binary optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.101022 – volume: 106 start-page: 107302 year: 2021 ident: ref_109 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107302 – volume: 174 start-page: 107247 year: 2020 ident: ref_74 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107247 – volume: 1 start-page: 131 year: 1997 ident: ref_7 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.3233/IDA-1997-1302 – ident: ref_100 doi: 10.1007/978-981-15-3290-0_19 – ident: ref_30 doi: 10.3390/sym13122388 – ident: ref_110 doi: 10.3390/computers10110136 – volume: 37 start-page: 106 year: 2006 ident: ref_65 article-title: A new optimization method: Big bang–big crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – volume: 88 start-page: 2956 year: 2008 ident: ref_77 article-title: Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.07.001 – ident: ref_2 – volume: 73 start-page: 103401 year: 2022 ident: ref_27 article-title: An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103401 – volume: 212 start-page: 353 year: 2015 ident: ref_91 article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.02.025 – volume: 8 start-page: 1539 year: 2008 ident: ref_80 article-title: Threshold accepting trained principal component neural network and feature subset selection: Application to bankruptcy prediction in banks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.12.003 – ident: ref_114 doi: 10.3390/pr9091551 – ident: ref_44 doi: 10.3390/math10071100 – volume: 1 start-page: 67 year: 1997 ident: ref_67 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 157 start-page: 107250 year: 2021 ident: ref_71 article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 220 start-page: 671 year: 1983 ident: ref_63 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 113 start-page: 107866 year: 2021 ident: ref_29 article-title: SHADE–WOA: A metaheuristic algorithm for global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107866 – volume: 166 start-page: 113917 year: 2021 ident: ref_52 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113917 – volume: 267 start-page: 66 year: 1992 ident: ref_57 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: ref_60 |
| SSID | ssj0000913849 |
| Score | 2.4566216 |
| Snippet | Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1929 |
| SubjectTerms | Algorithms binary metaheuristic algorithm Classification Coronaviruses COVID-19 Data mining Datasets Decision making Engineering Evolution Feature selection Genetic algorithms Heuristic methods Mathematical optimization Mathematics medical data nature-inspired algorithm Optimization Optimization algorithms Search algorithms transfer function Transfer functions |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagcIBDeVYECvIBxAGtmvU66zWXKk2pQIIWqYB6s8b2LEQqSZtHpfbXd8Zx0vZQLhx3PSt5NePxfPbMN0K8bTzFCOh1YS34QiOZMXhri2iD1bRj1W1I7Ppfzf5-c3Rkv-cDt2lOq1z6xOSo4zjwGfmW4mx5wh5GbZ-cFtw1im9XcwuNu-IesySUKXXvcHXGwpyXjbaLfPeK0P0WRYF_Sm6vblNMebUTJcL-29xy2mv2Hv3vLB-L9Rxlyv7CLJ6IOzh6Kh5e4x6kp28rwtbpMwE7qS5X9k_nw2OQB-RI_g4vcCIpppWHqVcOfSUXXMfkICWHjnOC6pLrU2S-7pG7MIOPsi8HB7--7BallQPaJCXnKp4_Fz_3Pv0YfC5y94Ui6ErPCh_5SjOqqBFa06Jtou410FbgS2yhNK2CxN_FKIiCmrZEVXmg-MpjF0FVG2JtNB7hCyGNCRqUD03dWq2wJMcWDS1PqIHwZdQd8WGpCRcyNTl3yDh2BFFYb-663jri3Ur6ZEHJcYvcDit1JcNE2unFePLb5XXpehViU-teNyBht0h2qqFWVhnuvY7dXke8Z5NwvNxpSgFy1QL9GBNnub4hyMlXlyS5eUOSlmm4Oby0GJfdxNRdmcvLfw-_Eg8U112k459NsTabzPG1uB_OZsPp5E2y-ktknwkd priority: 102 providerName: ProQuest |
| Title | Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study |
| URI | https://www.proquest.com/docview/2674371772 https://doaj.org/article/53ee86450ce548dab94a629275452e05 |
| Volume | 10 |
| WOSCitedRecordID | wos000808843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqwgEOiEcRoW3kA4hDtWrW66zX3JI0FVVpGrWAyskae2dFpBJoHkhw6G9nxrtN00PFhYsP69HKa894vll7vhHiTeEJI6DXibXgE42kxuCtTUobrCaPlVchsut_NKNRcXFhx2ulvvhOWE0PXE_cfjdDLHLd7QQkcF3SizTkyirDxbGxZi_tGLsWTMU92KZZoW190z2juH6f8N-3lAur24gmb31QpOq_b0OOXubwqXjSwEPZq4f1TGzg9Ll4fLLiVp2_ENCPKbSyd7WcXII8JZv_PvmDM0nwU57HsjbkjmRNS0x7mWSUt6SoWnIqiWxOZuQBLOC97MnB6ZejgyS1ckD-TPK1wt9b4vPh8NPgQ9IUSkiCzvQi8SWfPpaq1AiVqdAWpe4WUGXgU6wgNZWCSLXFAQvhjypFlXkgKOSxg6Cyl2Jz-mOKr4Q0JmhQPhR5ZbXClPag0pAlQQ4UCpa6JfZups6FhkWci1lcOoomeKLd-kS3xNuV9M-aPeMeuT6vwkqGOa_jA9IE12iC-5cmtMQ7XkPHlklDCtAkGNCHMceV6xmKDvmUkSR37kiSRYW73Tda4BqLnjvF2RoU-xr1-n8Mdls8UpxIEf_n7IjNxWyJu-Jh-LWYzGdt8aA_HI3P2lGpqT02SZtvpZ5zez2k_vHRyfjrX-FU-7M |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VBQk4lG-RUmAPVByQ1Xi98XorIZQmVI2SpkgU1Nt2vR5DpJK0dlJUfhS_kZm1nbaHcuuBo-2x5I-3b2Z2d94w9jZJMUaAVAZa2zSQgDC2qdZBpp2W6LHi3Hl1_ZEaj5OjI_15hf1pamFoW2XDiZ6os5mjOfItQbvlMfdQ4uPpWUBdo2h1tWmhUcFiCBe_MGUrPwz6-H83hdj9dNjbC-quAoGTkZwHaUZLdZnIJNhc5aCTTHYSm0c2DSG3ocqF9bpUFN2js85DEFFqMW5IoQ2WhA6Q8u_IKFE0roYqWM7pkMZmInW1vz6KdHsLo84fIbVz1z6GvfR8vkHATW7A-7bdh__bV3nE1uoomncr2D9mKzB9wh5c0VbEo_2lIG35lNkdX3fMu2eLyYnlB0iUPye_oeAYs_MvvhcQ3sUrLWd0AJxC40UBJaf6G14vZ_G-ndtt3uW9g2-DfhBq3sMggNNezItn7OutvPFztjqdTeEF40o5aUXqkjjXUkCIxJ0ppB8bW8yfM9li75s_b1wtvU4dQE4MpmCEE3MVJy22ubQ-rSRHbrDbIRAtbUgo3J-YFd9NzTumEwEksey0HWBumuE4lDYWWijqLQ_tTou9IwgaojN8JGfrqgx8MRIGM12FKTUtzaLlxjVLpCF3_XKDUFPTYGku4bn-78tv2L29w_2RGQ3Gw5fsvqAaEz_VtcFW58UCXrG77nw-KYvXfsRxdnzbYP4LtGpm_g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKUJw4BsRKLAHKg7ISrze2F4khNKEiKhtGokPldOyu15DpJK0dgIqP41fx8zaTttDufXAMfZYipO3b2Z2Z94AvEgNxgjOiEBKbQLhEMbaSBlk0kqBHivOrVfX30smk_TwUE434E_TC0NllQ0neqLOFpb2yDucquUx90h4J6_LIqbD0dvjk4AmSNFJazNOo4LIrjv9helb-WY8xP96m_PRu4-D90E9YSCwIhLLwGR0bJfxTDidJ7mTaSZ6qc4jbUKX6zDJufYaVRTpo-POQ8cjozGGMK7rNIkeIP1vYkgueAs2p-P96Zf1Dg8pbqZCVtX2USS7HYxBv4c03F36iPbMD_pxAZc5Be_pRrf_59_oDtyq42vWrxbEXdhw83tw85zqIn7aX0vVlvdB7_iOZNY_Wc2ONDtACv0x--0KhtE8--CnBOFTrFJ5RtfAKGheFa5k1JnD6oMuNtRL_Zr12eDg83gYhJINMDxgVKV5-gA-XckbP4TWfDF3j4AliRWaG5vGuRTchUjpWYLEpGONmXUm2vCqQYGytSg7zQY5UpicEWbUecy0YXttfVyJkVxit0OAWtuQhLi_sCi-qZqRVC9yLo1Fr2sdZq0ZrlChYy55QlPnXbfXhpcER0VEh1_J6rpfA1-MJMNUP8Fkmw5t0XLrgiUSlL14u0GrqgmyVGdQffzv28_hOmJY7Y0nu0_gBqfmE78HtgWtZbFyT-Ga_bmclcWzevkx-HrVaP4L_zlxfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+Aquila+Optimizer+for+Selecting+Effective+Features+from+Medical+Data%3A+A+COVID-19+Case+Study&rft.jtitle=Mathematics+%28Basel%29&rft.au=Nadimi-Shahraki%2C+Mohammad+H&rft.au=Taghian%2C+Shokooh&rft.au=Mirjalili%2C+Seyedali&rft.au=Abualigah%2C+Laith&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fmath10111929&rft.externalDocID=A728730475 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |