Optimizing Pension Participation in Kenya through Predictive Modeling: A Comparative Analysis of Tree-Based Machine Learning Algorithms and Logistic Regression Classifier
Pension plans play a vital role in the economy by impacting savings, consumption, and investment allocation. Despite declining mortality rates and increasing life expectancy, pension enrollment remains low, affecting the long-term financial stability and well-being of populations. To address this is...
Uložené v:
| Vydané v: | Risks (Basel) Ročník 11; číslo 4; s. 77 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.04.2023
|
| Predmet: | |
| ISSN: | 2227-9091, 2227-9091 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Pension plans play a vital role in the economy by impacting savings, consumption, and investment allocation. Despite declining mortality rates and increasing life expectancy, pension enrollment remains low, affecting the long-term financial stability and well-being of populations. To address this issue, this study was conducted to explore the potential of predictive modeling techniques in improving pension participation. The study utilized three tree-based machine learning algorithms and a logistic regression classifier to analyze data from a nationally representative 2019 Kenya FinAccess Household Survey. The results indicated that ensemble tree-based models, particularly the random forest model, were the most effective in predicting pension enrollment. The study identified the key factors that influenced enrollment, such as National Health Insurance Fund (NHIF) usage, monthly income, and bank usage. The findings suggest that collaboration among the NHIF, banks, and pension providers is necessary to increase pension uptake, along with increased financial education for citizens. The study provides valuable insight for promoting and optimizing pension participation. |
|---|---|
| AbstractList | Pension plans play a vital role in the economy by impacting savings, consumption, and investment allocation. Despite declining mortality rates and increasing life expectancy, pension enrollment remains low, affecting the long-term financial stability and well-being of populations. To address this issue, this study was conducted to explore the potential of predictive modeling techniques in improving pension participation. The study utilized three tree-based machine learning algorithms and a logistic regression classifier to analyze data from a nationally representative 2019 Kenya FinAccess Household Survey. The results indicated that ensemble tree-based models, particularly the random forest model, were the most effective in predicting pension enrollment. The study identified the key factors that influenced enrollment, such as National Health Insurance Fund (NHIF) usage, monthly income, and bank usage. The findings suggest that collaboration among the NHIF, banks, and pension providers is necessary to increase pension uptake, along with increased financial education for citizens. The study provides valuable insight for promoting and optimizing pension participation. |
| Audience | Academic |
| Author | Nkurunziza, Joseph Kasozi, Juma Kemboi Yego, Nelson |
| Author_xml | – sequence: 1 givenname: Nelson orcidid: 0000-0001-8888-1110 surname: Kemboi Yego fullname: Kemboi Yego, Nelson – sequence: 2 givenname: Juma surname: Kasozi fullname: Kasozi, Juma – sequence: 3 givenname: Joseph surname: Nkurunziza fullname: Nkurunziza, Joseph |
| BookMark | eNp1UsGO0zAQjdAisSx75G6JcxY7duqEW6lYWNHVVmg5RxN7nE5J7WKnSOWT-ErcFiFAwj54_PTem9HMPC8ufPBYFC8Fv5Gy5a8jpS9JCK441_pJcVlVlS5b3oqLP-JnxXVKG55PK2Qz45fFj4fdRFv6Tn5gK_SJgmcriBMZ2sF0_JFnH9EfgE3rGPbDmq0iWjITfUN2HyyOWfqGzdkibHcQ4YTPPYyHRIkFxx4jYvkWElp2D2ZNHtkSIfpjxvk4hEjTepsYeMuWYaCUU7NPOERMp2IWI-TAEcYXxVMHY8LrX-9V8fn23ePiQ7l8eH-3mC9Lo6SaStCVQmN67oSctQ6FdpoLqGrQjW5rPqtb45xorHYNgHXaSeUQ-742GVKVvCruzr42wKbbRdpCPHQBqDsBIQ7dqUEjdrVSGhrb91VrlOYaeitAz_oa0TqrdfZ6dfbaxfB1j2nqNmEfc3dSVzW5lEZJyTPr5swaIJuSd2GKYPK1uCWT5-wo43OtdC1bKWdZUJ4FJoaUIrrfZQreHdeh-2sdMl_-wzc0ncabE9H4H9VPreu_rQ |
| CitedBy_id | crossref_primary_10_2139_ssrn_5393564 |
| Cites_doi | 10.1186/s12874-021-01346-2 10.1016/j.ssaho.2021.100216 10.1111/dpr.12636 10.1016/j.eswa.2017.04.006 10.1145/3492547.3492590 10.3390/risks10050099 10.3390/math10193625 10.1016/j.econlet.2017.09.025 10.1007/978-3-030-41068-1 10.1016/S2214-109X(18)30472-8 10.1007/s43546-021-00104-2 10.1111/issr.12010 10.1007/s42521-019-00014-x 10.26360/2019_6 10.3390/jrfm14030120 10.1109/FSKD.2016.7603443 10.1080/15228916.2018.1484209 10.1007/s11187-020-00392-2 10.3390/data6110116 10.1109/ACCESS.2017.2738069 10.1016/j.worlddev.2020.105017 10.1596/32179 10.1017/CBO9781107298019 10.1080/00036846.2018.1563670 10.1016/j.jebo.2022.02.028 10.1016/j.dss.2020.113398 10.1016/j.compeleceng.2013.11.024 10.1007/s10479-021-04366-9 10.1007/s10614-020-10022-4 10.1177/13882627221150542 10.1007/s10462-020-09896-5 10.1023/A:1010933404324 10.1111/issr.12095 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U DOA |
| DOI | 10.3390/risks11040077 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection - QC ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 2227-9091 |
| ExternalDocumentID | oai_doaj_org_article_5447a8dbb29c4707abd1a76b5eedfd77 A747539336 10_3390_risks11040077 |
| GeographicLocations | Kenya Africa |
| GeographicLocations_xml | – name: Kenya – name: Africa |
| GroupedDBID | 5VS 7WY 8FL AADQD AAFWJ AAYXX AAZKY ABUWG ADBBV AFFHD AFKRA AFPKN AFZYC AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS BAAKF BCNDV BENPR BEZIV BPHCQ CCPQU CITATION DWQXO EBO EBR EBU EPL FRNLG GROUPED_DOAJ IAO IGS INS ITC K60 K6~ KQ8 M0C MODMG M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC RNS 3V. 7XB 8FK AZQEC L.- PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c434t-a724eccb0f1369fe17f701a25a787950659cff18d7f8aadf7f34feebb5cd7f423 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000977017300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9091 |
| IngestDate | Tue Oct 14 18:59:04 EDT 2025 Mon Jun 30 13:28:01 EDT 2025 Tue Nov 04 18:17:21 EST 2025 Tue Nov 18 21:18:38 EST 2025 Sat Nov 29 07:18:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-a724eccb0f1369fe17f701a25a787950659cff18d7f8aadf7f34feebb5cd7f423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8888-1110 |
| OpenAccessLink | https://doaj.org/article/5447a8dbb29c4707abd1a76b5eedfd77 |
| PQID | 2806584330 |
| PQPubID | 2032336 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5447a8dbb29c4707abd1a76b5eedfd77 proquest_journals_2806584330 gale_infotracacademiconefile_A747539336 crossref_primary_10_3390_risks11040077 crossref_citationtrail_10_3390_risks11040077 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Risks (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_7) 2021; 54 Breiman (ref_11) 2001; 45 Guerrero (ref_20) 2021; 57 Brailsford (ref_5) 2020; 138 Lades (ref_29) 2017; 161 Mutai (ref_34) 2021; 21 Asuming (ref_2) 2019; 20 ref_13 ref_35 ref_12 Kipkogei (ref_24) 2021; 1 ref_33 ref_31 Barboza (ref_4) 2017; 83 ref_30 Salazar (ref_9) 2019; 25 ref_19 ref_18 Bouri (ref_10) 2021a; 57 ref_17 Hadad (ref_22) 2022; 24 ref_16 Aguila (ref_38) 2019; 4 Lin (ref_32) 2017; 5 Rajan (ref_36) 2023; 41 Renault (ref_37) 2020; 2 Balasuriya (ref_3) 2019; 51 Saroj (ref_39) 2021; 4 Kwena (ref_28) 2013; 66 Achoki (ref_1) 2019; 7 ref_25 Unnikrishnan (ref_42) 2020; 134 Dahmann (ref_15) 2022; 197 ref_21 ref_43 Kibona (ref_23) 2020; 27 ref_41 ref_40 Chandrashekar (ref_14) 2014; 40 ref_27 ref_8 (ref_26) 2016; 69 ref_6 |
| References_xml | – volume: 21 start-page: 159 year: 2021 ident: ref_34 article-title: Use of machine learning techniques to identify HIV predictors for screening in sub-Saharan Africa publication-title: BMC Medical Research Methodology doi: 10.1186/s12874-021-01346-2 – volume: 4 start-page: 100216 year: 2021 ident: ref_39 article-title: Environmental Factors Prediction in Preterm Birth Using Comparison between Logistic Regression and Decision Tree Methods: An Exploratory Analysis publication-title: Social Sciences & Humanities Open doi: 10.1016/j.ssaho.2021.100216 – volume: 41 start-page: e12636 year: 2023 ident: ref_36 article-title: Understanding the Multifaceted Impact of COVID-19 on Migrants in Kerala, India publication-title: Development Policy Review doi: 10.1111/dpr.12636 – volume: 83 start-page: 405 year: 2017 ident: ref_4 article-title: Machine Learning Models and Bankruptcy Prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.006 – ident: ref_27 doi: 10.1145/3492547.3492590 – ident: ref_8 doi: 10.3390/risks10050099 – ident: ref_33 doi: 10.3390/math10193625 – volume: 161 start-page: 102 year: 2017 ident: ref_29 article-title: Childhood Self-Control and Adult Pension Participation publication-title: Economics Letters doi: 10.1016/j.econlet.2017.09.025 – ident: ref_18 doi: 10.1007/978-3-030-41068-1 – volume: 7 start-page: e81 year: 2019 ident: ref_1 article-title: Health Disparities across the Counties of Kenya and Implications for Policy Makers, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016 publication-title: The Lancet Global Health doi: 10.1016/S2214-109X(18)30472-8 – volume: 1 start-page: 101 year: 2021 ident: ref_24 article-title: Business Success Prediction in Rwanda: A Comparison of Tree-Based Models and Logistic Regression Classifiers publication-title: SN Business & Economics doi: 10.1007/s43546-021-00104-2 – volume: 66 start-page: 79 year: 2013 ident: ref_28 article-title: Extending Pension and Savings Scheme Coverage to the Informal Sector: Kenya’s Mbao Pension Plan publication-title: International Social Security Review doi: 10.1111/issr.12010 – ident: ref_16 – volume: 2 start-page: 1 year: 2020 ident: ref_37 article-title: Sentiment Analysis and Machine Learning in Finance: A Comparison of Methods and Models on One Million Messages publication-title: Digital Finance doi: 10.1007/s42521-019-00014-x – volume: 25 start-page: 119 year: 2019 ident: ref_9 article-title: Scoring and Prediction of Early Retirement Using Machine Learning Techniques: Application to Private Pension Plans publication-title: Anales Del Instituto de Actuarios Españoles doi: 10.26360/2019_6 – ident: ref_40 – ident: ref_30 doi: 10.3390/jrfm14030120 – ident: ref_31 doi: 10.1109/FSKD.2016.7603443 – volume: 20 start-page: 112 year: 2019 ident: ref_2 article-title: Financial Inclusion in Sub-Saharan Africa: Recent Trends and Determinants publication-title: Journal of African Business doi: 10.1080/15228916.2018.1484209 – volume: 57 start-page: 1733 year: 2021 ident: ref_20 article-title: The Influence of Ecosystems on the Entrepreneurship Process: A Comparison across Developed and Developing Economies publication-title: Small Business Economics doi: 10.1007/s11187-020-00392-2 – ident: ref_43 doi: 10.3390/data6110116 – volume: 5 start-page: 16568 year: 2017 ident: ref_32 article-title: An Ensemble Random Forest Algorithm for Insurance Big Data Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2738069 – ident: ref_35 – volume: 134 start-page: 105017 year: 2020 ident: ref_42 article-title: Does the Old-Age Pension Scheme Improve Household Welfare? Evidence from India publication-title: World Development doi: 10.1016/j.worlddev.2020.105017 – volume: 27 start-page: 17 year: 2020 ident: ref_23 article-title: Determinants of Pension Uptake in the Informal Sector of Tanzania publication-title: Huria Journal of the Open University of Tanzania – ident: ref_21 doi: 10.1596/32179 – ident: ref_25 – ident: ref_12 – ident: ref_41 doi: 10.1017/CBO9781107298019 – volume: 51 start-page: 2901 year: 2019 ident: ref_3 article-title: The Role of Personality Traits in Pension Decisions: Findings and Policy Recommendations publication-title: Applied Economics doi: 10.1080/00036846.2018.1563670 – volume: 197 start-page: 725 year: 2022 ident: ref_15 article-title: The Predictive Power of Self-Control for Life Outcomes publication-title: Journal of Economic Behavior & Organization doi: 10.1016/j.jebo.2022.02.028 – volume: 138 start-page: 113398 year: 2020 ident: ref_5 article-title: Improving Healthcare Access Management by Predicting Patient No-Show Behaviour publication-title: Decision Support Systems doi: 10.1016/j.dss.2020.113398 – volume: 40 start-page: 16 year: 2014 ident: ref_14 article-title: A Survey on Feature Selection Methods publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2013.11.024 – volume: 4 start-page: 1 year: 2019 ident: ref_38 article-title: The Effect of Old-Age Pensions on Health Care Utilization Patterns and Insurance Uptake in Mexico publication-title: BMJ Global Health – ident: ref_6 doi: 10.1007/s10479-021-04366-9 – ident: ref_13 – volume: 57 start-page: 29 year: 2021a ident: ref_10 article-title: Forecasting Realized Volatility of Bitcoin: The Role of the Trade War publication-title: Computational Economics doi: 10.1007/s10614-020-10022-4 – ident: ref_17 – ident: ref_19 – volume: 24 start-page: 342 year: 2022 ident: ref_22 article-title: Development of Capital Pension Funds in the Czech Republic and Bulgaria and Readiness to Implement PEPP publication-title: European Journal of Social Security doi: 10.1177/13882627221150542 – volume: 54 start-page: 1937 year: 2021 ident: ref_7 article-title: A Comparative Analysis of Gradient Boosting Algorithms publication-title: Artificial Intelligence Review doi: 10.1007/s10462-020-09896-5 – volume: 45 start-page: 5 year: 2001 ident: ref_11 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 69 start-page: 67 year: 2016 ident: ref_26 article-title: Social Security Reforms in Kenya: Towards a Workerist or a Citizenship-Based System? publication-title: International Social Security Review doi: 10.1111/issr.12095 |
| SSID | ssj0000913860 |
| Score | 2.249575 |
| Snippet | Pension plans play a vital role in the economy by impacting savings, consumption, and investment allocation. Despite declining mortality rates and increasing... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 77 |
| SubjectTerms | Algorithms Consumption Expenditures Finance Financial inclusion Informal economy Insurance coverage Life expectancy Long term health care Machine learning Methods Mortality Mothers Older people Participation Patient outcomes Pension plans pension uptake Pensions Population random forest classifier Regression analysis Retirement tree-based models |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVgixAXviu2FDQHBBeizYcTJ1zQtqICiZYIFamcIn8ukdqkJFsk-En8SmYSZ0sP5cQ1a0VeefxmJn5-j7EXBpOA0Qnub1e4gBvDgzxWIiCDSp66LJZKDWYT4ugoPzkpSn89uve0ygkTB6Ae1Z6Jt40gvDCtpi_mi-E8MOfYjL89_x6QhxSdtXpDjZtsi4S3whnbKj8cll8331xIAzPPwlFqM8Fuf0H87R4zILmDiyupaVDwvw6nh-RzcO__Tvs-u-uLUFiOUfOA3bDNQ3Z74sA_Yr8_IZCc1b8wrUFJDPe2gVL-RcCGugGE6J8SvM8PlB2d-BB2Atmr0SX3N7CE_UtxcZj0T6B1cNxZG-xhBjVwONA5LXil1xUsT1c45_W3sx5kY-DjcEep1vDZrkbSbgODlWftMKU_Zl8O3h3vvw-8qUOgecLXgRQxx7BRoYuSrHA2Ek6EkYxTKcj3nI55tXMYQMLlUhonXMKdtUqlGh9h8bfNZk3b2CcMEItCXUQaixjFlQiLWIRSW-yopJPYKM3Z62k9K-0Vz8l447TCzoeWv7qy_HP2cjP8fJT6uG7gHgXHZhApdA8P2m5V-Q1fYQAKmRul4kJzEQqpTCRFplIsSpyhl7yi0KoIR3BSWvrrEPjXSJGrWmKflyZFkmRztjuFVuUBpq8uI2nn3z8_ZXdirMtGstEum627C_uM3dI_1nXfPfc75A99gCbu priority: 102 providerName: ProQuest |
| Title | Optimizing Pension Participation in Kenya through Predictive Modeling: A Comparative Analysis of Tree-Based Machine Learning Algorithms and Logistic Regression Classifier |
| URI | https://www.proquest.com/docview/2806584330 https://doaj.org/article/5447a8dbb29c4707abd1a76b5eedfd77 |
| Volume | 11 |
| WOSCitedRecordID | wos000977017300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-9091 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913860 issn: 2227-9091 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9091 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913860 issn: 2227-9091 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM - ProQuest customDbUrl: eissn: 2227-9091 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913860 issn: 2227-9091 databaseCode: 7WY dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2227-9091 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913860 issn: 2227-9091 databaseCode: M0C dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9091 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913860 issn: 2227-9091 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2227-9091 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913860 issn: 2227-9091 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLZgIMQF8SkKo3oPCC5Ec2InTri11SaQaImmIbaT5c8u0paitCDBT-JX8tpJR3eYuHDpwfLB6fvlV37e5yHktcUiYA3D-PaVT7i1PCkzLZIgUMlzX2RK6yg2IRaL8vS0qnekvgImrKcH7v-4g5xzoUqrdVYZLqhQ2qZKFDrH5O6tiHPkVFQ7zVTMwVXKyoL2pJoM-_qDgNReY60LOuDiWhGKXP03ZeRYZo4ekgfD_RAm_bkekVuufUzubeHpT8jvzxjjl80vrDhQB_D5qoVa7WCjoWkBs-dPBYMED9RdeIwJaQ2C8lmYP38PE5j95f2GLTUJrDycdM4lUyxuFuYRaelgIGFdwuRiueqazfnlGlRr4VMcH2oMHLtlj6dtIapsNh6r7VPy5ejwZPYhGfQWEsMZ3yRKZBwtqqlPWVF5lwovaKqyXIkgSR5eYI33aFvhS6WsF55x75zWucElvJc9I3vtqnXPCWCaoKZKDd4vNNeCVpmgyjhsdpRX2MOMyLutAaQZyMiDJsaFxKYk2Etes9eIvLna_q1n4bhp4zRY82pTIM-OC-hScnAp-S-XGpG3wRdkCHE8lFHDpAJ-WiDLkhNswXJWMVaMyP7WXeQQ-2sZ36pLzhh98T9O85LcDxL3PVpon-xtuu_uFblrfmyadTcmt8XXszG5Mz1c1MfjGAT4O6czXKs_zuuzP9ZMEnQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQGX8hYpBebA44JVP9ZeGwmhNFC1ahIiFKTe3H2GSK1dnAAqP4kDv5EZP1J6KLceuDqryF5_-82Md_b7GHtuMAgYHeH6dpnzuDHcS0MlPDKo5LFLQqlUbTYhxuP08DCbrLHf3VkYaqvsOLEmalNq-ka-Xe8AphzL73enXz1yjaLd1c5Co4HFgT37gSXb4u3-e3y_L8Jw98N0sOe1rgKe5hFfelKEHO9b-S6IkszZQDjhBzKMpSDjbdpn1M7hEwiXSmmccBF31ioVa7zESegAKf8ax8KL1tXIH6y-6ZDGZpr4jZRnFGX-NvWHLzDCkvu4uBD6aoeAy-JAHdx2b_9v03KHbbRpNPQb3N9la7a4x250Xfz32a-PSIUn858YmGFCPfplARP5Vws5zAvAIHMmoXUqgklFe1bE_kAGcXRM_w30YXAujw6dgguUDqaVtd4O5gAGRnVDqoVWq3YG_eMZztHyy8kCZGFgWJ-ymmv4ZGdN23EBtRnp3GFS8oB9vpKZesjWi7Kwjxggm_o6CzSmYYor4Weh8KW2WBNKJ7HU67HXHWJy3Wq2k3XIcY61GwEsvwCwHnu5Gn7aiJVcNnCH4LcaRBrj9YWymuUtZeUx50KmRqkw01z4QioTSJGoGNMqZ-hPXhF4c2JCvCkt2wMd-GikKZb3sVKNoyyKkh7b6sCbtxS5yM-Ru_nvn5-xm3vT0TAf7o8PHrNbIa67pnVqi60vq2_2Cbuuvy_ni-ppvRqBHV01zv8Ab115gQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKarY8EYECtwFjw1W_BhnbCSE0paIqG2wUJHKyp1niNQ6xQ6g8kl8Al_HvX6kdFF2XbB1RlFmcuY-PGfOYeyZwSRgdIT726XO48ZwLwmV8MigksduGEqlarMJMZ0mh4dptsZ-d3dhiFbZxcQ6UJuFpnfkg_oEMOHYfg9cS4vIdsZvT7965CBFJ62dnUYDkV179gPbt-rNZAf_6-dhOH53sP3eax0GPM0jvvSkCDnOQfkuiIaps4Fwwg9kGEtBJtx05qidw9kIl0hpnHARd9YqFWt8xEn0AMP_uiD_3h5bzyb72efVGx5S3EyGfiPsGUWpPyC2eIX5lrzIxYVEWPsFXJYV6lQ3vvk_L9ItdqMtsGHU7IjbbM0Wd9hGx--_y359wCB5Mv-JKRsyYu8vCsjkX-RymBeA6edMQuthBFlJp1mUF4Cs4-gC_2sYwfa5cDp02i6wcHBQWuttYXVgYL-mqlpoVWxnMDqe4Rotv5xUIAsDe_X9q7mGj3bWEJILqG1K5w7LlXvs05Ws1H3WKxaFfcAA46yv00Bjgaa4En4aCl9qi92idBKbwD571aEn162aO5mKHOfY1RHY8gtg67MXq-GnjYzJZQO3CIqrQaQ-Xj9YlLO8DWZ5zLmQiVEqTDUXvpDKBFIMVYwFlzP0JS8JyDnFSPxRWrZXPXBqpDaWj3DDxFEaRcM-2-yAnLfBs8rPUfzw3x8_ZRsI73xvMt19xK6HWH42nKpN1luW3-xjdk1_X86r8km7NYEdXTXQ_wDUyoPu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Pension+Participation+in+Kenya+through+Predictive+Modeling%3A+A+Comparative+Analysis+of+Tree-Based+Machine+Learning+Algorithms+and+Logistic+Regression+Classifier&rft.jtitle=Risks+%28Basel%29&rft.au=Nelson+Kemboi+Yego&rft.au=Juma+Kasozi&rft.au=Joseph+Nkurunziza&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=2227-9091&rft.volume=11&rft.issue=4&rft.spage=77&rft_id=info:doi/10.3390%2Frisks11040077&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5447a8dbb29c4707abd1a76b5eedfd77 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9091&client=summon |