A Granulation Strategy-Based Algorithm for Computing Strongly Connected Components in Parallel
Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based computing. Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In this paper, two new granulation strategies were...
Gespeichert in:
| Veröffentlicht in: | Mathematics (Basel) Jg. 12; H. 11; S. 1723 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2024
|
| Schlagworte: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based computing. Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In this paper, two new granulation strategies were devised to improve the efficiency of computing SCCs. Firstly, four SCC correlations between the vertices were found, which can be divided into two classes. Secondly, two granulation strategies were designed based on correlations between two classes of SCCs. Thirdly, according to the characteristics of the granulation results, the parallelization of computing SCCs was realized. Finally, a parallel algorithm based on granulation strategy for computing SCCs of simple digraphs named GPSCC was proposed. Experimental results show that GPSCC performs with higher computational efficiency than algorithms. |
|---|---|
| AbstractList | Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based computing. Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In this paper, two new granulation strategies were devised to improve the efficiency of computing SCCs. Firstly, four SCC correlations between the vertices were found, which can be divided into two classes. Secondly, two granulation strategies were designed based on correlations between two classes of SCCs. Thirdly, according to the characteristics of the granulation results, the parallelization of computing SCCs was realized. Finally, a parallel algorithm based on granulation strategy for computing SCCs of simple digraphs named GPSCC was proposed. Experimental results show that GPSCC performs with higher computational efficiency than algorithms. |
| Audience | Academic |
| Author | He, Huixing Xu, Taihua Chen, Jianjun Cui, Yun Song, Jingjing |
| Author_xml | – sequence: 1 givenname: Huixing surname: He fullname: He, Huixing – sequence: 2 givenname: Taihua surname: Xu fullname: Xu, Taihua – sequence: 3 givenname: Jianjun surname: Chen fullname: Chen, Jianjun – sequence: 4 givenname: Yun surname: Cui fullname: Cui, Yun – sequence: 5 givenname: Jingjing surname: Song fullname: Song, Jingjing |
| BookMark | eNptkU1vGyEQhldVKjVNc-sPWKnXbrIs2CxH12rTSJESqe21aPjaYLHgAj7433ccV0kaBQ6M3nnmZWDeNycxRds0H0l_QanoL2eo92QghPCBvmlOh2HgHcfEybP4XXNeyqbHJQgdmThtfq_aqwxxF6D6FNsfNUO10777AsWadhWmlH29n1uXcrtO83ZXfZwOWIpT2KMUo9UV0UMSG4q1tD62d5AhBBs-NG8dhGLP_51nza9vX3-uv3c3t1fX69VNpxlltQPsiIC2wKwgjPdKU0McG-3AFEpcm9EQstQ9s8o4UJwtxEIprrlWauScnjXXR1-TYCO32c-Q9zKBlw9CypOEXL0OVo4C1JLRwY1LxzAWZnCkHxcLio4WDHp9Onptc_qzs6XKTdrliO1L2i85I5wI-kRNgKY-uoRfp2dftFxxwUWPIEHq4hUKt7Gz1_hfzqP-X8HnY4HOqZRs3eNjSC8Pc5bP54z48ALXvj6MEu_x4fWiv58ErOE |
| CitedBy_id | crossref_primary_10_1007_s12190_024_02201_5 crossref_primary_10_1007_s12190_025_02477_1 |
| Cites_doi | 10.1016/j.ijar.2019.12.001 10.1109/TKDE.2021.3138994 10.1137/20M1312149 10.1109/TNNLS.2023.3300916 10.1016/j.ins.2024.120403 10.1016/j.knosys.2023.110821 10.1145/3543542 10.1016/j.asoc.2023.110458 10.1007/BF00121128 10.1007/s10462-022-10177-6 10.1109/ACCESS.2021.3077409 10.1016/j.ins.2016.01.065 10.1007/978-1-84800-998-1 10.1109/TKDE.2023.3237833 10.1109/TFUZZ.2022.3173684 10.1109/TCYB.2021.3054593 10.1109/FOCS46700.2020.00108 10.1007/978-3-540-70952-7 10.1007/3-540-45591-4 10.1109/TCYB.2020.2964011 10.1016/j.eswa.2021.116390 10.3390/e24081154 10.1109/TCYB.2023.3257274 10.1137/0201010 10.1016/j.knosys.2019.105301 10.1145/2851141.2851161 10.1016/j.knosys.2018.06.009 10.1016/j.ijar.2018.09.005 10.1007/s41066-019-00204-3 10.1016/j.ejor.2019.08.030 10.1007/s10489-023-05123-0 10.1016/j.knosys.2018.02.038 10.1109/TFUZZ.2023.3287834 10.3934/mbe.2024116 10.1007/s00453-018-0452-3 10.1016/j.parco.2017.11.001 10.1093/logcom/exp003 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.3390/math12111723 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_89ab6432f86f49ab9d2f1085535bbead A797907411 10_3390_math12111723 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c434t-a0001acea4e91470bc3d1f48e24b4e97cd8d116c04ebdfab74595bb7c7cbb8773 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245539500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:02:52 EDT 2025 Fri Jul 25 12:07:52 EDT 2025 Tue Nov 11 10:57:32 EST 2025 Tue Nov 04 18:17:02 EST 2025 Tue Nov 18 20:46:56 EST 2025 Sat Nov 29 07:20:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-a0001acea4e91470bc3d1f48e24b4e97cd8d116c04ebdfab74595bb7c7cbb8773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/89ab6432f86f49ab9d2f1085535bbead |
| PQID | 3067417193 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_89ab6432f86f49ab9d2f1085535bbead proquest_journals_3067417193 gale_infotracmisc_A797907411 gale_infotracacademiconefile_A797907411 crossref_primary_10_3390_math12111723 crossref_citationtrail_10_3390_math12111723 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_18) 2024; 54 Wang (ref_33) 2023; 56 Baswana (ref_3) 2019; 81 Zhang (ref_32) 2023; 53 Chen (ref_9) 2018; 78 Yao (ref_19) 2018; 103 ref_12 Zhang (ref_24) 2023; 35 ref_10 Wang (ref_26) 2022; 30 Fu (ref_35) 2020; 193 Wu (ref_21) 2024; 32 Chen (ref_23) 2021; 9 Ji (ref_17) 2022; 9 Laarman (ref_14) 2011; Volume 6996 Li (ref_22) 2024; 665 ref_39 ref_16 ref_38 ref_15 Du (ref_37) 2022; 192 Labella (ref_30) 2018; 159 Courcoubetis (ref_13) 1992; 1 Aggarwal (ref_28) 2023; 144 Liang (ref_29) 2016; 345 Yan (ref_36) 2023; 278 Bernstein (ref_5) 2023; 52 Cheng (ref_8) 2022; 49 Xu (ref_6) 2018; 149 Barnat (ref_11) 2011; 21 Labella (ref_31) 2020; 281 Hua (ref_34) 2024; 21 ref_40 Tarjan (ref_1) 1972; 1 Guo (ref_25) 2022; 52 ref_2 Xu (ref_7) 2020; 118 Han (ref_27) 2022; 52 Cheng (ref_20) 2021; 6 Wan (ref_4) 2023; 35 Davis (ref_41) 2011; 38 |
| References_xml | – volume: 118 start-page: 64 year: 2020 ident: ref_7 article-title: Finding strongly connected components of simple digraphs based on granulation strategy publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2019.12.001 – volume: 35 start-page: 3794 year: 2023 ident: ref_4 article-title: Efficient semi-external SCC computation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3138994 – volume: 49 start-page: 97 year: 2022 ident: ref_8 article-title: The algorithm for finding strongly connected components based on k-step search of vertex granule and rough set theory publication-title: Comput. Sci. – volume: 52 start-page: 128 year: 2023 ident: ref_5 article-title: Decremental strongly connected components and single-source reachability in near-linear time publication-title: SIAM J. Comput. doi: 10.1137/20M1312149 – ident: ref_38 doi: 10.1109/TNNLS.2023.3300916 – volume: 665 start-page: 120403 year: 2024 ident: ref_22 article-title: Granular structure evaluation and selection based on justifiable granularity principle publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120403 – volume: Volume 6996 start-page: 321 year: 2011 ident: ref_14 article-title: Multi-core nested depth-first search publication-title: Automated Technology for Verification and Analysis, Proceedings of the 9th International Symposium, ATVA 2011, Taipei, Taiwan, 11–14 October 2011 – volume: 278 start-page: 110821 year: 2023 ident: ref_36 article-title: Learning node representation via motif coarsening publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110821 – volume: 38 start-page: 1 year: 2011 ident: ref_41 article-title: The university of florida sparse matrix collection publication-title: ACM Trans. Math. Softw. (TOMS) – volume: 9 start-page: 1 year: 2022 ident: ref_17 article-title: ispan: Parallel identification of strongly connected components with spanning trees publication-title: ACM Trans. Parallel Comput. doi: 10.1145/3543542 – volume: 144 start-page: 110458 year: 2023 ident: ref_28 article-title: Quantum healthcare computing using precision based granular approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110458 – volume: 1 start-page: 275 year: 1992 ident: ref_13 article-title: Memory-efficient algorithms for the verification of temporal properties publication-title: Form. Methods Syst. Des. doi: 10.1007/BF00121128 – volume: 56 start-page: 533 year: 2023 ident: ref_33 article-title: A trilevel analysis of uncertainty measuresin partition-based granular computing publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10177-6 – volume: 9 start-page: 68118 year: 2021 ident: ref_23 article-title: A granular computing based classification method from algebraic granule structure publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077409 – volume: 345 start-page: 46 year: 2016 ident: ref_29 article-title: Three-way group decisions with decision-theoretic rough sets publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.065 – ident: ref_40 doi: 10.1007/978-1-84800-998-1 – volume: 35 start-page: 9319 year: 2023 ident: ref_24 article-title: Incremental learning based on granular ball rough sets for classification in dynamic mixed-type decision system publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3237833 – volume: 30 start-page: 5324 year: 2022 ident: ref_26 article-title: Time-series forecasting via fuzzy-probabilistic approach with evolving clustering-based granulation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2022.3173684 – volume: 52 start-page: 9101 year: 2022 ident: ref_25 article-title: Trend-based granular representation of time series and its application in clustering publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3054593 – ident: ref_2 doi: 10.1109/FOCS46700.2020.00108 – ident: ref_16 doi: 10.1007/978-3-540-70952-7 – ident: ref_15 doi: 10.1007/3-540-45591-4 – volume: 52 start-page: 666 year: 2022 ident: ref_27 article-title: Hierarchical granular computing-based model and its reinforcement structural learning for construction of long-term prediction intervals publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2964011 – volume: 192 start-page: 116390 year: 2022 ident: ref_37 article-title: A fast algorithm for mining temporal association rules in a multi-attributed graph sequence publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116390 – ident: ref_39 doi: 10.3390/e24081154 – volume: 54 start-page: 519 year: 2024 ident: ref_18 article-title: Local boundary fuzzified rough k-means-based information granulation algorithm under the principle of justifiable granularity publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2023.3257274 – volume: 1 start-page: 146 year: 1972 ident: ref_1 article-title: Depth-first search and linear graph algorithms publication-title: SIAM J. Comput. doi: 10.1137/0201010 – volume: 193 start-page: 105301 year: 2020 ident: ref_35 article-title: Deep multi-granularity graph embedding for user identity linkage across social networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105301 – ident: ref_10 doi: 10.1145/2851141.2851161 – ident: ref_12 – volume: 159 start-page: 86 year: 2018 ident: ref_30 article-title: A large scale consensus reaching process managing group hesitation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.06.009 – volume: 103 start-page: 107 year: 2018 ident: ref_19 article-title: Three-way decision and granular computing publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2018.09.005 – volume: 6 start-page: 3 year: 2021 ident: ref_20 article-title: A survey on granular computing and its uncertainty measure from the perspective of rough set theory publication-title: Granul. Comput. doi: 10.1007/s41066-019-00204-3 – volume: 281 start-page: 316 year: 2020 ident: ref_31 article-title: A cost consensus metric for consensus reaching processes based on a comprehensive minimum cost model publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2019.08.030 – volume: 53 start-page: 29781 year: 2023 ident: ref_32 article-title: A meta-heuristic feature selection algorithm combining random sampling accelerator and ensemble using data perturbation publication-title: Appl. Intell. doi: 10.1007/s10489-023-05123-0 – volume: 149 start-page: 88 year: 2018 ident: ref_6 article-title: Finding strongly connected components of simple digraphs based on generalized rough sets theory publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.02.038 – volume: 32 start-page: 12 year: 2024 ident: ref_21 article-title: Data-driven interval granulation approach based on uncertainty principle for efficient classification publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2023.3287834 – volume: 21 start-page: 2626 year: 2024 ident: ref_34 article-title: A novel approach for calculating single-source shortest paths of weighted digraphs based on rough sets theory publication-title: Math. Biosci. Eng. MBE doi: 10.3934/mbe.2024116 – volume: 81 start-page: 67 year: 2019 ident: ref_3 article-title: An efficient strongly connected components algorithm in the fault tolerant model publication-title: Algorithmica doi: 10.1007/s00453-018-0452-3 – volume: 78 start-page: 101 year: 2018 ident: ref_9 article-title: Orchestrating parallel detection of strongly connected components on gpus publication-title: Parallel Comput. doi: 10.1016/j.parco.2017.11.001 – volume: 21 start-page: 23 year: 2011 ident: ref_11 article-title: Distributed algorithms for scc decomposition publication-title: J. Log. Comput. doi: 10.1093/logcom/exp003 |
| SSID | ssj0000913849 |
| Score | 2.2782354 |
| Snippet | Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1723 |
| SubjectTerms | Algorithms Apexes Computing time Efficiency Granulation granulation strategy Graph theory Machine learning Mathematical research parallel Parallel processing SCCs correlations strongly connected components |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKywEOlKdYaJEPIA4o6jpxYvuEtlVbDlBV4qGesOyxs620ZNvdLVL_PTOOd2EP7YVbZI-SOJ7xfJ6Mv2Hs7bBtGiVqTyd6VCG1kIUJwRdlkOBF8MGlU-8_PquTE312Zk5zwG2e0yqXa2JaqMMUKEa-R9BWCoV44-PlVUFVo-jvai6hcY9tEUuCSKl7X1cxFuK81NL0-e4V7u73EAWeE6kZuu1qzRMlwv7bluXka462__ctH7NHGWXyUa8WT9hG7J6yh19WFK3zZ-zniB-jn8rVu3hmqb0p9tGtBT6ajPG2i_NfHEEt70s_oJMjsWk3ntzwlCADCFdT57SjfAx-0fFTN6PqLJPn7PvR4beDT0UutlCArOSicIT2HEQnoxFSDT1UQbRSx1J6bFIQdBCigaGMPrTOK1mb2nsFCrzXSlUv2GaHT3vJeGjK0IBraoBWVjF4HaJXwyCMLqOM7YB9WH54C5mJnApiTCzuSGia7L_TNGDvVtKXPQPHLXL7NIcrGeLNTg3T2dhmM7TaOI8YrGx100q8NqFs6fxFXeFY0KgG7D1pgCXrxlcClw8p4MCIJ8uOlFEUThBiwHbWJNEqYb17qSA2rwpz-1c7Xt3d_Zo9KBE89SlpO2xzMbuOu-w-_F5czGdvkpL_AXrRCAw priority: 102 providerName: ProQuest |
| Title | A Granulation Strategy-Based Algorithm for Computing Strongly Connected Components in Parallel |
| URI | https://www.proquest.com/docview/3067417193 https://doaj.org/article/89ab6432f86f49ab9d2f1085535bbead |
| Volume | 12 |
| WOSCitedRecordID | wos001245539500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K2kN7KH3SbdJFh5Yeiolly5Z03A2bpLRZTF-klwq9nAQ23rC7LeSS394Z21l2D6GXXoSRBiyPRppvzOgbgLdpXZaSF45u9MhEKC4SHYJLsiC848EF2956__FZTqfq9FRXG6W-KCesowfuFLevtHXoNbNalbXAZx2ymjLmi7xwDtVAp28q9UYw1Z7BmudK6C7TPce4fh_x3znRmaHDzrd8UEvVf9eB3HqZwyfwuIeHbNRN6ynci80zeHSy5lZdPodfI3aEDqYvu8V6etnrZIz-KLDR7GyO8f75JUM0yrqaDeidSGzenM2uWZvZ4hFntoPzhhIp2EXDKrugsiqzF_D9cPLt4DjpqyQkXuRilViCadZHK6LmQqbO54HXQsVMOOySPqjAeelTEV2orZOi0Kg66aV3TkmZv4SdBt_2Clgos1B6Wxbe1yKPwakQnUwD1yqLItYD-HCrN-N7CnGqZDEzGEqQls2mlgfwbi191VFn3CE3piVYyxDhdduBZmB6MzD_MoMBvKcFNLQtcUre9rcL8MOI4MqMpJb0H4DzAextSeJ28tvDtyZg-u28NBRXCS4R7L7-H5PdhYcZYqMu42wPdlaL3_ENPPB_VhfLxRDujyfT6suwtWhsP8lkSCmpX6m9meB49fGk-vkXx8EAyQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCvhAxQFFjRMntg8IbYHSarerHgrqCRM_sq20ZMvuAto_xW9kJo-FPZRbD9wie5TE8eeZz848AF7EZZ5LnlmK6JGRUFxE2nsbJV44y731RR31_mkoRyN1cqKPNuBXFwtDbpWdTqwVtZ86OiPfIWoruES-8eb8W0RVo-jvaldCo4HFICx_4pZt_vrgHc7vdpLsvT9-ux-1VQUiJ1KxiAqiNYULhQiaCxlbl3peChUSYbFJOq8857mLRbC-LKwUmc6slU46a5WUKd73ClwVqZK0rgYyWp3pUI5NJXTjX5-mOt5B1nlKSdSQJqRrlq8uEHCRGaht297t_-2r3IFbLYtm_Qb2d2EjVPfg5uEqBe38Pnzusw9oh9vqZKzNwruMdtFse9afjHEYi9OvDEk7a0pboBEnsWk1nixZ7QDkkI7XndOK_E3YWcWOihlVn5k8gI-XMsCHsFnh0x4B83nic1fkmXOlSIO3ygcrY8-1SoIIZQ9edRNtXJtpnQp-TAzuuAgW5m9Y9GB7JX3eZBi5QG6XMLOSobzgdcN0NjatmjFKFxY5ZlKqvBR4rX1SUnxJluJYUGn04CUhzpD2wldyRRuEgQOjPGCmL7Wk4xLOe7C1Jolax613d4A0rdabmz9ofPzv7udwff_4cGiGB6PBE7iRIFFs3O-2YHMx-x6ewjX3Y3E2nz2rFxiDL5eN3d8gzGcB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECuyBigOy4rXXXvuAUEoJRG0jHwCVSxfvw2ml4JQkgPLX-HXM2JtADuXWAzdrd2R7vd_OfLueB8DzsEpTyRNNET0yEBkXQW6tDiIrjOZW27KJev90KEej7Pg4L7bg1yoWhtwqVzqxUdR2auiMvEfUVnCJfKNXebeIYn_w-vxbQBWk6E_rqpxGC5EDt_yJ27f5q-E-zvVuFA3efnjzPvAVBgIjYrEISqI4pXGlcDkXMtQmtrwSmYuExiZpbGY5T00onLZVqaVI8kRraaTROpMyxvtegW2k5CLqwHYxPCo-r094KONmJvLW2z6O87CHHPSUUqohaYg37GBTLuAio9BYusGt__kb3Yabnl-zfrsg7sCWq-_CjaN1ctr5PTjps3dooX3dMubz8y6DPTTolvUnYxzG4vQrQzrP2qIXaN5JbFqPJ0vWuAYZJOpN57QmTxR2VrOinFFdmsl9-HgpA3wAnRqf9hCYTSObmjJNjKlE7KzOrNMytDzPIidc1YWXq0lXxudgp1IgE4V7MYKI-hsiXdhdS5-3uUcukNsj_KxlKGN40zCdjZVXQCrLS43sM6qytBJ4nduoosiTJMaxoDrpwgtCnyK9hq9kSh-egQOjDGGqL3NJBymcd2FnQxL1kdnsXoFTeX04V3-Q-ejf3c_gGkJWHQ5HB4_heoQMsvXL24HOYvbdPYGr5sfibD576lcbgy-XDd7fwXxxgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Granulation+Strategy-Based+Algorithm+for+Computing+Strongly+Connected+Components+in+Parallel&rft.jtitle=Mathematics+%28Basel%29&rft.au=He%2C+Huixing&rft.au=Xu%2C+Taihua&rft.au=Chen%2C+Jianjun&rft.au=Cui%2C+Yun&rft.date=2024-06-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=11&rft.spage=1723&rft_id=info:doi/10.3390%2Fmath12111723&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12111723 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |