A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem

We consider the dynamic and stochastic resource-constrained multi-project scheduling problem which allows for the random arrival of projects and stochastic task durations. Completing projects generates rewards, which are reduced by a tardiness cost in the case of late completion. Multiple types of r...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 315; no. 2; pp. 454 - 469
Main Authors: Satic, U., Jacko, P., Kirkbride, C.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2024
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the dynamic and stochastic resource-constrained multi-project scheduling problem which allows for the random arrival of projects and stochastic task durations. Completing projects generates rewards, which are reduced by a tardiness cost in the case of late completion. Multiple types of resource are available, and projects consume different amounts of these resources when under processing. The problem is modelled as an infinite-horizon discrete-time Markov decision process and seeks to maximise the expected discounted long-run profit. We use an approximate dynamic programming algorithm (ADP) with a linear approximation model which can be used for online decision making. Our approximation model uses project elements that are easily accessible by a decision-maker, with the model coefficients obtained offline via a combination of Monte Carlo simulation and least squares estimation. Our numerical study shows that ADP often statistically significantly outperforms the optimal reactive baseline algorithm (ORBA). In experiments on smaller problems however, both typically perform suboptimally compared to the optimal scheduler obtained by stochastic dynamic programming. ADP has an advantage over ORBA and dynamic programming in that ADP can be applied to larger problems. We also show that ADP generally produces statistically significantly higher profits than common algorithms used in practice, such as a rule-based algorithm and a reactive genetic algorithm. •Dynamic programming is optimal in small problems but intractable for large problems.•Rule based algorithms are straightforward to apply but can perform poorly.•Reactive baseline algorithms have a restricted view of future profits.•Approximate dynamic programming learns about actions by simulating the future.•Approximate dynamic programming performs competitively compared to alternatives.
AbstractList We consider the dynamic and stochastic resource-constrained multi-project scheduling problem which allows for the random arrival of projects and stochastic task durations. Completing projects generates rewards, which are reduced by a tardiness cost in the case of late completion. Multiple types of resource are available, and projects consume different amounts of these resources when under processing. The problem is modelled as an infinite-horizon discrete-time Markov decision process and seeks to maximise the expected discounted long-run profit. We use an approximate dynamic programming algorithm (ADP) with a linear approximation model which can be used for online decision making. Our approximation model uses project elements that are easily accessible by a decision-maker, with the model coefficients obtained offline via a combination of Monte Carlo simulation and least squares estimation. Our numerical study shows that ADP often statistically significantly outperforms the optimal reactive baseline algorithm (ORBA). In experiments on smaller problems however, both typically perform suboptimally compared to the optimal scheduler obtained by stochastic dynamic programming. ADP has an advantage over ORBA and dynamic programming in that ADP can be applied to larger problems. We also show that ADP generally produces statistically significantly higher profits than common algorithms used in practice, such as a rule-based algorithm and a reactive genetic algorithm. •Dynamic programming is optimal in small problems but intractable for large problems.•Rule based algorithms are straightforward to apply but can perform poorly.•Reactive baseline algorithms have a restricted view of future profits.•Approximate dynamic programming learns about actions by simulating the future.•Approximate dynamic programming performs competitively compared to alternatives.
Author Satic, U.
Jacko, P.
Kirkbride, C.
Author_xml – sequence: 1
  givenname: U.
  orcidid: 0000-0002-9160-0006
  surname: Satic
  fullname: Satic, U.
  email: ugur.satic@agu.edu.tr
  organization: Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, United Kingdom
– sequence: 2
  givenname: P.
  orcidid: 0000-0003-3376-0260
  surname: Jacko
  fullname: Jacko, P.
  organization: Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, United Kingdom
– sequence: 3
  givenname: C.
  orcidid: 0000-0002-3667-3413
  surname: Kirkbride
  fullname: Kirkbride, C.
  organization: Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, United Kingdom
BookMark eNp9kMtKAzEUhoNUsK2-gKt5galJ5pIpuCnFGxTc6HrInJxpM8wkJUnFPoMvbcaKCxfdJOQ_fCf834xMjDVIyC2jC0ZZedctsLNuwSnPYrCgeXlBpqwSPC2rkk7IlGZCpJwzcUVm3neUUlawYkq-VonXw6GXQVuTNtKjSuR-7-ynHmTARB2NHDQkMdk6OQzabE9zCbsk2L-5NCrxwcJO-hCfDr09OMAUrPHBSW3i3vhN0GlkO4SQeNihOvTjwhg1PQ7X5LKVvceb33tO3h8f3tbP6eb16WW92qSQZ3lIZb5ccqkEVU1btkCbQihEqZRAKKpcZWXRYJ43DeMCM9EgLKGqIJ5KAJNZNif8tBec9d5hW-9dbOuONaP1qLPu6lFnPeocs6gzQtU_CHT4sTbW68-j9ycUY6kPja72oNEAKu2iiVpZfQ7_BsyTma0
CitedBy_id crossref_primary_10_3390_math13091395
crossref_primary_10_1016_j_ejor_2025_01_011
crossref_primary_10_1049_gtd2_70145
crossref_primary_10_1016_j_eswa_2024_124947
crossref_primary_10_1080_01605682_2025_2457655
crossref_primary_10_1016_j_jhydrol_2024_132515
crossref_primary_10_1080_00207543_2024_2430457
crossref_primary_10_1016_j_mex_2025_103496
crossref_primary_10_1016_j_cie_2025_111489
crossref_primary_10_1080_23302674_2025_2532727
crossref_primary_10_3390_systems13030191
crossref_primary_10_1016_j_eswa_2025_127488
crossref_primary_10_1016_j_eswa_2025_128881
crossref_primary_10_1080_21681015_2024_2377180
crossref_primary_10_2478_emj_2025_0014
Cites_doi 10.1002/nav.20347
10.1080/00207543.2020.1857450
10.1007/s10951-015-0421-5
10.1080/00207543.2020.1788737
10.1016/j.ejor.2011.09.007
10.1016/S0377-2217(96)00170-1
10.1287/mnsc.41.3.458
10.1016/j.ejor.2015.04.015
10.1111/j.1475-3995.2007.00614.x
10.1007/s10479-005-5730-1
10.1016/j.trc.2018.09.010
10.1287/mnsc.41.10.1693
10.1016/j.ejor.2016.11.023
10.1080/00207543.2018.1431417
10.1007/s10951-009-0160-6
10.1016/j.cie.2019.106060
10.1016/j.orl.2017.06.002
10.1002/rnc.1164
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ejor.2023.10.046
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 469
ExternalDocumentID 10_1016_j_ejor_2023_10_046
S0377221723008214
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
LY1
M41
R2-
VH1
WUQ
~HD
ID FETCH-LOGICAL-c434t-a4992ad70dbf6fc0b57deeadd7ec584d365be44bb127e37bec9c88cc9cd7c1a33
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001185197200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 07:24:44 EST 2025
Tue Nov 18 22:39:05 EST 2025
Sat Feb 17 16:07:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Project scheduling
Approximate dynamic programming
Dynamic resource allocation
Dynamic programming
Markov decision processes
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-a4992ad70dbf6fc0b57deeadd7ec584d365be44bb127e37bec9c88cc9cd7c1a33
ORCID 0000-0002-3667-3413
0000-0003-3376-0260
0000-0002-9160-0006
OpenAccessLink https://dx.doi.org/10.1016/j.ejor.2023.10.046
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_ejor_2023_10_046
crossref_citationtrail_10_1016_j_ejor_2023_10_046
elsevier_sciencedirect_doi_10_1016_j_ejor_2023_10_046
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Choi, Realff, Lee (b5) 2007; 17
Melchiors, Leus, Creemers, Kolisch (b19) 2018; 56
Capa, Ulusoy (b3) 2015
Creemers (b7) 2015; 18
Kolisch, Sprecher, Drexl (b14) 1995; 41
Fliedner, T., Gutjahr, W., Kolisch, R., & Melchiors, P. (2012). Solving the Dynamic Stochastic Resource-Constrained Multi-Project Scheduling Problem with SRCPSP-methods. In
Schütz, Kolisch (b27) 2012; 218
Kolisch, Sprecher (b13) 1996; 96
Schwindt (b28) 1998
Adler, Mandelbaum, Nguyen, Schwerer (b1) 1995; 41
Parizi, Gocgun, Ghate (b21) 2017; 45
Pamay, Bülbül, Ulusoy (b20) 2014; vol. 200
Wellingtone PPM (b30) 2018
Davis, Robbins, Lunday (b8) 2017; 259
Garey, Johnson (b10) 1979
Homberger (b12) 2007; 14
(pp. 148–151).
Melchiors, Kolisch (b18) 2009
Melchiors (b17) 2015
He, Yang, Li (b11) 2018; 96
Ahuja, Birge (b2) 2020; 32
Li, Womer (b15) 2015; 246
Powell (b22) 2009; 56
Li, Zhang, Sun, Dong (b16) 2023; 61
Cohen, Golany, Shtub (b6) 2005; 134
Sutton, Barto (b29) 2018
Chen, Ding, Zhang, Qin (b4) 2019; 137
Powell (b23) 2011
Satic, Jacko, Kirkbride (b25) 2020
Ronconi, Powell (b24) 2010; 13
Satic, Jacko, Kirkbride (b26) 2022; 60
Wellingtone PPM (10.1016/j.ejor.2023.10.046_b30) 2018
Kolisch (10.1016/j.ejor.2023.10.046_b14) 1995; 41
Choi (10.1016/j.ejor.2023.10.046_b5) 2007; 17
Powell (10.1016/j.ejor.2023.10.046_b22) 2009; 56
Adler (10.1016/j.ejor.2023.10.046_b1) 1995; 41
Ahuja (10.1016/j.ejor.2023.10.046_b2) 2020; 32
Creemers (10.1016/j.ejor.2023.10.046_b7) 2015; 18
Davis (10.1016/j.ejor.2023.10.046_b8) 2017; 259
Parizi (10.1016/j.ejor.2023.10.046_b21) 2017; 45
Sutton (10.1016/j.ejor.2023.10.046_b29) 2018
Schütz (10.1016/j.ejor.2023.10.046_b27) 2012; 218
Powell (10.1016/j.ejor.2023.10.046_b23) 2011
Schwindt (10.1016/j.ejor.2023.10.046_b28) 1998
Cohen (10.1016/j.ejor.2023.10.046_b6) 2005; 134
Kolisch (10.1016/j.ejor.2023.10.046_b13) 1996; 96
Ronconi (10.1016/j.ejor.2023.10.046_b24) 2010; 13
Chen (10.1016/j.ejor.2023.10.046_b4) 2019; 137
Garey (10.1016/j.ejor.2023.10.046_b10) 1979
Melchiors (10.1016/j.ejor.2023.10.046_b17) 2015
Melchiors (10.1016/j.ejor.2023.10.046_b18) 2009
Satic (10.1016/j.ejor.2023.10.046_b26) 2022; 60
Melchiors (10.1016/j.ejor.2023.10.046_b19) 2018; 56
He (10.1016/j.ejor.2023.10.046_b11) 2018; 96
Li (10.1016/j.ejor.2023.10.046_b16) 2023; 61
Capa (10.1016/j.ejor.2023.10.046_b3) 2015
10.1016/j.ejor.2023.10.046_b9
Homberger (10.1016/j.ejor.2023.10.046_b12) 2007; 14
Li (10.1016/j.ejor.2023.10.046_b15) 2015; 246
Satic (10.1016/j.ejor.2023.10.046_b25) 2020
Pamay (10.1016/j.ejor.2023.10.046_b20) 2014; vol. 200
References_xml – year: 2018
  ident: b30
  article-title: The state of project management annual survey 2018
– volume: 246
  start-page: 20
  year: 2015
  end-page: 33
  ident: b15
  article-title: Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming
  publication-title: European Journal of Operational Research
– volume: 61
  start-page: 198
  year: 2023
  end-page: 218
  ident: b16
  article-title: Dynamic resource levelling in projects under uncertainty
  publication-title: International Journal of Production Research
– volume: 13
  start-page: 597
  year: 2010
  end-page: 607
  ident: b24
  article-title: Minimizing total tardiness in a stochastic single machine scheduling problem using approximate dynamic programming
  publication-title: Journal of Scheduling
– volume: 137
  year: 2019
  ident: b4
  article-title: Research on priority rules for the stochastic resource constrained multi-project scheduling problem with new project arrival
  publication-title: Computers & Industrial Engineering
– volume: 218
  start-page: 239
  year: 2012
  end-page: 250
  ident: b27
  article-title: Approximate dynamic programming for capacity allocation in the service industry
  publication-title: European Journal of Operational Research
– reference: Fliedner, T., Gutjahr, W., Kolisch, R., & Melchiors, P. (2012). Solving the Dynamic Stochastic Resource-Constrained Multi-Project Scheduling Problem with SRCPSP-methods. In
– year: 2015
  ident: b17
  publication-title: Dynamic and stochastic multi-project planning
– volume: 41
  start-page: 458
  year: 1995
  end-page: 484
  ident: b1
  article-title: From project to process management: An empirically-based framework for analyzing product development time
  publication-title: Management Science
– volume: 60
  start-page: 1411
  year: 2022
  end-page: 1423
  ident: b26
  article-title: Performance evaluation of scheduling policies for the dynamic and stochastic resource-constrained multi-project scheduling problem
  publication-title: International Journal of Production Research
– volume: 56
  start-page: 459
  year: 2018
  end-page: 475
  ident: b19
  article-title: Dynamic order acceptance and capacity planning in a stochastic multi-project environment with a bottleneck resource
  publication-title: International Journal of Production Research
– volume: 259
  start-page: 873
  year: 2017
  end-page: 886
  ident: b8
  article-title: Approximate dynamic programming for missile defense interceptor fire control
  publication-title: European Journal of Operational Research
– volume: 41
  start-page: 1693
  year: 1995
  end-page: 1703
  ident: b14
  article-title: Characterization and generation of a general class of resource-constrained project scheduling problems
  publication-title: Management Science
– volume: 56
  start-page: 239
  year: 2009
  end-page: 249
  ident: b22
  article-title: What you should know about approximate dynamic programming
  publication-title: Naval Research Logistics
– year: 2011
  ident: b23
  article-title: Approximate dynamic programming: Solving the curses of dimensionality
– volume: 96
  start-page: 144
  year: 2018
  end-page: 159
  ident: b11
  article-title: Vehicle scheduling under stochastic trip times: An approximate dynamic programming approach
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 135
  year: 2009
  end-page: 140
  ident: b18
  article-title: Scheduling of multiple R&D projects in a dynamic and stochastic environment
  publication-title: Operations research proceedings 2008
– year: 1979
  ident: b10
  article-title: Computers and intractability: A guide to the theory of NP-completeness
– volume: 45
  start-page: 442
  year: 2017
  end-page: 447
  ident: b21
  article-title: Approximate policy iteration for dynamic resource-constrained project scheduling
  publication-title: Operations Research Letters
– volume: 17
  start-page: 1214
  year: 2007
  end-page: 1231
  ident: b5
  article-title: A Q-learning-based method applied to stochastic resource constrained project scheduling with new project arrivals
  publication-title: International Journal of Robust and Nonlinear Control
– start-page: 1
  year: 2015
  end-page: 6
  ident: b3
  article-title: Proactive project scheduling in an R&D department a bi-objective genetic algorithm
  publication-title: 2015 International conference on industrial engineering and operations management (IEOM), Vol. 1
– volume: 134
  start-page: 183
  year: 2005
  end-page: 199
  ident: b6
  article-title: Managing stochastic, finite capacity, multi-project systems through the cross-entropy methodology
  publication-title: Annals of Operations Research
– reference: (pp. 148–151).
– volume: 96
  start-page: 205
  year: 1996
  end-page: 216
  ident: b13
  article-title: PSPLIB: A project scheduling problem library
  publication-title: European Journal of Operational Research
– start-page: 100
  year: 2020
  end-page: 114
  ident: b25
  article-title: Performance evaluation of scheduling policies for the DRCMPSP
  publication-title: Analytical and stochastic modelling techniques and applications, Vol. 12023
– volume: 14
  start-page: 565
  year: 2007
  end-page: 589
  ident: b12
  article-title: A multi-agent system for the decentralized resource-constrained multi-project scheduling problem
  publication-title: International Transactions in Operational Research
– volume: vol. 200
  start-page: 219
  year: 2014
  end-page: 247
  ident: b20
  article-title: Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs
  publication-title: Essays in production, project planning and scheduling
– volume: 18
  start-page: 263
  year: 2015
  end-page: 273
  ident: b7
  article-title: Minimizing the expected makespan of a project with stochastic activity durations under resource constraints
  publication-title: Journal of Scheduling
– volume: 32
  start-page: 877
  year: 2020
  end-page: 894
  ident: b2
  article-title: An approximation approach for response adaptive clinical trial design
  publication-title: INFORMS Journal on Computing
– year: 1998
  ident: b28
  article-title: Generation of resource constrained project scheduling problems subject to temporal constraints
– year: 2018
  ident: b29
  publication-title: Reinforcement learning: An introduction
– volume: 56
  start-page: 239
  issue: 3
  year: 2009
  ident: 10.1016/j.ejor.2023.10.046_b22
  article-title: What you should know about approximate dynamic programming
  publication-title: Naval Research Logistics
  doi: 10.1002/nav.20347
– volume: 60
  start-page: 1411
  issue: 4
  year: 2022
  ident: 10.1016/j.ejor.2023.10.046_b26
  article-title: Performance evaluation of scheduling policies for the dynamic and stochastic resource-constrained multi-project scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1857450
– volume: 18
  start-page: 263
  issue: 3
  year: 2015
  ident: 10.1016/j.ejor.2023.10.046_b7
  article-title: Minimizing the expected makespan of a project with stochastic activity durations under resource constraints
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-015-0421-5
– volume: 61
  start-page: 198
  issue: 1
  year: 2023
  ident: 10.1016/j.ejor.2023.10.046_b16
  article-title: Dynamic resource levelling in projects under uncertainty
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1788737
– volume: 218
  start-page: 239
  issue: 1
  year: 2012
  ident: 10.1016/j.ejor.2023.10.046_b27
  article-title: Approximate dynamic programming for capacity allocation in the service industry
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.09.007
– volume: 96
  start-page: 205
  issue: 1
  year: 1996
  ident: 10.1016/j.ejor.2023.10.046_b13
  article-title: PSPLIB: A project scheduling problem library
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(96)00170-1
– volume: 32
  start-page: 877
  issue: 4
  year: 2020
  ident: 10.1016/j.ejor.2023.10.046_b2
  article-title: An approximation approach for response adaptive clinical trial design
  publication-title: INFORMS Journal on Computing
– year: 2011
  ident: 10.1016/j.ejor.2023.10.046_b23
– volume: vol. 200
  start-page: 219
  year: 2014
  ident: 10.1016/j.ejor.2023.10.046_b20
  article-title: Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs
– volume: 41
  start-page: 458
  issue: 3
  year: 1995
  ident: 10.1016/j.ejor.2023.10.046_b1
  article-title: From project to process management: An empirically-based framework for analyzing product development time
  publication-title: Management Science
  doi: 10.1287/mnsc.41.3.458
– volume: 246
  start-page: 20
  issue: 1
  year: 2015
  ident: 10.1016/j.ejor.2023.10.046_b15
  article-title: Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.04.015
– year: 2018
  ident: 10.1016/j.ejor.2023.10.046_b29
– volume: 14
  start-page: 565
  issue: 6
  year: 2007
  ident: 10.1016/j.ejor.2023.10.046_b12
  article-title: A multi-agent system for the decentralized resource-constrained multi-project scheduling problem
  publication-title: International Transactions in Operational Research
  doi: 10.1111/j.1475-3995.2007.00614.x
– start-page: 135
  year: 2009
  ident: 10.1016/j.ejor.2023.10.046_b18
  article-title: Scheduling of multiple R&D projects in a dynamic and stochastic environment
– year: 2018
  ident: 10.1016/j.ejor.2023.10.046_b30
– volume: 134
  start-page: 183
  issue: 1
  year: 2005
  ident: 10.1016/j.ejor.2023.10.046_b6
  article-title: Managing stochastic, finite capacity, multi-project systems through the cross-entropy methodology
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-005-5730-1
– volume: 96
  start-page: 144
  year: 2018
  ident: 10.1016/j.ejor.2023.10.046_b11
  article-title: Vehicle scheduling under stochastic trip times: An approximate dynamic programming approach
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2018.09.010
– ident: 10.1016/j.ejor.2023.10.046_b9
– volume: 41
  start-page: 1693
  issue: 10
  year: 1995
  ident: 10.1016/j.ejor.2023.10.046_b14
  article-title: Characterization and generation of a general class of resource-constrained project scheduling problems
  publication-title: Management Science
  doi: 10.1287/mnsc.41.10.1693
– year: 2015
  ident: 10.1016/j.ejor.2023.10.046_b17
– volume: 259
  start-page: 873
  issue: 3
  year: 2017
  ident: 10.1016/j.ejor.2023.10.046_b8
  article-title: Approximate dynamic programming for missile defense interceptor fire control
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.11.023
– start-page: 100
  year: 2020
  ident: 10.1016/j.ejor.2023.10.046_b25
  article-title: Performance evaluation of scheduling policies for the DRCMPSP
– start-page: 1
  year: 2015
  ident: 10.1016/j.ejor.2023.10.046_b3
  article-title: Proactive project scheduling in an R&D department a bi-objective genetic algorithm
– volume: 56
  start-page: 459
  issue: 1–2
  year: 2018
  ident: 10.1016/j.ejor.2023.10.046_b19
  article-title: Dynamic order acceptance and capacity planning in a stochastic multi-project environment with a bottleneck resource
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1431417
– volume: 13
  start-page: 597
  year: 2010
  ident: 10.1016/j.ejor.2023.10.046_b24
  article-title: Minimizing total tardiness in a stochastic single machine scheduling problem using approximate dynamic programming
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-009-0160-6
– year: 1998
  ident: 10.1016/j.ejor.2023.10.046_b28
– volume: 137
  year: 2019
  ident: 10.1016/j.ejor.2023.10.046_b4
  article-title: Research on priority rules for the stochastic resource constrained multi-project scheduling problem with new project arrival
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.106060
– volume: 45
  start-page: 442
  issue: 5
  year: 2017
  ident: 10.1016/j.ejor.2023.10.046_b21
  article-title: Approximate policy iteration for dynamic resource-constrained project scheduling
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2017.06.002
– volume: 17
  start-page: 1214
  issue: 13
  year: 2007
  ident: 10.1016/j.ejor.2023.10.046_b5
  article-title: A Q-learning-based method applied to stochastic resource constrained project scheduling with new project arrivals
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.1164
– year: 1979
  ident: 10.1016/j.ejor.2023.10.046_b10
SSID ssj0001515
Score 2.539201
Snippet We consider the dynamic and stochastic resource-constrained multi-project scheduling problem which allows for the random arrival of projects and stochastic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 454
SubjectTerms Approximate dynamic programming
Dynamic programming
Dynamic resource allocation
Markov decision processes
Project scheduling
Title A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem
URI https://dx.doi.org/10.1016/j.ejor.2023.10.046
Volume 315
WOSCitedRecordID wos001185197200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFD5idJq2h13Ypra7yA97Q0YQO3XyiKZWu6mqtFbiLUpsR4O2AUFW8R_6Y_oXexzbScZotT7sxUIOdgLnw-fC-c4B-JSqUa7yUNBAiZzyEGGcCR5StF1RX8pYZaqqM_tDHB9Hk0l80unceC7M1YUoimi9jhf_VdQ4h8I21NkHiLveFCfwNQodRxQ7jv8k-HF_Nb10TbmoUVLKFg5fT9E41X1lW9D7xKzLiqS4aIhV_noVUC_n8le6smWebZifSmNQmr4SuG-VjUhdMKePfjLqLUdvr9rU3Bn2dyYwTix9MNJVHaqj0z9NKVkDgLNBneWTyvMqsntST32fLs8N58zmMw7aMYyAN7lWnrslEC2BZXH6c5lZnqcDYNA6ZbmtO-0UNre9Xv7SBTYsMRvo2dwUfg3YwKTx8S2FtzcUYp2m6DPgZonZIzF74ESCezyCnUCEcdSFnfHXw8m3Wvkb-7D648p9IMfTsimFm0-y3RZq2TenL-G5c0zI2ALqFXR00YMnnhfRgxe-_wdx6qAHz1rFLF_D9ZhsAo-0gEccsEgLeMQDj5Tz-joCjzTAI9uAR_4AHmmARxzw3sDZ0eHp5y_UtfqgkjNe0hQd7yBVYqiy_CCXwywUSuMhp4SWaCIrdhBmmvMsGwVCM4EHTyyjSOKohByljL2FbjEv9C4QKdFLySJcp4dcK5aiT6MZH6Zo-eLCaA9G_ktPpKuDb57-Irlb3HvQr9csbBWYe98delkmzo619mmC0Lxn3f6D7vIOnjY_pffQLZe_9Qd4LK_K6Wr50eHyFjoFyY4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simulation-based+approximate+dynamic+programming+approach+to+dynamic+and+stochastic+resource-constrained+multi-project+scheduling+problem&rft.jtitle=European+journal+of+operational+research&rft.au=Satic%2C+U.&rft.au=Jacko%2C+P.&rft.au=Kirkbride%2C+C.&rft.date=2024-06-01&rft.issn=0377-2217&rft.volume=315&rft.issue=2&rft.spage=454&rft.epage=469&rft_id=info:doi/10.1016%2Fj.ejor.2023.10.046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2023_10_046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon