Improved Object Detection Method Utilizing YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery

In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms Jg. 16; H. 11; S. 520
Hauptverfasser: Zhang, Linhua, Xiong, Ning, Pan, Xinghao, Yue, Xiaodong, Wu, Peng, Guo, Caiping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2023
Schlagworte:
ISSN:1999-4893, 1999-4893
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection.
AbstractList In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection.
In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection. 
Audience Academic
Author Pan, Xinghao
Zhang, Linhua
Yue, Xiaodong
Wu, Peng
Xiong, Ning
Guo, Caiping
Author_xml – sequence: 1
  givenname: Linhua
  orcidid: 0009-0001-2632-6717
  surname: Zhang
  fullname: Zhang, Linhua
– sequence: 2
  givenname: Ning
  surname: Xiong
  fullname: Xiong, Ning
– sequence: 3
  givenname: Xinghao
  surname: Pan
  fullname: Pan, Xinghao
– sequence: 4
  givenname: Xiaodong
  orcidid: 0000-0002-0536-1345
  surname: Yue
  fullname: Yue, Xiaodong
– sequence: 5
  givenname: Peng
  orcidid: 0000-0003-4784-8984
  surname: Wu
  fullname: Wu, Peng
– sequence: 6
  givenname: Caiping
  surname: Guo
  fullname: Guo, Caiping
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-65015$$DView record from Swedish Publication Index (Mälardalens högskola)
BookMark eNptUU1vEzEUXKEi0RYO_ANLnJDY1l_rtY9RWyBSUDg0lThZXn9sHO3awesUhV-P00UVIOTD83uamTf2XFRnIQZbVW8RvCJEwGuFGEKwwfBFdY6EEDXlgpz9cX9VXUzTDkLWCIbOq3457lN8tAasu53VGdzaXIqPAXyxeRsN2GQ_-J8-9ODberV-bOt7H47AxQQ2YVQhFOrCJq8G8GC3Xg8WfN3GHPuk9qUFy1H1Nh1fVy-dGib75ne9rDYf7-5vPter9aflzWJVa0porjvOCOOEKaZog4hmBjneGGa0Q65RzGDeoFZBojtkjek612DcQm6Mca22nFxWy1nXRLWT--RHlY4yKi-fBjH1UqV8simJdUIwTDmnkLLSMEU0xx03XFmCcdH6MGtNP-z-0P2ldusfFk9qo9lK1kDUFPi7GV4-9PvBTlnu4iGF8lqJucCCcNKeUFczqlfFgw8u5qR0OcaOXpcwnS_zRdtSghilpBDezwSd4jQl6559IChPmcvnzAv2-h-s9lmd0ixL_PAfxi_-oK7y
CitedBy_id crossref_primary_10_1038_s41598_024_53749_y
crossref_primary_10_1038_s41598_024_84555_1
crossref_primary_10_1049_ipr2_70027
crossref_primary_10_1186_s40648_025_00290_w
crossref_primary_10_1016_j_ijpharm_2024_124629
crossref_primary_10_1016_j_infrared_2024_105473
crossref_primary_10_14358_PERS_24_00085R2
crossref_primary_10_3390_s24216791
crossref_primary_10_3390_s24030922
crossref_primary_10_3390_info15020108
crossref_primary_10_3390_a17010039
crossref_primary_10_3390_a17030091
crossref_primary_10_1109_TIM_2025_3527595
crossref_primary_10_1016_j_ibmed_2025_100212
crossref_primary_10_3390_drones8030104
crossref_primary_10_3390_a17050174
crossref_primary_10_2478_amns_2024_3555
crossref_primary_10_3390_app14083497
crossref_primary_10_3390_smartcities8030095
Cites_doi 10.1109/CVPR52729.2023.00721
10.20944/preprints202106.0590.v1
10.1007/s11042-022-13153-y
10.1145/3318299.3318383
10.1109/ICCV.2015.169
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2016.91
10.1109/TCYB.2021.3095305
10.3390/s23156791
10.3390/s22186974
10.1109/ICIVC55077.2022.9886321
10.1109/CVPR.2015.7298594
10.1016/j.neucom.2022.07.042
10.1109/CVPR.2016.90
10.1109/CVPR46437.2021.01352
10.3390/mi13122199
10.1109/ACCESS.2020.2988796
10.1109/JPROC.2023.3238524
10.3390/app122211318
10.1109/CVPR.2014.81
10.1016/j.ins.2016.07.042
10.3390/agriculture12101659
10.3390/rs11050531
10.1109/CVPR.2019.00075
10.1109/ICCVW54120.2021.00312
10.1109/TMI.2016.2528162
10.3390/s20174939
10.1109/CVPR.2017.690
10.1109/CVPR.2018.00913
10.1007/s11554-023-01268-w
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
DOA
DOI 10.3390/a16110520
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SWEPUB Mälardalens högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Mälardalens högskola
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_3ef99624884046ef96a3c82b8d8ae322
oai_DiVA_org_mdh_65015
A774316443
10_3390_a16110520
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ABGEM
ADTPV
AOWAS
C1A
D8T
DF7
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c434t-b8636836a6a4513c6d1f85d6dcf1f5a6d28517a03cb1eddbbf522708dddf7ce83
IEDL.DBID K7-
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001115260900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Fri Oct 03 12:42:44 EDT 2025
Thu Oct 30 11:26:52 EDT 2025
Fri Jul 25 10:42:59 EDT 2025
Tue Nov 04 18:32:10 EST 2025
Sat Nov 29 07:09:58 EST 2025
Tue Nov 18 21:34:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-b8636836a6a4513c6d1f85d6dcf1f5a6d28517a03cb1eddbbf522708dddf7ce83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0536-1345
0000-0003-4784-8984
0009-0001-2632-6717
OpenAccessLink https://www.proquest.com/docview/2892938375?pq-origsite=%requestingapplication%
PQID 2892938375
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_3ef99624884046ef96a3c82b8d8ae322
swepub_primary_oai_DiVA_org_mdh_65015
proquest_journals_2892938375
gale_infotracacademiconefile_A774316443
crossref_primary_10_3390_a16110520
crossref_citationtrail_10_3390_a16110520
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shin (ref_30) 2016; 35
Zheng (ref_29) 2022; 52
Zhang (ref_40) 2022; 506
ref_14
ref_36
ref_13
ref_35
ref_12
ref_11
ref_33
ref_10
ref_32
ref_31
Liu (ref_20) 2016; Volume 9905
Li (ref_3) 2016; 369
ref_19
ref_18
Chen (ref_15) 2023; 20
ref_17
ref_16
ref_38
ref_25
ref_24
ref_23
ref_22
ref_21
He (ref_34) 2015; 37
ref_41
Sinaga (ref_37) 2020; 8
Zheng (ref_39) 2020; 34
ref_28
ref_27
Zou (ref_1) 2023; 111
ref_26
ref_9
ref_8
Kaur (ref_2) 2022; 81
Li (ref_42) 2019; 33
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_27
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_4
  doi: 10.20944/preprints202106.0590.v1
– volume: 81
  start-page: 38297
  year: 2022
  ident: ref_2
  article-title: Tools, techniques, datasets and application areas for object detection in an image: A review
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13153-y
– ident: ref_23
  doi: 10.1145/3318299.3318383
– volume: Volume 9905
  start-page: 21
  year: 2016
  ident: ref_20
  article-title: SSD: Single Shot Multibox Detector
  publication-title: Computer Vision—ECCV 2016, Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016
– ident: ref_6
  doi: 10.1109/ICCV.2015.169
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_34
  article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_9
  doi: 10.1109/CVPR.2016.91
– ident: ref_11
– ident: ref_14
– volume: 52
  start-page: 8574
  year: 2022
  ident: ref_29
  article-title: Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3095305
– ident: ref_19
  doi: 10.3390/s23156791
– ident: ref_18
– ident: ref_26
  doi: 10.3390/s22186974
– ident: ref_24
  doi: 10.1109/ICIVC55077.2022.9886321
– ident: ref_32
  doi: 10.1109/CVPR.2015.7298594
– volume: 506
  start-page: 146
  year: 2022
  ident: ref_40
  article-title: Focal and Efficient IOU Loss for Accurate Bounding Box Regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– ident: ref_33
  doi: 10.1109/CVPR.2016.90
– ident: ref_36
  doi: 10.1109/CVPR46437.2021.01352
– ident: ref_22
  doi: 10.3390/mi13122199
– ident: ref_25
– ident: ref_31
– volume: 8
  start-page: 80716
  year: 2020
  ident: ref_37
  article-title: Unsupervised K-Means Clustering Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 111
  start-page: 257
  year: 2023
  ident: ref_1
  article-title: Object Detection in 20 Years: A Survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2023.3238524
– ident: ref_12
– ident: ref_16
  doi: 10.3390/app122211318
– ident: ref_5
  doi: 10.1109/CVPR.2014.81
– volume: 369
  start-page: 548
  year: 2016
  ident: ref_3
  article-title: A Novel Spatio-Temporal Saliency Approach for Robust Dim Moving Target Detection from Airborne Infrared Image Sequences
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.07.042
– volume: 34
  start-page: 12993
  year: 2020
  ident: ref_39
  article-title: Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_41
– ident: ref_17
  doi: 10.3390/agriculture12101659
– volume: 33
  start-page: 8577
  year: 2019
  ident: ref_42
  article-title: Gradient Harmonized Single-Stage Detector
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_21
  doi: 10.3390/rs11050531
– ident: ref_38
  doi: 10.1109/CVPR.2019.00075
– ident: ref_13
  doi: 10.1109/ICCVW54120.2021.00312
– volume: 35
  start-page: 1285
  year: 2016
  ident: ref_30
  article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: ref_8
  doi: 10.3390/s20174939
– ident: ref_10
  doi: 10.1109/CVPR.2017.690
– ident: ref_35
  doi: 10.1109/CVPR.2018.00913
– volume: 20
  start-page: 4
  year: 2023
  ident: ref_15
  article-title: Real-Time Detection Algorithm of Helmet and Reflective Vest Based on Improved YOLOv5
  publication-title: J. Real-Time Image Process
  doi: 10.1007/s11554-023-01268-w
SSID ssj0065961
Score 2.4136727
Snippet In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes,...
SourceID doaj
swepub
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 520
SubjectTerms Accuracy
Aerial photography
Aerial vehicle
Algorithms
Antennas
Boxes
Classification
Datasets
decoupled head
Deep learning
Drone aircraft
Effectiveness
Image enhancement
Loss functions
Methods
Neural networks
Object detection
Object detection method
Object recognition
Objects detection
Photographic imagery
Small object detection
Small objects
Telematics
Unmanned aerial vehicles
Unmanned aerial vehicles (UAV)
Weather
WIoU
Wise intersection over union
YOLOv7-tiny model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELHwVEoCALgeASdb1ObOe40FZFKt0euqtyssZf3UjdFLVppfbXM7azK1qQuHBMNFImnufxG8t-Q8gHHmQAYVg5BgNlJTiUYCssVhrfcM84mKSlNz-Qh4fq5KQ5-q3VVzwTluWB88Btcx-Qko8RZxWWcvgggFs1Nsop8IjGmH2R9ayKqZyDRd0IlnWEOBb124C8hsUTH3dWnyTS_2cqvicamhaavafk8cAQ6SR79ow88N0mebLqvkCHyficnOb9AO_o1MTNFLrj-3SuqqPfU1toOuvbs_YW1yb6Y3owvZblcdvdUGSpdNYtISZYOkkApHO_iB-jR4vzPmtYt5Z-W0Z9i5sXZLa3e_x1vxzaJpS24lVfGiW4UFyAgKpm3ArHgqqdcDawUINwY2RZEkbcGuadMyYgB5Mj5ZwL0nrFX5KN7rzzrwh10mDIGgmOmwqa2gDIECtEM6rRuirI59VwajtoisfWFmcaa4s48no98gV5vzb9mYU0_mb0JcZkbRC1r9MLRIQeEKH_hYiCfIoR1XGGojMWhosG-EtR60pPZGRNyAN5QbZWQdfD1L3UWIEiBcK6vS7IxwyEO_7stPNJ8mfpFhr5Latf_w-v35BHsZN9vua4RTb6iyv_ljy01317efEuofsXe-__nA
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Object Detection Method Utilizing YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery
URI https://www.proquest.com/docview/2892938375
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-65015
https://doaj.org/article/3ef99624884046ef96a3c82b8d8ae322
Volume 16
WOSCitedRecordID wos001115260900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5By4EL5amGlmiFQHCxmvXau_YJpTQVFW0SQRO1J2tfbiw1TpuYSuXAb2dmbQcVEBculmyP7LHmsTPj2W8IecNzmSuhWRAqrYJIcBUoE0GykrqUO8aV9lh602M5HCZnZ-m4KbitmrbK1id6R20XBmvke5AYwMoE6VT84eo6wKlR-He1GaFxn2yyMGSo559l0HpiEaeC1WhCHFL7PQXRDcO-jztrkIfq_9Mh_wYd6pebw63_ZfQxedQEmrRfa8YTcs-VT8lWO8SBNjb9jFzUZQVn6UhjTYYeuMq3Z5X0xE-XppOquCy-wxJHz0fHoxsZnBblLYVgl07KuUI_Tftej-nUzfBldDxbVDUUdmHo0RxhMm6fk8nh4PTjp6CZvhCYiEdVoBPBRcKFEiqKGTfCsjyJrbAmZ3mshA0hWJOqx41mzlqtcwjlZC-x1ubSuIS_IBvlonTbhFqpQfKpVJbrSKWxVkrmmGjqXgzUUYe8b-WRmQaaHCdkXGaQoqDosrXoOuT1mvSqxuP4G9E-CnVNgBDa_sJieZE1Fplxl0OuF4IDi3qRgBOhuElCndhEOXBzHfIOVSJDQwdmjGr2K8AnIWRW1pcYfEE4yTtkt9WErPEAq-yXGnTI21qT7vBzUEz7np-5nWUQJrP45b8fs0Me4qj7eh_kLtmolt_cK_LA3FTFatklm_uD4fhL19cUut4MutjH-hWPPwZwf3x0Mj7_CeMVFIc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXylMECqwQFVysxl571z4gFAhVo6RJD0lUTtt9ubHUOCUxReFH8RuZ9SOogLj1wNHWaL32fvvNzHr3G4DXNOWpZMr3AqmkFzIqPalDTFYSm1DrU6lKLb3pgA-H8clJcrwFP5qzMG5bZcOJJVGbhXZr5PuYGKBnwnQqen_xxXNVo9zf1aaERgWLvl1_w5Rt9a7XxfHdC4KDT-OPh15dVcDTIQ0LT8WMspgyyWQY-VQz46dxZJjRqZ9GkpnAlauXbaqVb41RKsUQhbdjY0zKtY0ptnsDboY05k6rv8-9hvlZlDC_Ui-iNGnvS4ymfLfP5IrPK0sD_OkAfpMqLd3bwc7_9mHuwd06kCadCvn3YcvmD2CnKVJBas56CGfVsok1ZKTcmhPp2qLcfpaTo7J6NpkU2Xn2HV04-TwajC65N87yNcFgnkzyuXR-iHTKeUqmduYeRo5ni6KS-s406c2dDMj6EUyu5XUfw3a-yO0TIIYrRHbCpaEqlEmkpOSpS6RVO0LrsAVvm_EXupZedxVAzgWmYA4qYgOVFrzamF5UeiN_M_rgQLQxcBLh5Y3F8kzUjCOoTTGXDZCgw3bI8IJJquNAxSaWFmm8BW8cBIUjMuyMlvV5DHwlJwkmOtwFlxgu0xbsNsgTNcOtxC_YtWCvQu6V_nSzaafsz9zMBKYBfvT03828hNuH46OBGPSG_WdwJ8BgsjrzuQvbxfKrfQ639GWRrZYvyklH4PS6wfwT6gVtCg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghCXlqcIFFghKrhYsb322j4gFAgRUUKSQxOV03Zfbiw1TpuYovDT-HXM-hFUQNx64GhrtN61v3mtZ78BeEXTKBVMeo4vpHACRoUjVIDJSmISajwqZMmlNxtGo1F8fJxMduBHcxbGllU2NrE01Hqp7B55GxMD9EyYToXttC6LmHR7784vHNtByv5pbdppVBAZmM03TN_Wb_td_NaHvt_7ePThk1N3GHBUQIPCkTGjLKZMMBGEHlVMe2kcaqZV6qWhYNq3reuFS5X0jNZSphiuRG6stU4jZWKK496Am-iFQ6tjg8hpvAALE-ZVTEaUJm5bYGTl2ZqTK_6vbBPwpzP4jba0dHW9_f_5Jd2FvTrAJp1KI-7Bjsnvw37TvILUtuwBnFbbKUaTsbR7UaRrirIsLSefy67aZFpkZ9l3dO3ky3g4voycoyzfEAzyyTRfCOufSKfUXzIzc_swMpkvi4oCPFOkv7D0IJuHML2W5T6C3XyZm8dAdCQR8UkkNJWBSEIpRJTaBFu6IUoHLXjTYIGrmpLddgY545iaWdjwLWxa8HIrel7xkPxN6L0F1FbAUoeXN5arU15bIk5Nijmuj4Y7cAOGF0xQFfsy1rEwaN5b8NrCkVsDh5NRoj6ngUuyVGG8E9mgE8No2oKDBoW8tnxr_guCLTisUHxlPt1s1inns9BzjumBFz759zAv4DZimA_7o8FTuONjjFkdBT2A3WL11TyDW-qyyNar56X-ETi5biz_BDq0dcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Object+Detection+Method+Utilizing+YOLOv7-Tiny+for+Unmanned+Aerial+Vehicle+Photographic+Imagery&rft.jtitle=Algorithms&rft.au=Zhang%2C+Linhua&rft.au=Xiong%2C+Ning&rft.au=Pan%2C+Xinghao&rft.au=Yue%2C+Xiaodong&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=11&rft.spage=520&rft_id=info:doi/10.3390%2Fa16110520&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon