Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study

Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant features in datasets negatively influences algorithms and leads to decreases in the performance of the algorithms. Using effective features in data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 10; číslo 11; s. 1929
Hlavní autoři: Nadimi-Shahraki, Mohammad H., Taghian, Shokooh, Mirjalili, Seyedali, Abualigah, Laith
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2022
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant features in datasets negatively influences algorithms and leads to decreases in the performance of the algorithms. Using effective features in data mining and analyzing tasks such as classification can increase the accuracy of the results and relevant decisions made by decision-makers using them. This increase can become more acute when dealing with challenging, large-scale problems in medical applications. Nature-inspired metaheuristics show superior performance in finding optimal feature subsets in the literature. As a seminal attempt, a wrapper feature selection approach is presented on the basis of the newly proposed Aquila optimizer (AO) in this work. In this regard, the wrapper approach uses AO as a search algorithm in order to discover the most effective feature subset. S-shaped binary Aquila optimizer (SBAO) and V-shaped binary Aquila optimizer (VBAO) are two binary algorithms suggested for feature selection in medical datasets. Binary position vectors are generated utilizing S- and V-shaped transfer functions while the search space stays continuous. The suggested algorithms are compared to six recent binary optimization algorithms on seven benchmark medical datasets. In comparison to the comparative algorithms, the gained results demonstrate that using both proposed BAO variants can improve the classification accuracy on these medical datasets. The proposed algorithm is also tested on the real-dataset COVID-19. The findings testified that SBAO outperforms comparative algorithms regarding the least number of selected features with the highest accuracy.
AbstractList Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant features in datasets negatively influences algorithms and leads to decreases in the performance of the algorithms. Using effective features in data mining and analyzing tasks such as classification can increase the accuracy of the results and relevant decisions made by decision-makers using them. This increase can become more acute when dealing with challenging, large-scale problems in medical applications. Nature-inspired metaheuristics show superior performance in finding optimal feature subsets in the literature. As a seminal attempt, a wrapper feature selection approach is presented on the basis of the newly proposed Aquila optimizer (AO) in this work. In this regard, the wrapper approach uses AO as a search algorithm in order to discover the most effective feature subset. S-shaped binary Aquila optimizer (SBAO) and V-shaped binary Aquila optimizer (VBAO) are two binary algorithms suggested for feature selection in medical datasets. Binary position vectors are generated utilizing S- and V-shaped transfer functions while the search space stays continuous. The suggested algorithms are compared to six recent binary optimization algorithms on seven benchmark medical datasets. In comparison to the comparative algorithms, the gained results demonstrate that using both proposed BAO variants can improve the classification accuracy on these medical datasets. The proposed algorithm is also tested on the real-dataset COVID-19. The findings testified that SBAO outperforms comparative algorithms regarding the least number of selected features with the highest accuracy.
Audience Academic
Author Abualigah, Laith
Nadimi-Shahraki, Mohammad H.
Taghian, Shokooh
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Mohammad H.
  orcidid: 0000-0002-0135-1115
  surname: Nadimi-Shahraki
  fullname: Nadimi-Shahraki, Mohammad H.
– sequence: 2
  givenname: Shokooh
  orcidid: 0000-0002-8872-8455
  surname: Taghian
  fullname: Taghian, Shokooh
– sequence: 3
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
– sequence: 4
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
BookMark eNptUU1v1DAQjVCRKKU3foAlrqT4K3HMbdm2sFLRHkp7tSbOePEqibeOU6n8erwsoqWq5-DRzHtvZvTeFkdjGLEo3jN6JoSmnwZIPxlljGmuXxXHnHNVqtw4epK_KU6naUvz00w0Uh8X8MWPEB_I4m72PZD1LvnB_8JIXIjkGnu0yY8bcuHcPrtHcomQ5ogTcTEM5Dt23kJPziHBZ7Igy_Xt6rxkmixhQnKd5u7hXfHaQT_h6d__pLi5vPix_FZerb-ulour0kohU9l2gnLV8U4iOOVQN52sGnACWoYOmHIcqkpRkXevtaodQy5aqKVskSJwcVKsDrpdgK3ZRT_ku0wAb_4UQtwYiMnbHk0lEJtaVtRiJZsOWi2h5pqrSlYcaZW1Phy0djHczTglsw1zHPP6htdKCsWU4o-oDWRRP7qQItjBT9YsFG-UoFLttc5eQOXocPA2e-h8rv9H-Hgg2BimKaL7dwyjZm-1eWp1hvNncOsTJB_GPMf3L5N-A_cQqoc
CitedBy_id crossref_primary_10_1007_s42979_024_02632_8
crossref_primary_10_1007_s00500_025_10445_x
crossref_primary_10_1007_s10586_024_04721_y
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1111_exsy_13458
crossref_primary_10_1007_s11831_023_09945_6
crossref_primary_10_1016_j_knosys_2025_113695
crossref_primary_10_1093_jcde_qwad009
crossref_primary_10_3389_fmed_2023_1103083
crossref_primary_10_1016_j_compbiomed_2022_106155
crossref_primary_10_3390_s23187857
crossref_primary_10_1016_j_eswa_2025_127012
crossref_primary_10_3390_app14062302
crossref_primary_10_3390_math10214154
crossref_primary_10_3233_JIFS_221348
crossref_primary_10_1007_s10586_024_04614_0
crossref_primary_10_1007_s10586_024_04448_w
crossref_primary_10_1016_j_heliyon_2024_e32270
crossref_primary_10_1007_s11831_025_10281_0
crossref_primary_10_1016_j_cma_2024_117251
crossref_primary_10_1155_2023_9161763
crossref_primary_10_1007_s13042_024_02308_y
crossref_primary_10_1016_j_jksuci_2023_101757
crossref_primary_10_1371_journal_pone_0280006
crossref_primary_10_3390_math11194200
crossref_primary_10_1007_s10462_022_10328_9
crossref_primary_10_1155_2022_3861161
crossref_primary_10_1016_j_eswa_2024_123871
crossref_primary_10_1007_s00357_024_09468_0
crossref_primary_10_1038_s41598_024_80648_z
crossref_primary_10_32604_cmc_2023_036865
crossref_primary_10_1016_j_compbiomed_2023_107825
crossref_primary_10_1016_j_compeleceng_2024_109578
crossref_primary_10_1016_j_knosys_2025_113156
crossref_primary_10_1007_s00500_023_09299_y
crossref_primary_10_1007_s41870_023_01581_4
crossref_primary_10_1007_s42979_024_02674_y
crossref_primary_10_3390_math11183982
crossref_primary_10_1007_s10586_024_04447_x
crossref_primary_10_3390_diagnostics13203244
crossref_primary_10_1109_ACCESS_2023_3272556
crossref_primary_10_3390_math10234509
crossref_primary_10_3390_s23073714
crossref_primary_10_1007_s42235_023_00387_1
crossref_primary_10_1016_j_asoc_2023_110583
crossref_primary_10_1007_s11831_023_09901_4
crossref_primary_10_1007_s10586_024_04602_4
crossref_primary_10_3390_app13179802
crossref_primary_10_3390_electronics12092042
Cites_doi 10.1016/j.compbiomed.2021.105027
10.1016/j.asoc.2019.105763
10.1007/s12652-020-01902-6
10.1016/j.patcog.2007.02.007
10.1016/j.egyr.2021.12.023
10.1016/S0004-3702(97)00043-X
10.1016/j.oceaneng.2021.110121
10.1007/s42235-022-00185-1
10.1016/j.knosys.2014.03.015
10.1016/j.asoc.2017.09.038
10.1016/j.apm.2020.12.016
10.1016/j.future.2020.08.036
10.1016/j.eswa.2010.09.133
10.1007/s11042-020-09639-2
10.1016/j.advengsoft.2017.03.014
10.3390/math9182321
10.1016/j.ins.2008.12.001
10.1016/j.eswa.2018.12.033
10.1007/978-1-4615-5725-8
10.1111/exsy.12779
10.1002/9781119347569
10.1007/s10462-021-09957-3
10.1108/K-02-2013-0018
10.1016/j.jobe.2021.102935
10.1007/s10898-007-9149-x
10.1016/j.asoc.2020.106761
10.1016/j.eswa.2013.09.033
10.1016/j.eswa.2020.113249
10.5121/acij.2019.10501
10.1016/j.swevo.2011.02.002
10.1016/j.geoderma.2009.07.010
10.1016/j.knosys.2020.106270
10.3390/electronics10232975
10.3390/e23121637
10.1016/j.eswa.2021.115499
10.1016/j.jocs.2022.101636
10.1016/j.neucom.2017.07.050
10.1016/j.compbiomed.2022.105349
10.3390/en14113029
10.1016/j.asoc.2018.04.033
10.1016/j.eswa.2018.08.051
10.1016/j.fuel.2022.123348
10.1016/j.compbiomed.2021.105152
10.1007/s00366-021-01294-x
10.1016/j.neucom.2016.07.080
10.1109/IDAP.2018.8620828
10.1016/j.eswa.2017.02.042
10.1080/0952813X.2015.1020519
10.1002/9780470496916
10.1016/j.energy.2014.05.011
10.3390/su14020929
10.3390/a14110314
10.1007/s11047-009-9175-3
10.1016/j.knosys.2021.107297
10.1016/j.apenergy.2017.01.043
10.1016/j.compeleceng.2017.12.032
10.1109/ACCESS.2020.2986232
10.1016/j.eswa.2021.115690
10.1155/2022/6078986
10.1007/s10489-019-01423-6
10.1016/j.eswa.2009.02.038
10.1016/j.swevo.2012.09.002
10.3390/math10050761
10.1109/ICTCS.2017.43
10.1109/TEVC.2008.919004
10.3390/app10113706
10.1023/A:1008202821328
10.1016/j.eswa.2008.01.009
10.1016/j.swevo.2020.100661
10.1109/IDAP.2018.8620933
10.1016/j.knosys.2018.08.030
10.1016/j.asoc.2020.107026
10.1007/s10489-020-02038-y
10.1109/4235.771163
10.1016/j.ins.2020.03.112
10.1016/j.enconman.2021.114002
10.1109/SIBGRAPI.2012.47
10.1007/s00366-017-0523-0
10.1109/ACCESS.2020.2985986
10.1007/s00170-009-2363-6
10.1111/coin.12397
10.1016/j.jksuci.2021.12.018
10.1109/TSTE.2015.2441747
10.3389/fpubh.2020.00357
10.1016/j.neucom.2015.06.083
10.1016/j.jobe.2021.103032
10.1007/978-3-642-12538-6_6
10.1109/CEC.2007.4424711
10.1016/j.compbiomed.2021.104984
10.1016/j.swevo.2021.101022
10.1016/j.asoc.2021.107302
10.1016/j.comnet.2020.107247
10.3233/IDA-1997-1302
10.1007/978-981-15-3290-0_19
10.3390/sym13122388
10.3390/computers10110136
10.1016/j.advengsoft.2005.04.005
10.1016/j.sigpro.2008.07.001
10.1016/j.bspc.2021.103401
10.1016/j.snb.2015.02.025
10.1016/j.asoc.2007.12.003
10.3390/pr9091551
10.3390/math10071100
10.1109/4235.585893
10.1016/j.cie.2021.107250
10.1126/science.220.4598.671
10.1016/j.asoc.2021.107866
10.1016/j.eswa.2020.113917
10.1038/scientificamerican0792-66
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10111929
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Engineering
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_53ee86450ce548dab94a629275452e05
A728730475
10_3390_math10111929
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c434t-bd3027d2d4eaf7fe98d458af3ab1efa17f2a557030096976f1e23ba644be0ea23
IEDL.DBID DOA
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 18:59:36 EDT 2025
Fri Jul 25 11:52:52 EDT 2025
Tue Nov 11 11:11:30 EST 2025
Tue Nov 04 18:35:00 EST 2025
Tue Nov 18 21:50:22 EST 2025
Sat Nov 29 07:17:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-bd3027d2d4eaf7fe98d458af3ab1efa17f2a557030096976f1e23ba644be0ea23
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-2203-4549
0000-0002-1443-9458
0000-0002-8872-8455
0000-0002-0135-1115
OpenAccessLink https://doaj.org/article/53ee86450ce548dab94a629275452e05
PQID 2674371772
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_53ee86450ce548dab94a629275452e05
proquest_journals_2674371772
gale_infotracmisc_A728730475
gale_infotracacademiconefile_A728730475
crossref_primary_10_3390_math10111929
crossref_citationtrail_10_3390_math10111929
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_90
ref_14
ref_10
ref_98
ref_97
Zhou (ref_74) 2020; 174
Catal (ref_76) 2009; 179
ref_19
ref_17
Derrac (ref_118) 2011; 1
Kohavi (ref_3) 1997; 97
Zhu (ref_120) 2007; 40
Wang (ref_79) 2014; 41
Akay (ref_87) 2009; 36
Lu (ref_94) 2017; 256
Emary (ref_105) 2016; 172
Li (ref_69) 2021; 185
Jain (ref_93) 2018; 62
ref_20
Dash (ref_7) 1997; 1
Karaboga (ref_61) 2007; 39
Guyon (ref_1) 2003; 3
Luukka (ref_6) 2011; 38
Asghari (ref_40) 2021; 38
ref_28
Chatterjee (ref_89) 2022; 141
Li (ref_109) 2021; 106
ref_72
Zhang (ref_84) 2014; 64
Liu (ref_78) 2018; 273
Arora (ref_106) 2019; 116
Shukla (ref_12) 2020; 54
Yao (ref_56) 1999; 3
Taghian (ref_68) 2020; 97
Oussalah (ref_42) 2014; 43
Camarena (ref_39) 2021; 93
Kirkpatrick (ref_63) 1983; 220
Behrens (ref_86) 2010; 155
Chakraborty (ref_26) 2021; 139
Feng (ref_95) 2017; 190
Awadallah (ref_111) 2022; 141
Xie (ref_21) 2019; 84
Chakraborty (ref_29) 2021; 113
Storn (ref_55) 1997; 11
Simon (ref_58) 2008; 12
Jadhav (ref_81) 2018; 69
Wolpert (ref_67) 1997; 1
Cai (ref_48) 2021; 242
Holland (ref_57) 1992; 267
Varaee (ref_38) 2021; 43
Houssein (ref_27) 2022; 73
He (ref_101) 2021; 69
Alboaneen (ref_43) 2021; 115
Taghian (ref_52) 2021; 166
Zhang (ref_15) 2021; 228
Mohammadzadeh (ref_85) 2021; 37
Lee (ref_82) 2009; 36
ref_53
Iwendi (ref_121) 2020; 8
Hosseinalipour (ref_83) 2021; 51
Kundu (ref_103) 2022; 144
ref_59
Mergos (ref_33) 2022; 15
Neshat (ref_50) 2021; 236
Trinh (ref_24) 2022; 55
Neshat (ref_51) 2020; 534
Masegosa (ref_11) 2019; 49
Oliva (ref_13) 2014; 72
ref_60
Yan (ref_91) 2015; 212
Rahnema (ref_23) 2020; 79
Masdari (ref_22) 2020; 11
Ali (ref_16) 2022; 8
Erol (ref_65) 2006; 37
Dashti (ref_45) 2016; 28
Satpathy (ref_46) 2018; 69
Alazzam (ref_73) 2020; 148
Barakat (ref_9) 2020; 8
ref_62
Sayarshad (ref_36) 2010; 48
Ghasemi (ref_41) 2018; 34
Li (ref_96) 2015; 6
Abualigah (ref_71) 2021; 157
Oliva (ref_25) 2017; 79
Taghian (ref_108) 2019; 8
Zhang (ref_107) 2020; 8
Mirjalili (ref_99) 2013; 9
Rashedi (ref_104) 2010; 9
ref_115
ref_114
ref_117
ref_116
ref_119
Mergos (ref_18) 2021; 44
Albashish (ref_112) 2021; 101
ref_35
ref_34
ref_32
Kaveh (ref_64) 2017; 110
ref_31
ref_110
ref_30
Turabieh (ref_75) 2019; 122
ref_113
ref_37
Huang (ref_92) 2022; 316
Rechenberg (ref_54) 1973; 104
Jiang (ref_49) 2021; 185
Ververidis (ref_77) 2008; 88
ref_47
ref_44
Shaban (ref_88) 2020; 205
ref_100
ref_102
Zhao (ref_66) 2019; 163
ref_2
Taghian (ref_70) 2022; 61
ref_8
Ravi (ref_80) 2008; 8
ref_5
ref_4
References_xml – volume: 141
  start-page: 105027
  year: 2022
  ident: ref_89
  article-title: Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105027
– volume: 84
  start-page: 105763
  year: 2019
  ident: ref_21
  article-title: Improving K-means clustering with enhanced firefly algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105763
– volume: 11
  start-page: 5459
  year: 2020
  ident: ref_22
  article-title: Discrete teaching–learning-based optimization algorithm for clustering in wireless sensor networks
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01902-6
– volume: 40
  start-page: 3236
  year: 2007
  ident: ref_120
  article-title: Markov blanket-embedded genetic algorithm for gene selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.02.007
– volume: 8
  start-page: 582
  year: 2022
  ident: ref_16
  article-title: An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.12.023
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_3
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 242
  start-page: 110121
  year: 2021
  ident: ref_48
  article-title: A meta-heuristic assisted underwater glider path planning method
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2021.110121
– ident: ref_32
  doi: 10.1007/s42235-022-00185-1
– volume: 64
  start-page: 22
  year: 2014
  ident: ref_84
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.03.015
– volume: 62
  start-page: 203
  year: 2018
  ident: ref_93
  article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.038
– volume: 93
  start-page: 226
  year: 2021
  ident: ref_39
  article-title: Group-based synchronous-asynchronous Grey Wolf Optimizer
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.12.016
– volume: 115
  start-page: 201
  year: 2021
  ident: ref_43
  article-title: A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.08.036
– volume: 38
  start-page: 4600
  year: 2011
  ident: ref_6
  article-title: Feature selection using fuzzy entropy measures with similarity classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.133
– volume: 79
  start-page: 32169
  year: 2020
  ident: ref_23
  article-title: An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09639-2
– volume: 110
  start-page: 69
  year: 2017
  ident: ref_64
  article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– ident: ref_90
  doi: 10.3390/math9182321
– ident: ref_31
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_1
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 179
  start-page: 1040
  year: 2009
  ident: ref_76
  article-title: Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.12.001
– volume: 122
  start-page: 27
  year: 2019
  ident: ref_75
  article-title: Iterated feature selection algorithms with layered recurrent neural network for software fault prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.033
– ident: ref_10
– ident: ref_4
  doi: 10.1007/978-1-4615-5725-8
– volume: 38
  start-page: e12779
  year: 2021
  ident: ref_40
  article-title: Multi-swarm and chaotic whale-particle swarm optimization algorithm with a selection method based on roulette wheel
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12779
– ident: ref_5
  doi: 10.1002/9781119347569
– volume: 8
  start-page: 168
  year: 2019
  ident: ref_108
  article-title: A Binary Metaheuristic Algorithm for Wrapper Feature Selection
  publication-title: Int. J. Comput. Sci. Eng. (IJCSE)
– volume: 55
  start-page: 1915
  year: 2022
  ident: ref_24
  article-title: Optimized fuzzy clustering using moth-flame optimization algorithm in wireless sensor networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09957-3
– volume: 43
  start-page: 1262
  year: 2014
  ident: ref_42
  article-title: Job scheduling in the Expert Cloud based on genetic algorithms
  publication-title: Kybernetes
  doi: 10.1108/K-02-2013-0018
– volume: 44
  start-page: 102935
  year: 2021
  ident: ref_18
  article-title: Optimum design of 3D reinforced concrete building frames with the flower pollination algorithm
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.102935
– volume: 39
  start-page: 459
  year: 2007
  ident: ref_61
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 104
  start-page: 15
  year: 1973
  ident: ref_54
  article-title: Evolution Strategy: Optimization of Technical systems by means of biological evolution
  publication-title: Holzboog Stuttg.
– volume: 97
  start-page: 106761
  year: 2020
  ident: ref_68
  article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106761
– volume: 41
  start-page: 2353
  year: 2014
  ident: ref_79
  article-title: An improved boosting based on feature selection for corporate bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.033
– volume: 148
  start-page: 113249
  year: 2020
  ident: ref_73
  article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113249
– ident: ref_59
– ident: ref_117
  doi: 10.5121/acij.2019.10501
– ident: ref_53
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_118
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 155
  start-page: 175
  year: 2010
  ident: ref_86
  article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.07.010
– volume: 205
  start-page: 106270
  year: 2020
  ident: ref_88
  article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106270
– ident: ref_14
  doi: 10.3390/electronics10232975
– ident: ref_34
  doi: 10.3390/e23121637
– volume: 185
  start-page: 115499
  year: 2021
  ident: ref_69
  article-title: Enhanced Harris hawks optimization with multi-strategy for global optimization tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115499
– volume: 61
  start-page: 101636
  year: 2022
  ident: ref_70
  article-title: GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101636
– volume: 273
  start-page: 271
  year: 2018
  ident: ref_78
  article-title: Speech emotion recognition based on feature selection and extreme learning machine decision tree
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.050
– volume: 144
  start-page: 105349
  year: 2022
  ident: ref_103
  article-title: AltWOA: Altruistic Whale Optimization Algorithm for feature selection on microarray datasets
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105349
– ident: ref_37
  doi: 10.3390/en14113029
– volume: 69
  start-page: 541
  year: 2018
  ident: ref_81
  article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.033
– volume: 116
  start-page: 147
  year: 2019
  ident: ref_106
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.051
– volume: 316
  start-page: 123348
  year: 2022
  ident: ref_92
  article-title: Modeling the effects of biodiesel chemical composition on iodine value using novel machine learning algorithm
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123348
– volume: 141
  start-page: 105152
  year: 2022
  ident: ref_111
  article-title: Binary Horse herd optimization algorithm with crossover operators for feature selection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105152
– ident: ref_17
  doi: 10.1007/s00366-021-01294-x
– volume: 256
  start-page: 56
  year: 2017
  ident: ref_94
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– ident: ref_97
  doi: 10.1109/IDAP.2018.8620828
– volume: 79
  start-page: 164
  year: 2017
  ident: ref_25
  article-title: Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.042
– volume: 28
  start-page: 97
  year: 2016
  ident: ref_45
  article-title: Dynamic VMs placement for energy efficiency by PSO in cloud computing
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2015.1020519
– ident: ref_8
  doi: 10.1002/9780470496916
– volume: 72
  start-page: 93
  year: 2014
  ident: ref_13
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.011
– ident: ref_113
  doi: 10.3390/su14020929
– ident: ref_20
  doi: 10.3390/a14110314
– volume: 9
  start-page: 727
  year: 2010
  ident: ref_104
  article-title: BGSA: Binary gravitational search algorithm
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-009-9175-3
– volume: 228
  start-page: 107297
  year: 2021
  ident: ref_15
  article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107297
– volume: 190
  start-page: 1245
  year: 2017
  ident: ref_95
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.043
– volume: 69
  start-page: 334
  year: 2018
  ident: ref_46
  article-title: Crow search based virtual machine placement strategy in cloud data centers with live migration
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.12.032
– volume: 8
  start-page: 66989
  year: 2020
  ident: ref_9
  article-title: Improved feature selection model for big data analytics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986232
– volume: 185
  start-page: 115690
  year: 2021
  ident: ref_49
  article-title: A diversified group teaching optimization algorithm with segment-based fitness strategy for unmanned aerial vehicle route planning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115690
– ident: ref_19
  doi: 10.1155/2022/6078986
– volume: 49
  start-page: 2807
  year: 2019
  ident: ref_11
  article-title: Ensemble classification for imbalanced data based on feature space partitioning and hybrid metaheuristics
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01423-6
– volume: 36
  start-page: 10896
  year: 2009
  ident: ref_82
  article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.038
– volume: 9
  start-page: 1
  year: 2013
  ident: ref_99
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– ident: ref_35
  doi: 10.3390/math10050761
– ident: ref_116
  doi: 10.1109/ICTCS.2017.43
– ident: ref_98
– volume: 12
  start-page: 702
  year: 2008
  ident: ref_58
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– ident: ref_72
  doi: 10.3390/app10113706
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_55
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 36
  start-page: 3240
  year: 2009
  ident: ref_87
  article-title: Support vector machines combined with feature selection for breast cancer diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.009
– volume: 54
  start-page: 100661
  year: 2020
  ident: ref_12
  article-title: Gene selection for cancer types classification using novel hybrid metaheuristics approach
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100661
– volume: 15
  start-page: 1
  year: 2022
  ident: ref_33
  article-title: Flower pollination algorithm with pollinator attraction
  publication-title: Evol. Intell.
– ident: ref_47
  doi: 10.1109/IDAP.2018.8620933
– volume: 163
  start-page: 283
  year: 2019
  ident: ref_66
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.08.030
– volume: 101
  start-page: 107026
  year: 2021
  ident: ref_112
  article-title: Binary biogeography-based optimization based SVM-RFE for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107026
– volume: 51
  start-page: 4824
  year: 2021
  ident: ref_83
  article-title: A novel binary farmland fertility algorithm for feature selection in analysis of the text psychology
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02038-y
– volume: 3
  start-page: 82
  year: 1999
  ident: ref_56
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 534
  start-page: 218
  year: 2020
  ident: ref_51
  article-title: A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.03.112
– volume: 236
  start-page: 114002
  year: 2021
  ident: ref_50
  article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114002
– ident: ref_115
  doi: 10.1109/SIBGRAPI.2012.47
– volume: 34
  start-page: 91
  year: 2018
  ident: ref_41
  article-title: Enhanced IGMM optimization algorithm based on vibration for numerical and engineering problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0523-0
– volume: 8
  start-page: 67799
  year: 2020
  ident: ref_107
  article-title: OEbBOA: A novel improved binary butterfly optimization approaches with various strategies for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985986
– volume: 48
  start-page: 1009
  year: 2010
  ident: ref_36
  article-title: Using bees algorithm for material handling equipment planning in manufacturing systems
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2363-6
– volume: 37
  start-page: 176
  year: 2021
  ident: ref_85
  article-title: A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detection
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12397
– ident: ref_28
  doi: 10.1016/j.jksuci.2021.12.018
– volume: 6
  start-page: 1447
  year: 2015
  ident: ref_96
  article-title: Wind power forecasting using neural network ensembles with feature selection
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2441747
– volume: 8
  start-page: 357
  year: 2020
  ident: ref_121
  article-title: COVID-19 patient health prediction using boosted random forest algorithm
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2020.00357
– volume: 172
  start-page: 371
  year: 2016
  ident: ref_105
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref_119
– volume: 43
  start-page: 103032
  year: 2021
  ident: ref_38
  article-title: The life-cycle cost analysis based on probabilistic optimization using a novel algorithm
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103032
– ident: ref_62
  doi: 10.1007/978-3-642-12538-6_6
– ident: ref_102
  doi: 10.1109/CEC.2007.4424711
– volume: 139
  start-page: 104984
  year: 2021
  ident: ref_26
  article-title: COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104984
– volume: 69
  start-page: 101022
  year: 2021
  ident: ref_101
  article-title: Novel binary differential evolution algorithm based on Taper-shaped transfer functions for binary optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.101022
– volume: 106
  start-page: 107302
  year: 2021
  ident: ref_109
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107302
– volume: 174
  start-page: 107247
  year: 2020
  ident: ref_74
  article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107247
– volume: 1
  start-page: 131
  year: 1997
  ident: ref_7
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1302
– ident: ref_100
  doi: 10.1007/978-981-15-3290-0_19
– ident: ref_30
  doi: 10.3390/sym13122388
– ident: ref_110
  doi: 10.3390/computers10110136
– volume: 37
  start-page: 106
  year: 2006
  ident: ref_65
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 88
  start-page: 2956
  year: 2008
  ident: ref_77
  article-title: Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2008.07.001
– ident: ref_2
– volume: 73
  start-page: 103401
  year: 2022
  ident: ref_27
  article-title: An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103401
– volume: 212
  start-page: 353
  year: 2015
  ident: ref_91
  article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.02.025
– volume: 8
  start-page: 1539
  year: 2008
  ident: ref_80
  article-title: Threshold accepting trained principal component neural network and feature subset selection: Application to bankruptcy prediction in banks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.12.003
– ident: ref_114
  doi: 10.3390/pr9091551
– ident: ref_44
  doi: 10.3390/math10071100
– volume: 1
  start-page: 67
  year: 1997
  ident: ref_67
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 157
  start-page: 107250
  year: 2021
  ident: ref_71
  article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 220
  start-page: 671
  year: 1983
  ident: ref_63
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 113
  start-page: 107866
  year: 2021
  ident: ref_29
  article-title: SHADE–WOA: A metaheuristic algorithm for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107866
– volume: 166
  start-page: 113917
  year: 2021
  ident: ref_52
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113917
– volume: 267
  start-page: 66
  year: 1992
  ident: ref_57
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: ref_60
SSID ssj0000913849
Score 2.4566216
Snippet Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1929
SubjectTerms Algorithms
binary metaheuristic algorithm
Classification
Coronaviruses
COVID-19
Data mining
Datasets
Decision making
Engineering
Evolution
Feature selection
Genetic algorithms
Heuristic methods
Mathematical optimization
Mathematics
medical data
nature-inspired algorithm
Optimization
Optimization algorithms
Search algorithms
transfer function
Transfer functions
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagcIBDeVYECvIBxAGtmvU66zWXKk2pQIIWqYB6s8b2LEQqSZtHpfbXd8Zx0vZQLhx3PSt5NePxfPbMN0K8bTzFCOh1YS34QiOZMXhri2iD1bRj1W1I7Ppfzf5-c3Rkv-cDt2lOq1z6xOSo4zjwGfmW4mx5wh5GbZ-cFtw1im9XcwuNu-IesySUKXXvcHXGwpyXjbaLfPeK0P0WRYF_Sm6vblNMebUTJcL-29xy2mv2Hv3vLB-L9Rxlyv7CLJ6IOzh6Kh5e4x6kp28rwtbpMwE7qS5X9k_nw2OQB-RI_g4vcCIpppWHqVcOfSUXXMfkICWHjnOC6pLrU2S-7pG7MIOPsi8HB7--7BallQPaJCXnKp4_Fz_3Pv0YfC5y94Ui6ErPCh_5SjOqqBFa06Jtou410FbgS2yhNK2CxN_FKIiCmrZEVXmg-MpjF0FVG2JtNB7hCyGNCRqUD03dWq2wJMcWDS1PqIHwZdQd8WGpCRcyNTl3yDh2BFFYb-663jri3Ur6ZEHJcYvcDit1JcNE2unFePLb5XXpehViU-teNyBht0h2qqFWVhnuvY7dXke8Z5NwvNxpSgFy1QL9GBNnub4hyMlXlyS5eUOSlmm4Oby0GJfdxNRdmcvLfw-_Eg8U112k459NsTabzPG1uB_OZsPp5E2y-ktknwkd
  priority: 102
  providerName: ProQuest
Title Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study
URI https://www.proquest.com/docview/2674371772
https://doaj.org/article/53ee86450ce548dab94a629275452e05
Volume 10
WOSCitedRecordID wos000808843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaqwgEOiEcRoW3kA4hDtWrW66zX3JI0FVVpGrWAyskae2dFpBJoHkhw6G9nxrtN00PFhYsP69HKa894vll7vhHiTeEJI6DXibXgE42kxuCtTUobrCaPlVchsut_NKNRcXFhx2ulvvhOWE0PXE_cfjdDLHLd7QQkcF3SizTkyirDxbGxZi_tGLsWTMU92KZZoW190z2juH6f8N-3lAur24gmb31QpOq_b0OOXubwqXjSwEPZq4f1TGzg9Ll4fLLiVp2_ENCPKbSyd7WcXII8JZv_PvmDM0nwU57HsjbkjmRNS0x7mWSUt6SoWnIqiWxOZuQBLOC97MnB6ZejgyS1ckD-TPK1wt9b4vPh8NPgQ9IUSkiCzvQi8SWfPpaq1AiVqdAWpe4WUGXgU6wgNZWCSLXFAQvhjypFlXkgKOSxg6Cyl2Jz-mOKr4Q0JmhQPhR5ZbXClPag0pAlQQ4UCpa6JfZups6FhkWci1lcOoomeKLd-kS3xNuV9M-aPeMeuT6vwkqGOa_jA9IE12iC-5cmtMQ7XkPHlklDCtAkGNCHMceV6xmKDvmUkSR37kiSRYW73Tda4BqLnjvF2RoU-xr1-n8Mdls8UpxIEf_n7IjNxWyJu-Jh-LWYzGdt8aA_HI3P2lGpqT02SZtvpZ5zez2k_vHRyfjrX-FU-7M
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VBQk4lG-RUmAPVByQ1Xi98XorIZQmVI2SpkgU1Nt2vR5DpJK0dlJUfhS_kZm1nbaHcuuBo-2x5I-3b2Z2d94w9jZJMUaAVAZa2zSQgDC2qdZBpp2W6LHi3Hl1_ZEaj5OjI_15hf1pamFoW2XDiZ6os5mjOfItQbvlMfdQ4uPpWUBdo2h1tWmhUcFiCBe_MGUrPwz6-H83hdj9dNjbC-quAoGTkZwHaUZLdZnIJNhc5aCTTHYSm0c2DSG3ocqF9bpUFN2js85DEFFqMW5IoQ2WhA6Q8u_IKFE0roYqWM7pkMZmInW1vz6KdHsLo84fIbVz1z6GvfR8vkHATW7A-7bdh__bV3nE1uoomncr2D9mKzB9wh5c0VbEo_2lIG35lNkdX3fMu2eLyYnlB0iUPye_oeAYs_MvvhcQ3sUrLWd0AJxC40UBJaf6G14vZ_G-ndtt3uW9g2-DfhBq3sMggNNezItn7OutvPFztjqdTeEF40o5aUXqkjjXUkCIxJ0ppB8bW8yfM9li75s_b1wtvU4dQE4MpmCEE3MVJy22ubQ-rSRHbrDbIRAtbUgo3J-YFd9NzTumEwEksey0HWBumuE4lDYWWijqLQ_tTou9IwgaojN8JGfrqgx8MRIGM12FKTUtzaLlxjVLpCF3_XKDUFPTYGku4bn-78tv2L29w_2RGQ3Gw5fsvqAaEz_VtcFW58UCXrG77nw-KYvXfsRxdnzbYP4LtGpm_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKUJw4BsRKLAHKg7ISrze2F4khNKEiKhtGokPldOyu15DpJK0dgIqP41fx8zaTttDufXAMfZYipO3b2Z2Z94AvEgNxgjOiEBKbQLhEMbaSBlk0kqBHivOrVfX30smk_TwUE434E_TC0NllQ0neqLOFpb2yDucquUx90h4J6_LIqbD0dvjk4AmSNFJazNOo4LIrjv9helb-WY8xP96m_PRu4-D90E9YSCwIhLLwGR0bJfxTDidJ7mTaSZ6qc4jbUKX6zDJufYaVRTpo-POQ8cjozGGMK7rNIkeIP1vYkgueAs2p-P96Zf1Dg8pbqZCVtX2USS7HYxBv4c03F36iPbMD_pxAZc5Be_pRrf_59_oDtyq42vWrxbEXdhw83tw85zqIn7aX0vVlvdB7_iOZNY_Wc2ONDtACv0x--0KhtE8--CnBOFTrFJ5RtfAKGheFa5k1JnD6oMuNtRL_Zr12eDg83gYhJINMDxgVKV5-gA-XckbP4TWfDF3j4AliRWaG5vGuRTchUjpWYLEpGONmXUm2vCqQYGytSg7zQY5UpicEWbUecy0YXttfVyJkVxit0OAWtuQhLi_sCi-qZqRVC9yLo1Fr2sdZq0ZrlChYy55QlPnXbfXhpcER0VEh1_J6rpfA1-MJMNUP8Fkmw5t0XLrgiUSlL14u0GrqgmyVGdQffzv28_hOmJY7Y0nu0_gBqfmE78HtgWtZbFyT-Ga_bmclcWzevkx-HrVaP4L_zlxfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+Aquila+Optimizer+for+Selecting+Effective+Features+from+Medical+Data%3A+A+COVID-19+Case+Study&rft.jtitle=Mathematics+%28Basel%29&rft.au=Nadimi-Shahraki%2C+Mohammad+H&rft.au=Taghian%2C+Shokooh&rft.au=Mirjalili%2C+Seyedali&rft.au=Abualigah%2C+Laith&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fmath10111929&rft.externalDocID=A728730475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon