Improved Object Detection Method Utilizing YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery
In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to impr...
Gespeichert in:
| Veröffentlicht in: | Algorithms Jg. 16; H. 11; S. 520 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.11.2023
|
| Schlagworte: | |
| ISSN: | 1999-4893, 1999-4893 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection. |
|---|---|
| AbstractList | In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection. In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection. |
| Audience | Academic |
| Author | Pan, Xinghao Zhang, Linhua Yue, Xiaodong Wu, Peng Xiong, Ning Guo, Caiping |
| Author_xml | – sequence: 1 givenname: Linhua orcidid: 0009-0001-2632-6717 surname: Zhang fullname: Zhang, Linhua – sequence: 2 givenname: Ning surname: Xiong fullname: Xiong, Ning – sequence: 3 givenname: Xinghao surname: Pan fullname: Pan, Xinghao – sequence: 4 givenname: Xiaodong orcidid: 0000-0002-0536-1345 surname: Yue fullname: Yue, Xiaodong – sequence: 5 givenname: Peng orcidid: 0000-0003-4784-8984 surname: Wu fullname: Wu, Peng – sequence: 6 givenname: Caiping surname: Guo fullname: Guo, Caiping |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-65015$$DView record from Swedish Publication Index (Mälardalens högskola) |
| BookMark | eNptUU1vEzEUXKEi0RYO_ANLnJDY1l_rtY9RWyBSUDg0lThZXn9sHO3awesUhV-P00UVIOTD83uamTf2XFRnIQZbVW8RvCJEwGuFGEKwwfBFdY6EEDXlgpz9cX9VXUzTDkLWCIbOq3457lN8tAasu53VGdzaXIqPAXyxeRsN2GQ_-J8-9ODberV-bOt7H47AxQQ2YVQhFOrCJq8G8GC3Xg8WfN3GHPuk9qUFy1H1Nh1fVy-dGib75ne9rDYf7-5vPter9aflzWJVa0porjvOCOOEKaZog4hmBjneGGa0Q65RzGDeoFZBojtkjek612DcQm6Mca22nFxWy1nXRLWT--RHlY4yKi-fBjH1UqV8simJdUIwTDmnkLLSMEU0xx03XFmCcdH6MGtNP-z-0P2ldusfFk9qo9lK1kDUFPi7GV4-9PvBTlnu4iGF8lqJucCCcNKeUFczqlfFgw8u5qR0OcaOXpcwnS_zRdtSghilpBDezwSd4jQl6559IChPmcvnzAv2-h-s9lmd0ixL_PAfxi_-oK7y |
| CitedBy_id | crossref_primary_10_1038_s41598_024_53749_y crossref_primary_10_1038_s41598_024_84555_1 crossref_primary_10_1049_ipr2_70027 crossref_primary_10_1186_s40648_025_00290_w crossref_primary_10_1016_j_ijpharm_2024_124629 crossref_primary_10_1016_j_infrared_2024_105473 crossref_primary_10_14358_PERS_24_00085R2 crossref_primary_10_3390_s24216791 crossref_primary_10_3390_s24030922 crossref_primary_10_3390_info15020108 crossref_primary_10_3390_a17010039 crossref_primary_10_3390_a17030091 crossref_primary_10_1109_TIM_2025_3527595 crossref_primary_10_1016_j_ibmed_2025_100212 crossref_primary_10_3390_drones8030104 crossref_primary_10_3390_a17050174 crossref_primary_10_2478_amns_2024_3555 crossref_primary_10_3390_app14083497 crossref_primary_10_3390_smartcities8030095 |
| Cites_doi | 10.1109/CVPR52729.2023.00721 10.20944/preprints202106.0590.v1 10.1007/s11042-022-13153-y 10.1145/3318299.3318383 10.1109/ICCV.2015.169 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2016.91 10.1109/TCYB.2021.3095305 10.3390/s23156791 10.3390/s22186974 10.1109/ICIVC55077.2022.9886321 10.1109/CVPR.2015.7298594 10.1016/j.neucom.2022.07.042 10.1109/CVPR.2016.90 10.1109/CVPR46437.2021.01352 10.3390/mi13122199 10.1109/ACCESS.2020.2988796 10.1109/JPROC.2023.3238524 10.3390/app122211318 10.1109/CVPR.2014.81 10.1016/j.ins.2016.07.042 10.3390/agriculture12101659 10.3390/rs11050531 10.1109/CVPR.2019.00075 10.1109/ICCVW54120.2021.00312 10.1109/TMI.2016.2528162 10.3390/s20174939 10.1109/CVPR.2017.690 10.1109/CVPR.2018.00913 10.1007/s11554-023-01268-w |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ABGEM ADTPV AOWAS D8T DF7 ZZAVC DOA |
| DOI | 10.3390/a16110520 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SWEPUB Mälardalens högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Mälardalens högskola SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_3ef99624884046ef96a3c82b8d8ae322 oai_DiVA_org_mdh_65015 A774316443 10_3390_a16110520 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ABGEM ADTPV AOWAS C1A D8T DF7 IPNFZ RIG ZZAVC |
| ID | FETCH-LOGICAL-c434t-b8636836a6a4513c6d1f85d6dcf1f5a6d28517a03cb1eddbbf522708dddf7ce83 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001115260900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:42:44 EDT 2025 Thu Oct 30 11:26:52 EDT 2025 Fri Jul 25 10:42:59 EDT 2025 Tue Nov 04 18:32:10 EST 2025 Sat Nov 29 07:09:58 EST 2025 Tue Nov 18 21:34:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-b8636836a6a4513c6d1f85d6dcf1f5a6d28517a03cb1eddbbf522708dddf7ce83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0536-1345 0000-0003-4784-8984 0009-0001-2632-6717 |
| OpenAccessLink | https://www.proquest.com/docview/2892938375?pq-origsite=%requestingapplication% |
| PQID | 2892938375 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3ef99624884046ef96a3c82b8d8ae322 swepub_primary_oai_DiVA_org_mdh_65015 proquest_journals_2892938375 gale_infotracacademiconefile_A774316443 crossref_primary_10_3390_a16110520 crossref_citationtrail_10_3390_a16110520 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Shin (ref_30) 2016; 35 Zheng (ref_29) 2022; 52 Zhang (ref_40) 2022; 506 ref_14 ref_36 ref_13 ref_35 ref_12 ref_11 ref_33 ref_10 ref_32 ref_31 Liu (ref_20) 2016; Volume 9905 Li (ref_3) 2016; 369 ref_19 ref_18 Chen (ref_15) 2023; 20 ref_17 ref_16 ref_38 ref_25 ref_24 ref_23 ref_22 ref_21 He (ref_34) 2015; 37 ref_41 Sinaga (ref_37) 2020; 8 Zheng (ref_39) 2020; 34 ref_28 ref_27 Zou (ref_1) 2023; 111 ref_26 ref_9 ref_8 Kaur (ref_2) 2022; 81 Li (ref_42) 2019; 33 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_27 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_4 doi: 10.20944/preprints202106.0590.v1 – volume: 81 start-page: 38297 year: 2022 ident: ref_2 article-title: Tools, techniques, datasets and application areas for object detection in an image: A review publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13153-y – ident: ref_23 doi: 10.1145/3318299.3318383 – volume: Volume 9905 start-page: 21 year: 2016 ident: ref_20 article-title: SSD: Single Shot Multibox Detector publication-title: Computer Vision—ECCV 2016, Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016 – ident: ref_6 doi: 10.1109/ICCV.2015.169 – volume: 37 start-page: 1904 year: 2015 ident: ref_34 article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_9 doi: 10.1109/CVPR.2016.91 – ident: ref_11 – ident: ref_14 – volume: 52 start-page: 8574 year: 2022 ident: ref_29 article-title: Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3095305 – ident: ref_19 doi: 10.3390/s23156791 – ident: ref_18 – ident: ref_26 doi: 10.3390/s22186974 – ident: ref_24 doi: 10.1109/ICIVC55077.2022.9886321 – ident: ref_32 doi: 10.1109/CVPR.2015.7298594 – volume: 506 start-page: 146 year: 2022 ident: ref_40 article-title: Focal and Efficient IOU Loss for Accurate Bounding Box Regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – ident: ref_33 doi: 10.1109/CVPR.2016.90 – ident: ref_36 doi: 10.1109/CVPR46437.2021.01352 – ident: ref_22 doi: 10.3390/mi13122199 – ident: ref_25 – ident: ref_31 – volume: 8 start-page: 80716 year: 2020 ident: ref_37 article-title: Unsupervised K-Means Clustering Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 – volume: 111 start-page: 257 year: 2023 ident: ref_1 article-title: Object Detection in 20 Years: A Survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2023.3238524 – ident: ref_12 – ident: ref_16 doi: 10.3390/app122211318 – ident: ref_5 doi: 10.1109/CVPR.2014.81 – volume: 369 start-page: 548 year: 2016 ident: ref_3 article-title: A Novel Spatio-Temporal Saliency Approach for Robust Dim Moving Target Detection from Airborne Infrared Image Sequences publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.07.042 – volume: 34 start-page: 12993 year: 2020 ident: ref_39 article-title: Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression publication-title: Proc. AAAI Conf. Artif. Intell. – ident: ref_41 – ident: ref_17 doi: 10.3390/agriculture12101659 – volume: 33 start-page: 8577 year: 2019 ident: ref_42 article-title: Gradient Harmonized Single-Stage Detector publication-title: Proc. AAAI Conf. Artif. Intell. – ident: ref_21 doi: 10.3390/rs11050531 – ident: ref_38 doi: 10.1109/CVPR.2019.00075 – ident: ref_13 doi: 10.1109/ICCVW54120.2021.00312 – volume: 35 start-page: 1285 year: 2016 ident: ref_30 article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: ref_8 doi: 10.3390/s20174939 – ident: ref_10 doi: 10.1109/CVPR.2017.690 – ident: ref_35 doi: 10.1109/CVPR.2018.00913 – volume: 20 start-page: 4 year: 2023 ident: ref_15 article-title: Real-Time Detection Algorithm of Helmet and Reflective Vest Based on Improved YOLOv5 publication-title: J. Real-Time Image Process doi: 10.1007/s11554-023-01268-w |
| SSID | ssj0065961 |
| Score | 2.4136727 |
| Snippet | In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes,... |
| SourceID | doaj swepub proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 520 |
| SubjectTerms | Accuracy Aerial photography Aerial vehicle Algorithms Antennas Boxes Classification Datasets decoupled head Deep learning Drone aircraft Effectiveness Image enhancement Loss functions Methods Neural networks Object detection Object detection method Object recognition Objects detection Photographic imagery Small object detection Small objects Telematics Unmanned aerial vehicles Unmanned aerial vehicles (UAV) Weather WIoU Wise intersection over union YOLOv7-tiny model |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELHwVEoCALgeASdb1ObOe40FZFKt0euqtyssZf3UjdFLVppfbXM7azK1qQuHBMNFImnufxG8t-Q8gHHmQAYVg5BgNlJTiUYCssVhrfcM84mKSlNz-Qh4fq5KQ5-q3VVzwTluWB88Btcx-Qko8RZxWWcvgggFs1Nsop8IjGmH2R9ayKqZyDRd0IlnWEOBb124C8hsUTH3dWnyTS_2cqvicamhaavafk8cAQ6SR79ow88N0mebLqvkCHyficnOb9AO_o1MTNFLrj-3SuqqPfU1toOuvbs_YW1yb6Y3owvZblcdvdUGSpdNYtISZYOkkApHO_iB-jR4vzPmtYt5Z-W0Z9i5sXZLa3e_x1vxzaJpS24lVfGiW4UFyAgKpm3ArHgqqdcDawUINwY2RZEkbcGuadMyYgB5Mj5ZwL0nrFX5KN7rzzrwh10mDIGgmOmwqa2gDIECtEM6rRuirI59VwajtoisfWFmcaa4s48no98gV5vzb9mYU0_mb0JcZkbRC1r9MLRIQeEKH_hYiCfIoR1XGGojMWhosG-EtR60pPZGRNyAN5QbZWQdfD1L3UWIEiBcK6vS7IxwyEO_7stPNJ8mfpFhr5Latf_w-v35BHsZN9vua4RTb6iyv_ljy01317efEuofsXe-__nA priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved Object Detection Method Utilizing YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery |
| URI | https://www.proquest.com/docview/2892938375 https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-65015 https://doaj.org/article/3ef99624884046ef96a3c82b8d8ae322 |
| Volume | 16 |
| WOSCitedRecordID | wos001115260900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5By4EL5amGlmiFQHCxmvXau_YJpTQVFW0SQRO1J2tfbiw1TpuYSuXAb2dmbQcVEBculmyP7LHmsTPj2W8IecNzmSuhWRAqrYJIcBUoE0GykrqUO8aV9lh602M5HCZnZ-m4KbitmrbK1id6R20XBmvke5AYwMoE6VT84eo6wKlR-He1GaFxn2yyMGSo559l0HpiEaeC1WhCHFL7PQXRDcO-jztrkIfq_9Mh_wYd6pebw63_ZfQxedQEmrRfa8YTcs-VT8lWO8SBNjb9jFzUZQVn6UhjTYYeuMq3Z5X0xE-XppOquCy-wxJHz0fHoxsZnBblLYVgl07KuUI_Tftej-nUzfBldDxbVDUUdmHo0RxhMm6fk8nh4PTjp6CZvhCYiEdVoBPBRcKFEiqKGTfCsjyJrbAmZ3mshA0hWJOqx41mzlqtcwjlZC-x1ubSuIS_IBvlonTbhFqpQfKpVJbrSKWxVkrmmGjqXgzUUYe8b-WRmQaaHCdkXGaQoqDosrXoOuT1mvSqxuP4G9E-CnVNgBDa_sJieZE1Fplxl0OuF4IDi3qRgBOhuElCndhEOXBzHfIOVSJDQwdmjGr2K8AnIWRW1pcYfEE4yTtkt9WErPEAq-yXGnTI21qT7vBzUEz7np-5nWUQJrP45b8fs0Me4qj7eh_kLtmolt_cK_LA3FTFatklm_uD4fhL19cUut4MutjH-hWPPwZwf3x0Mj7_CeMVFIc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXylMECqwQFVysxl571z4gFAhVo6RJD0lUTtt9ubHUOCUxReFH8RuZ9SOogLj1wNHWaL32fvvNzHr3G4DXNOWpZMr3AqmkFzIqPalDTFYSm1DrU6lKLb3pgA-H8clJcrwFP5qzMG5bZcOJJVGbhXZr5PuYGKBnwnQqen_xxXNVo9zf1aaERgWLvl1_w5Rt9a7XxfHdC4KDT-OPh15dVcDTIQ0LT8WMspgyyWQY-VQz46dxZJjRqZ9GkpnAlauXbaqVb41RKsUQhbdjY0zKtY0ptnsDboY05k6rv8-9hvlZlDC_Ui-iNGnvS4ymfLfP5IrPK0sD_OkAfpMqLd3bwc7_9mHuwd06kCadCvn3YcvmD2CnKVJBas56CGfVsok1ZKTcmhPp2qLcfpaTo7J6NpkU2Xn2HV04-TwajC65N87yNcFgnkzyuXR-iHTKeUqmduYeRo5ni6KS-s406c2dDMj6EUyu5XUfw3a-yO0TIIYrRHbCpaEqlEmkpOSpS6RVO0LrsAVvm_EXupZedxVAzgWmYA4qYgOVFrzamF5UeiN_M_rgQLQxcBLh5Y3F8kzUjCOoTTGXDZCgw3bI8IJJquNAxSaWFmm8BW8cBIUjMuyMlvV5DHwlJwkmOtwFlxgu0xbsNsgTNcOtxC_YtWCvQu6V_nSzaafsz9zMBKYBfvT03828hNuH46OBGPSG_WdwJ8BgsjrzuQvbxfKrfQ639GWRrZYvyklH4PS6wfwT6gVtCg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghCXlqcIFFghKrhYsb322j4gFAgRUUKSQxOV03Zfbiw1TpuYovDT-HXM-hFUQNx64GhrtN61v3mtZ78BeEXTKBVMeo4vpHACRoUjVIDJSmISajwqZMmlNxtGo1F8fJxMduBHcxbGllU2NrE01Hqp7B55GxMD9EyYToXttC6LmHR7784vHNtByv5pbdppVBAZmM03TN_Wb_td_NaHvt_7ePThk1N3GHBUQIPCkTGjLKZMMBGEHlVMe2kcaqZV6qWhYNq3reuFS5X0jNZSphiuRG6stU4jZWKK496Am-iFQ6tjg8hpvAALE-ZVTEaUJm5bYGTl2ZqTK_6vbBPwpzP4jba0dHW9_f_5Jd2FvTrAJp1KI-7Bjsnvw37TvILUtuwBnFbbKUaTsbR7UaRrirIsLSefy67aZFpkZ9l3dO3ky3g4voycoyzfEAzyyTRfCOufSKfUXzIzc_swMpkvi4oCPFOkv7D0IJuHML2W5T6C3XyZm8dAdCQR8UkkNJWBSEIpRJTaBFu6IUoHLXjTYIGrmpLddgY545iaWdjwLWxa8HIrel7xkPxN6L0F1FbAUoeXN5arU15bIk5Nijmuj4Y7cAOGF0xQFfsy1rEwaN5b8NrCkVsDh5NRoj6ngUuyVGG8E9mgE8No2oKDBoW8tnxr_guCLTisUHxlPt1s1inns9BzjumBFz759zAv4DZimA_7o8FTuONjjFkdBT2A3WL11TyDW-qyyNar56X-ETi5biz_BDq0dcQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Object+Detection+Method+Utilizing+YOLOv7-Tiny+for+Unmanned+Aerial+Vehicle+Photographic+Imagery&rft.jtitle=Algorithms&rft.au=Zhang%2C+Linhua&rft.au=Xiong%2C+Ning&rft.au=Pan%2C+Xinghao&rft.au=Yue%2C+Xiaodong&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=11&rft.spage=520&rft_id=info:doi/10.3390%2Fa16110520&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |