Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys
A set of embedded atom model (EAM) interatomic potentials was developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at near-equiatomic compositions. Potential functions for the transition metals and their crossed interactions are taken from our previous work fo...
Uložené v:
| Vydané v: | Journal of materials research Ročník 35; číslo 22; s. 3031 - 3040 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, USA
Cambridge University Press
30.11.2020
Springer International Publishing Springer Nature B.V |
| Predmet: | |
| ISSN: | 0884-2914, 2044-5326 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A set of embedded atom model (EAM) interatomic potentials was developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at near-equiatomic compositions. Potential functions for the transition metals and their crossed interactions are taken from our previous work for Fe–Ni–Cr–Co–Cu [D. Farkas and A. Caro: J. Mater. Res. 33 (19), 3218–3225, 2018], while cross-pair interactions involving Al were developed using a mix of the component pair functions fitted to known intermetallic properties. The resulting heats of mixing of all binary equiatomic random FCC mixtures not containing Al is low, but significant short-range ordering appears in those containing Al, driven by a large atomic size difference. The potentials are utilized to predict the relative stability of FCC quinary mixtures, as well as ordered L12 and B2 phases as a function of Al content. These predictions are in qualitative agreement with experiments. This interatomic potential set is developed to resemble but not model precisely the properties of this complex system, aiming at providing a tool to explore the consequences of the addition of a large size-misfit component into a high entropy mixture that develops multiphase microstructures. |
|---|---|
| AbstractList | A set of embedded atom model (EAM) interatomic potentials was developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at near-equiatomic compositions. Potential functions for the transition metals and their crossed interactions are taken from our previous work for Fe–Ni–Cr–Co–Cu [D. Farkas and A. Caro: J. Mater. Res. 33 (19), 3218–3225, 2018], while cross-pair interactions involving Al were developed using a mix of the component pair functions fitted to known intermetallic properties. The resulting heats of mixing of all binary equiatomic random FCC mixtures not containing Al is low, but significant short-range ordering appears in those containing Al, driven by a large atomic size difference. The potentials are utilized to predict the relative stability of FCC quinary mixtures, as well as ordered L12 and B2 phases as a function of Al content. These predictions are in qualitative agreement with experiments. This interatomic potential set is developed to resemble but not model precisely the properties of this complex system, aiming at providing a tool to explore the consequences of the addition of a large size-misfit component into a high entropy mixture that develops multiphase microstructures. A set of embedded atom model (EAM) interatomic potentials was developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at near-equiatomic compositions. Potential functions for the transition metals and their crossed interactions are taken from our previous work for Fe–Ni–Cr–Co–Cu [D. Farkas and A. Caro: J. Mater. Res. 33 (19), 3218–3225, 2018], while cross-pair interactions involving Al were developed using a mix of the component pair functions fitted to known intermetallic properties. The resulting heats of mixing of all binary equiatomic random FCC mixtures not containing Al is low, but significant short-range ordering appears in those containing Al, driven by a large atomic size difference. The potentials are utilized to predict the relative stability of FCC quinary mixtures, as well as ordered L1 2 and B2 phases as a function of Al content. These predictions are in qualitative agreement with experiments. This interatomic potential set is developed to resemble but not model precisely the properties of this complex system, aiming at providing a tool to explore the consequences of the addition of a large size-misfit component into a high entropy mixture that develops multiphase microstructures. |
| Author | Farkas, Diana Caro, Alfredo |
| Author_xml | – sequence: 1 givenname: Diana surname: Farkas fullname: Farkas, Diana email: diana@vt.edu organization: 1Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA – sequence: 2 givenname: Alfredo surname: Caro fullname: Caro, Alfredo organization: 2College of Professional Studies, George Washington University, Ashburn, Virginia 20147, USA |
| BookMark | eNqFkE9LwzAYh4NMcJve_AAFr7bmb9Mex3AqTr3ouaRpsmW0zUyyw25-B7-hn8SMDQRhSuCXy_N73-QZgUFvewXAJYIZYozfrDqXYYhhhkt6AoYYUpoygvMBGMKioCkuET0DI-9XECIGOR2CxyfbqDYxfVBOBNsZmaxtUH0wovWJti6Zqa-Pz2cTY-p2YWNM2mRpFss0cs6ut4loW7v15-BUx5a6ONxj8Da7fZ3ep_OXu4fpZJ5KSmhIS42VwppBQbVuEJdNXdaFhDKHtGQQEa0VRxwXLJ4yLziWEiIBac05I1KTMbjaz107-75RPlQru3F9XFnFz3JKCELsLwrTnBRlyQiM1PWeks5675Su1s50wm0rBKud1CpKrXZSqyg14vgXLk0QwdgoQpj2WCndl3yc3S-U-3nJET47LBFd7UyzUP8UvgHV751W |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179266 crossref_primary_10_1016_j_jallcom_2025_180375 crossref_primary_10_1016_j_matchemphys_2023_127556 crossref_primary_10_1016_j_apsusc_2024_160539 crossref_primary_10_1016_j_jmst_2024_11_072 crossref_primary_10_1016_j_actamat_2023_119192 crossref_primary_10_1088_1361_651X_ad111f crossref_primary_10_1007_s11837_025_07715_2 crossref_primary_10_1038_s41598_025_06470_3 crossref_primary_10_1016_j_euromechsol_2025_105762 crossref_primary_10_1080_08927022_2023_2268184 crossref_primary_10_1016_j_actamat_2024_119918 crossref_primary_10_1016_j_commatsci_2023_112719 crossref_primary_10_1016_j_physb_2025_417319 crossref_primary_10_1016_j_ijplas_2025_104410 crossref_primary_10_1007_s12598_024_02750_5 crossref_primary_10_1016_j_jallcom_2023_171547 crossref_primary_10_3390_sym16101391 crossref_primary_10_1016_j_jallcom_2025_179823 crossref_primary_10_1016_j_matchemphys_2025_130840 crossref_primary_10_1016_j_mtcomm_2023_107640 crossref_primary_10_1016_j_physb_2022_414447 crossref_primary_10_1016_j_mtcomm_2024_110306 crossref_primary_10_1016_j_jallcom_2023_170174 crossref_primary_10_3389_fmats_2022_849051 crossref_primary_10_1016_j_matchemphys_2024_129723 crossref_primary_10_1016_j_ijmecsci_2025_110694 crossref_primary_10_1016_j_jallcom_2021_162138 crossref_primary_10_1016_j_jallcom_2025_181636 crossref_primary_10_1016_j_matdes_2022_110998 crossref_primary_10_3390_ma17184552 crossref_primary_10_1016_j_jallcom_2025_183372 crossref_primary_10_1016_j_jallcom_2025_183890 crossref_primary_10_1016_j_matchar_2025_115074 crossref_primary_10_1080_14786435_2022_2080293 crossref_primary_10_1002_adfm_202421837 crossref_primary_10_1088_1361_651X_ad04f2 crossref_primary_10_1016_j_apsusc_2025_163878 crossref_primary_10_1016_j_jallcom_2022_164572 crossref_primary_10_1016_j_msea_2025_148002 crossref_primary_10_1016_j_physb_2025_417425 crossref_primary_10_1016_j_physe_2023_115763 crossref_primary_10_1016_j_jallcom_2024_177514 crossref_primary_10_1038_s41524_024_01260_3 crossref_primary_10_1039_D4RA02422B crossref_primary_10_1016_j_jallcom_2024_174086 crossref_primary_10_1016_j_jmapro_2025_05_048 crossref_primary_10_1016_j_jnoncrysol_2024_123039 crossref_primary_10_1016_j_actamat_2024_120508 crossref_primary_10_1016_j_triboint_2025_111081 crossref_primary_10_1088_1361_651X_ad2188 crossref_primary_10_1088_2632_2153_ad55a4 crossref_primary_10_1016_j_ijplas_2023_103853 crossref_primary_10_1016_j_msea_2024_146727 crossref_primary_10_1007_s10853_024_09704_3 crossref_primary_10_1016_j_scriptamat_2021_114330 crossref_primary_10_1007_s10853_024_10460_7 crossref_primary_10_1007_s42864_024_00295_9 crossref_primary_10_1016_j_matlet_2025_139038 crossref_primary_10_1016_j_jnucmat_2024_155283 crossref_primary_10_1016_j_matdes_2023_111999 crossref_primary_10_1557_s43578_022_00704_0 crossref_primary_10_1016_j_ijmecsci_2025_109979 crossref_primary_10_1016_j_jnucmat_2025_155882 crossref_primary_10_1016_j_electacta_2024_145523 crossref_primary_10_1007_s11665_025_11143_3 crossref_primary_10_1016_j_jmrt_2025_07_219 crossref_primary_10_3389_fmats_2024_1436577 crossref_primary_10_1038_s41598_022_26232_9 crossref_primary_10_1016_j_matlet_2025_139391 crossref_primary_10_1016_j_msea_2025_148154 crossref_primary_10_1016_j_commatsci_2022_111559 crossref_primary_10_1016_j_triboint_2025_110880 crossref_primary_10_1016_j_jallcom_2024_177704 crossref_primary_10_3390_met15070738 crossref_primary_10_1016_j_mtcomm_2025_113839 crossref_primary_10_1016_j_jallcom_2023_172172 crossref_primary_10_1016_j_physb_2025_417819 crossref_primary_10_1016_j_jmrt_2025_07_061 crossref_primary_10_1016_j_matdes_2022_111469 crossref_primary_10_1016_j_ijmecsci_2024_109389 crossref_primary_10_1016_j_jnucmat_2023_154342 crossref_primary_10_1016_j_isci_2023_107751 crossref_primary_10_1007_s11837_025_07747_8 crossref_primary_10_1088_1402_4896_ad8487 crossref_primary_10_1016_j_matdes_2023_112050 crossref_primary_10_1016_j_physb_2023_415028 crossref_primary_10_1007_s10409_024_24311_x crossref_primary_10_3390_met13020331 crossref_primary_10_1016_j_ijmecsci_2022_108026 crossref_primary_10_1016_j_ijplas_2023_103679 crossref_primary_10_1016_j_intermet_2025_108832 crossref_primary_10_1016_j_actamat_2023_119488 crossref_primary_10_1016_j_commatsci_2022_111386 crossref_primary_10_1016_j_msea_2025_148787 crossref_primary_10_1016_j_mtcomm_2022_105296 crossref_primary_10_1016_j_ijmecsci_2025_110389 crossref_primary_10_1016_j_jallcom_2021_163554 crossref_primary_10_1016_j_msea_2023_144886 crossref_primary_10_1016_j_apmate_2025_100277 crossref_primary_10_1016_j_apsusc_2024_162235 crossref_primary_10_1007_s11665_024_10596_2 crossref_primary_10_1016_j_commatsci_2023_112758 crossref_primary_10_1016_j_vacuum_2022_111322 crossref_primary_10_1007_s10853_023_08193_0 crossref_primary_10_1142_S021798492450218X crossref_primary_10_1007_s10853_025_10710_2 crossref_primary_10_1038_s41598_021_93272_y crossref_primary_10_1016_j_ijplas_2025_104339 crossref_primary_10_1177_16878132251357546 crossref_primary_10_1016_j_jallcom_2022_164137 crossref_primary_10_1016_j_jmrt_2025_05_257 crossref_primary_10_1016_j_jnoncrysol_2024_123362 crossref_primary_10_1016_j_actamat_2024_120434 crossref_primary_10_1016_j_jmrt_2024_08_068 crossref_primary_10_1016_j_jmrt_2024_12_228 crossref_primary_10_1016_j_actamat_2022_118191 crossref_primary_10_3390_ma16031149 crossref_primary_10_1016_j_commatsci_2024_112886 crossref_primary_10_1016_j_commatsci_2024_112925 crossref_primary_10_1063_5_0201042 crossref_primary_10_1007_s00339_024_08237_5 crossref_primary_10_1038_s41524_024_01445_w crossref_primary_10_1007_s44210_023_00020_0 crossref_primary_10_1016_j_msea_2025_148560 crossref_primary_10_3390_nano15090652 crossref_primary_10_1007_s44210_025_00060_8 crossref_primary_10_1016_j_mtcomm_2023_107433 crossref_primary_10_1016_j_ijsolstr_2024_113013 crossref_primary_10_1002_adem_202300557 crossref_primary_10_1016_j_mtcomm_2022_104224 crossref_primary_10_1016_j_mtcomm_2022_104983 crossref_primary_10_1016_j_actamat_2023_119426 crossref_primary_10_1016_j_mtcomm_2024_108302 crossref_primary_10_1088_1361_651X_ad2789 crossref_primary_10_1063_5_0111778 crossref_primary_10_1007_s12598_022_02205_9 crossref_primary_10_1016_j_commatsci_2022_111762 crossref_primary_10_1016_j_jallcom_2025_181826 crossref_primary_10_1016_j_matdes_2025_114379 crossref_primary_10_1016_j_jmst_2025_07_072 crossref_primary_10_1016_j_commatsci_2023_112057 crossref_primary_10_1088_1674_1056_ad6cca crossref_primary_10_1088_1361_651X_ad064f crossref_primary_10_1016_j_jallcom_2025_182899 crossref_primary_10_1063_5_0191465 crossref_primary_10_1088_1361_651X_aca7d7 crossref_primary_10_1088_1361_651X_ad5c85 crossref_primary_10_1088_2752_5724_ada8c5 crossref_primary_10_1038_s41524_023_01139_9 crossref_primary_10_1016_j_commatsci_2022_111875 crossref_primary_10_1016_j_mtcomm_2022_103861 crossref_primary_10_1016_j_jallcom_2021_160811 crossref_primary_10_1016_j_mtcomm_2025_111734 crossref_primary_10_1016_j_msea_2024_147106 crossref_primary_10_1016_j_intermet_2024_108348 crossref_primary_10_1016_j_physb_2025_417619 crossref_primary_10_1016_j_tws_2025_113792 crossref_primary_10_1016_j_matdes_2025_114586 crossref_primary_10_1016_j_jmrt_2025_05_034 crossref_primary_10_1016_j_actamat_2023_119163 crossref_primary_10_1016_j_jmrt_2025_05_035 crossref_primary_10_1016_j_jmst_2025_03_007 crossref_primary_10_1016_j_msea_2022_144158 crossref_primary_10_1007_s11661_024_07382_z crossref_primary_10_1016_j_commatsci_2024_112980 crossref_primary_10_1016_j_matdes_2023_111963 crossref_primary_10_1016_j_msea_2022_144315 crossref_primary_10_1016_j_scriptamat_2025_116702 crossref_primary_10_1016_j_triboint_2024_109721 crossref_primary_10_1002_adma_202500149 crossref_primary_10_1016_j_compositesb_2025_112579 crossref_primary_10_1088_1402_4896_ad9a20 crossref_primary_10_1016_j_jallcom_2023_169424 crossref_primary_10_1007_s00339_024_07855_3 crossref_primary_10_1016_j_mtcomm_2021_102525 crossref_primary_10_1016_j_jmps_2022_105067 crossref_primary_10_1016_j_pmatsci_2024_101359 crossref_primary_10_1103_PhysRevMaterials_7_023601 crossref_primary_10_1016_j_jacomc_2024_100036 crossref_primary_10_3762_bjnano_15_76 crossref_primary_10_1016_j_jallcom_2024_175555 crossref_primary_10_1002_advs_202414783 crossref_primary_10_1016_j_mtcomm_2024_110517 crossref_primary_10_3390_met15040460 |
| Cites_doi | 10.1107/S0021889872009203 10.1103/PhysRevB.59.3393 10.1088/0965-0393/18/1/015012 10.1126/science.1254581 10.1002/adma.201805392 10.1103/PhysRevB.65.224114 10.1007/s11837-017-2524-2 10.1002/adem.200300567 10.1557/mrc.2014.11 10.1038/s41598-017-03877-5 10.1016/j.intermet.2014.04.019 10.1016/j.msea.2015.09.034 10.1103/PhysRevB.60.22 10.1007/s11661-013-2097-9 10.1016/S0921-5093(98)00912-5 10.1007/s11837-013-0776-z 10.1063/1.4935489 10.1038/s41467-018-06757-2 10.1007/s11837-017-2484-6 10.1016/j.actamat.2016.08.081 10.1088/0965-0393/23/6/065006 10.1016/j.eml.2017.09.015 10.3390/e15104504 10.1016/j.cossms.2013.03.003 10.1016/j.ultramic.2012.12.015 10.3390/nano10010059 10.1016/j.actamat.2014.04.033 10.1088/0965-0393/4/4/003 10.1557/jmr.2018.245 10.1103/PhysRevB.44.8927 10.1557/JMR.1997.0340 10.1103/PhysRevB.54.4519 10.1016/S1359-6454(97)00138-9 10.1557/JMR.2005.0024 10.1007/s11837-017-2461-0 10.1088/0965-0393/4/1/004 10.1016/j.pmatsci.2013.10.001 10.1088/0965-0393/3/2/005 10.1016/j.actamat.2013.01.042 10.1016/j.intermet.2014.04.001 10.1016/j.msea.2003.10.257 10.1016/j.jallcom.2013.11.084 10.1006/jcph.1995.1039 10.1038/ncomms9736 10.4028/www.scientific.net/MSF.15-18.111 10.1016/j.scriptamat.2012.12.002 10.1016/j.actamat.2003.11.026 10.3390/e18090321 10.1016/1359-6454(95)00145-5 10.1080/01418619908210339 10.1016/0304-8853(94)90355-7 10.1016/j.intermet.2012.03.005 |
| ContentType | Journal Article |
| Copyright | Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press The Materials Research Society 2020 The Materials Research Society 2020. |
| Copyright_xml | – notice: Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press – notice: The Materials Research Society 2020 – notice: The Materials Research Society 2020. |
| DBID | AAYXX CITATION 3V. 7SR 7WY 7WZ 7XB 87Z 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G HCIFZ JG9 K60 K6~ KB. L.- L.0 M0C PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0W |
| DOI | 10.1557/jmr.2020.294 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Materials Research Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences Engineered Materials Abstracts ABI/INFORM Professional Standard ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection METADEX ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database (Proquest) url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 2044-5326 |
| EndPage | 3040 |
| ExternalDocumentID | 10_1557_jmr_2020_294 |
| GroupedDBID | -E. -~X .DC .FH 0E1 0R~ 2JN 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8FL 8UJ 8WZ A6W AAAZR AABES AABWE AACJH AAEED AAFGU AAGFV AAHNG AAIKC AAKTX AAMNW AARAB AASVR AATID AATNV AAUKB AAYFA ABBXD ABECU ABEFU ABGDZ ABJCF ABJNI ABKAS ABKKG ABMQK ABMWE ABMYL ABQTM ABROB ABTEG ABTKH ABTMW ABUWG ABZCX ACAOD ACBEA ACBEK ACBMC ACCHT ACGFO ACGFS ACHSB ACIGE ACIHN ACIMK ACIWK ACQFJ ACQPF ACREK ACTTH ACUIJ ACUYZ ACVWB ACWGA ACWMK ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADGEJ ADOCW ADOVH ADOXG AEAQA AEBAK AEFTE AEMSY AEMTW AENEX AENGE AESKC AESTI AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFNRJ AFUTZ AGMZJ AGOOT AGQEE AHQXX AIGNW AIHIV AIOIP AISIE AJCYY AJDOV AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ATUCA AUXHV BBLKV BENPR BEZIV BGHMG BGLVJ BMAJL BPHCQ C0O CBIIA CCPQU CFAFE CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 DWQXO EBS F5P FIGPU FRNLG HCIFZ HG- HST HZ~ I.6 I.9 IH6 IKXTQ IOEEP IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ K60 K6~ KB. KC. KCGVB KFECR L98 LLZTM M-V M0C M7~ NIKVX NPVJJ NQJWS O9- P2P PDBOC PQBIZ PQQKQ PROAC PYCCK RAMDC RCA RNS RR0 RSV S0W S6- S6U SAAAG SJN SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 WH7 WQ3 WXU WXY YQT ZMTXR ZYDXJ ~02 -2P -2V 3V. AACDK AAEWM AAJBT AASML AATMM ABAKF ABDPE ABZUI ACDTI ACETC ACPIV ACRPL ADNMO ADOVT AEFQL AEHGV AEMFK AGLWM AI. AIGIU AKZCZ ARZZG AYIQA BCGOX BESQT BJBOZ BQFHP CCUQV CFBFF CGQII EBLON EJD GROUPED_ABI_INFORM_COMPLETE I.7 IOO KAFGG LHUNA M8. PKN PQBZA ROL SCG SCLPG SJYHP VH1 VOH ZDLDU ZE2 ZJOSE ZMEZD ~V1 AAUYE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 L.- L.0 PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c434t-9f2ee2f50a4ffd17cdb9b8c0c60495013ffe71728585896872cc01a04b7753cf3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 211 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595310900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-2914 |
| IngestDate | Wed Nov 05 10:06:49 EST 2025 Wed Sep 17 23:56:54 EDT 2025 Sat Nov 29 05:54:49 EST 2025 Tue Nov 18 22:16:01 EST 2025 Fri Feb 21 02:48:02 EST 2025 Wed Mar 13 05:54:53 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | modeling high-entropy alloy computation/computing interatomic arrangements |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-9f2ee2f50a4ffd17cdb9b8c0c60495013ffe71728585896872cc01a04b7753cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2463899530 |
| PQPubID | 626330 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_3267433115 proquest_journals_2463899530 crossref_primary_10_1557_jmr_2020_294 crossref_citationtrail_10_1557_jmr_2020_294 springer_journals_10_1557_jmr_2020_294 cambridge_journals_10_1557_jmr_2020_294 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-30 |
| PublicationDateYYYYMMDD | 2020-11-30 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | New York, USA |
| PublicationPlace_xml | – name: New York, USA – name: Cham – name: Warrendale |
| PublicationTitle | Journal of materials research |
| PublicationTitleAbbrev | Journal of Materials Research |
| PublicationTitleAlternate | J. Mater. Res |
| PublicationYear | 2020 |
| Publisher | Cambridge University Press Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Cambridge University Press – name: Springer International Publishing – name: Springer Nature B.V |
| References | 1994; 135 2017; 7 2017; 1 2013; 65 2013; 68 2010; 18 2013; 61 1997; 45 2004; 6 2005; 20 2020; 10 2014; 61 2004; 375 2010; 22 2018; 9 2013; 15 2014; 4 2013; 17 1991; 44 1999; 59 1997; 12 2012; 26 2017; 122 2014; 52 1996; 4 2018; 33 2014; 53 2015; 6 2019; 31 2017; 69 1987; 15–18 1995; 117 1998; 258 2015; 648 2016; 18 1999; 60 1972; 5 1995; 3 2014; 45 1996; 54 2015; 23 2004; 52 2014; 589 2017; 17 2002; 65 1999; 79 2013; 132 2015; 118 2014; 345 2014; 75 1996; 44 Tang, Michael, Diao, Yang, Liu, Zuo, Zhang, Lu, Cheng, Zhang, Dahmen, Liaw, Egami (CR52) 2013; 65 Weast (CR32) 1984 Santodonato, Liaw, Unocic, Bei, Morris (CR54) 2018; 9 Mishin, Farkas, Mehl, Papaconstantopoulos (CR34) 1999; 59 Farkas, Schon, DeLima, Goldenstein (CR62) 1996; 44 Mendelev, Srolovitz, Ackland, Han (CR46) 2005; 20 Miracle, Senkov (CR3) 2017; 122 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (CR13) 2014; 345 Wang, Wang, Wang, Tsai, Lai, Yeh (CR10) 2012; 26 Zhang, Lu, Ma, Liaw, Tang, Cheng, Gao (CR15) 2014; 4 Van Swygenhoven, Spaczer, Caro, Farkas (CR27) 1999; 60 Lizárraga, Pan, Bergqvist, Holmström, Gercsi, Vitos (CR39) 2017; 7 Makhlouf, Nakamura, Shiga (CR48) 1994; 135 Yang, Xia, Liu, Wang, Liu, Zhang, Xue, Yan, Wang (CR57) 2015; 648 Dong, Lu, Jiang, Wang, Li (CR17) 2014; 52 Gao, Alman (CR18) 2013; 15 Macdonald, Fu, Zheng, Chen, Lin, Chen, Zhang, Ivanisenko, Zhou, Hahn, Lavernia (CR4) 2017; 69 Shafeie, Guo, Hu, Fahlquist, Erhart, Palmqvist (CR55) 2015; 118 Manzoni, Daoud, Völkl, Glatzel, Wanderka (CR9) 2013; 132 Murr (CR36) 1975 Vailhe, Farkas (CR29) 1998; 258 Tang, Gao, Diao, Yang, Liu, Zuo, Zhang, Lu, Cheng, Zhang, Dahmen, Liaw, Egami (CR8) 2013; 65 Purja Pun, Yamakov, Mishin (CR45) 2015; 23 Wang, Wang, Yeh (CR58) 2014; 589 Murty, Yeh, Ranganathan (CR1) 2014 Liu, Wu, He, Nieh, Lu (CR11) 2013; 68 Plimpton (CR50) 1995; 117 Soulairol, Fu, Barreteau (CR40) 2010; 22 Zhang, Malcolm Stocks, Jin, Lu, Bei, Sales, Wang, Béland, Stoller, Samolyuk, Caro, Caro, Weber (CR14) 2015; 6 Sinnott, Stave, Raeker, DePristo (CR37) 1991; 44 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (CR7) 2004; 6 Wang, Wu, Liu, Wang (CR21) 2017; 17 Kittel (CR31) 1986 Oh, Ma, Leyson, Grabowski, Park, Kormann, Raabe (CR23) 2016; 18 Farkas, Caro (CR30) 2018; 33 Singh, Kumar, Dwivedi, Subramaniam (CR19) 2014; 53 Yeh, Chang, Tsai, Wang, Yeh, Kuo (CR16) 2014; 45 Toda-Caraballo, Wrobel, Nguyen-Manh, Perez, Rivera-Diaz-Del-Castillo (CR26) 2017; 69 Schaefer, Gugelmeier, Schmolz, Seeger (CR35) 1987; 15–18 Mishin (CR41) 2004; 52 Zhao, Weber, Zhang (CR25) 2017; 69 Farkas, Jones (CR60) 1996; 4 Otto, Yang, Bei, George (CR6) 2013; 61 Mishin, Mehl, Papaconstantopoulos (CR42) 2002; 65 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (CR2) 2014; 61 Zaddach, Niu, Koch, Irving (CR12) 2013; 65 Poletti, Battezzati (CR20) 2014; 75 Mehl, Papaconstantopoulos (CR38) 1996; 54 Farkas, Mutasa, Vailhe, Ternes (CR59) 1995; 3 Vailhe, Farkas (CR44) 1997; 45 Cantor, Chang, Knight, Vincent (CR5) 2004; 375 Vailhé, Farkas (CR43) 1997; 12 Taylor, Doyle (CR47) 1972; 5 Stukowski (CR51) 2010; 18 Song, Tian, Hu, Vitos, Wang, Shen, Chen (CR22) 2017; 1 Vailhe, Farkas (CR28) 1999; 79 Sun, Zhang, Li, Ding, Wang, Vitos (CR53) 2020; 10 Shafeie, Guo, Erhart, Hu, Palmqvist (CR56) 2019; 31 Farkas, Roqueta, Vilette, Ternes (CR61) 1996; 4 Pollock, LeSar (CR24) 2013; 17 Simons, Wang (CR33) 1977 Villars, Calvert (CR49) 1985 S0884291420002940_ref41 Soulairol (S0884291420002940_ref40) 2010; 22 S0884291420002940_ref42 S0884291420002940_ref43 S0884291420002940_ref44 S0884291420002940_ref45 S0884291420002940_ref46 S0884291420002940_ref47 S0884291420002940_ref48 Villars (S0884291420002940_ref49) 1985 Pollock (S0884291420002940_ref24) 2013; 17 Kittel (S0884291420002940_ref31) 1986 S0884291420002940_ref50 S0884291420002940_ref51 S0884291420002940_ref52 S0884291420002940_ref53 S0884291420002940_ref54 S0884291420002940_ref10 Song (S0884291420002940_ref22) 2017; 1 S0884291420002940_ref11 S0884291420002940_ref55 S0884291420002940_ref56 S0884291420002940_ref13 S0884291420002940_ref57 S0884291420002940_ref14 S0884291420002940_ref58 S0884291420002940_ref59 S0884291420002940_ref15 S0884291420002940_ref16 S0884291420002940_ref17 S0884291420002940_ref18 S0884291420002940_ref19 Zaddach (S0884291420002940_ref12) 2013; 65 S0884291420002940_ref60 Simons (S0884291420002940_ref33) 1977 S0884291420002940_ref61 S0884291420002940_ref62 S0884291420002940_ref20 S0884291420002940_ref21 Murr (S0884291420002940_ref36) 1975 S0884291420002940_ref23 S0884291420002940_ref25 S0884291420002940_ref26 S0884291420002940_ref27 S0884291420002940_ref28 S0884291420002940_ref29 S0884291420002940_ref8 S0884291420002940_ref9 S0884291420002940_ref6 S0884291420002940_ref7 Murty (S0884291420002940_ref1) 2014 S0884291420002940_ref30 Weast (S0884291420002940_ref32) 1984 S0884291420002940_ref34 S0884291420002940_ref35 S0884291420002940_ref4 S0884291420002940_ref5 S0884291420002940_ref37 S0884291420002940_ref2 S0884291420002940_ref38 S0884291420002940_ref3 S0884291420002940_ref39 |
| References_xml | – volume: 69 start-page: 2084 year: 2017 article-title: Unique challenges for modeling defect dynamics in concentrated solid-solution alloys publication-title: JOM – volume: 79 start-page: 921 year: 1999 article-title: Transition from dislocation core spreading to dislocation dissociation in a series of B2 compounds publication-title: Philos. Mag. A – volume: 65 start-page: 224114 year: 2002 article-title: Embedded-atom potential for B2-NiAl publication-title: Phys. Rev. B – volume: 17 start-page: 10 year: 2013 article-title: The feedback loop between theory, simulation and experiment for plasticity and property modeling publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 3 start-page: 201 year: 1995 article-title: Interatomic potentials for B2 NiAl and martensitic phases publication-title: Model. Simul. Mat. Sci. Eng – volume: 6 start-page: 299 year: 2004 article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater – volume: 589 start-page: 143 year: 2014 article-title: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures publication-title: J. Alloys Compd – volume: 4 start-page: 23 year: 1996 article-title: Interatomic potentials for ternary Nb-Ti-Al alloys publication-title: Model. Simul. Mat. Sci. Eng – volume: 1 start-page: 02340423 year: 2017 article-title: Local lattice distortion in high-entropy alloys publication-title: Phys. Rev. Mater – volume: 10 start-page: 59 year: 2020 article-title: Generalized stacking fault energy of Al-doped CrMnFeCoNi high-entropy alloy publication-title: Nanomaterials – volume: 54 start-page: 4519 year: 1996 article-title: Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals publication-title: Phys. Rev. B – volume: 12 start-page: 2559 year: 1997 end-page: 2570 article-title: Shear faults and dislocation core structures in B2 CoAl publication-title: J. Mater. Res – volume: 65 start-page: 1780 year: 2013 article-title: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy publication-title: J. Mater – volume: 22 start-page: 295502 year: 2010 article-title: Structure and magnetism of bulk Fe and Cr: From plane waves to LCAO methods publication-title: J. Phys.: Condens. Matter – volume: 122 start-page: 448 year: 2017 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater – volume: 4 start-page: 57 year: 2014 article-title: Guidelines in predicting phase formation of high-entropy alloys publication-title: MRS Commun – volume: 26 start-page: 51 year: 2012 article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys publication-title: Intermetallics – volume: 52 start-page: 105 year: 2014 article-title: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys publication-title: Intermetallics – volume: 45 start-page: 184 year: 2014 article-title: On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy publication-title: Metall. Mater. Trans. A – volume: 117 start-page: 1 year: 1995 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys – volume: 61 start-page: 1 year: 2014 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci – volume: 135 start-page: 257 year: 1994 article-title: Structure and magnetic properties of FeAl1− xRhx alloys publication-title: J. Magn. Magn. Mater. – volume: 648 start-page: 15 year: 2015 article-title: Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy publication-title: Mater. Sci. Eng. A – volume: 6 start-page: 8736 year: 2015 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun – volume: 23 start-page: 065006 year: 2015 article-title: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation publication-title: Model. Simul. Mat. Sci. Eng – volume: 4 start-page: 359 year: 1996 article-title: Atomistic simulations in ternary Ni-Ti-Al alloys publication-title: Model. Simul. Mat. Sci. Eng – volume: 68 start-page: 526 year: 2013 article-title: Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy publication-title: Scr. Mater – volume: 52 start-page: 1451 year: 2004 end-page: 1467 article-title: Atomistic modeling of the γ and γ'-phases of the Ni-Al system publication-title: Acta Mater – volume: 31 start-page: 1805392 year: 2019 article-title: Balancing scattering channels. A panoscopic approach towards zero temperature coefficient of resistance using high entropy alloys publication-title: Adv. Mater – volume: 375 start-page: 213 year: 2004 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A – volume: 59 start-page: 3393 year: 1999 article-title: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations publication-title: Phys. Rev. B – volume: 20 start-page: 208 year: 2005 end-page: 218 article-title: Effect of Fe segregation on the migration of a mon-Symmetric Σ5 Tilt grain boundary in Al publication-title: J. Mater. Res – volume: 44 start-page: 8927 year: 1991 article-title: Corrected effective-medium study of metal-surface relaxation publication-title: Phys. Rev. B – volume: 132 start-page: 212 year: 2013 end-page: 215 article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy publication-title: Ultramicroscopy – volume: 44 start-page: 409 year: 1996 article-title: Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe-Cr alloys publication-title: Acta Mater – volume: 345 start-page: 1153 year: 2014 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 5 start-page: 201 year: 1972 end-page: 209 article-title: Further studies on the nickel-aluminium system. I. [beta]-NiAl and [delta]-Ni2Al3 phase fields publication-title: J. Appl. Cryst – volume: 53 start-page: 112 year: 2014 article-title: A geometrical parameter for the formation of disordered solid solutions in multi-component alloys publication-title: Intermetallics – volume: 7 start-page: 3778 year: 2017 article-title: First principles theory of the hcp-fcc phase transition in cobalt publication-title: Sci. Rep – volume: 9 start-page: 4520 year: 2018 article-title: Predictive multiphase evolution in Al-containing high-entropy alloys publication-title: Nat. Commun – volume: 15–18 start-page: 111 year: 1987 end-page: 116 article-title: Positron lifetime spectroscopy and trapping at vacancies in aluminium publication-title: Mater. Sci. Forum – volume: 258 start-page: 26 year: 1998 article-title: Interatomic potentials and dislocation simulation for the ternary B2 Ni-35Al-12Fe alloy publication-title: Mater. Sci. Eng. A – volume: 18 start-page: 321 year: 2016 article-title: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment publication-title: Entropy – volume: 45 start-page: 4463 year: 1997 end-page: 4473 article-title: Shear faults and dislocation core structure simulations in B2 FeAl publication-title: Acta Mater – volume: 69 start-page: 2137 year: 2017 article-title: Simulation and modeling in high entropy alloys publication-title: JOM – volume: 118 start-page: 184905 year: 2015 article-title: High-entropy alloys as high-temperature thermoelectric materials publication-title: J. Appl. Phys – volume: 69 start-page: 2024 year: 2017 article-title: Recent progress in high entropy alloy research publication-title: JOM – volume: 60 start-page: 22 year: 1999 article-title: Competing plastic deformation mechanisms in nanophase metals publication-title: Phys. Rev. B – volume: 17 start-page: 38 year: 2017 article-title: Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys publication-title: Extreme Mech. Lett – volume: 15 start-page: 4504 year: 2013 article-title: Searching for next single-phase high-entropy alloy compositions publication-title: Entropy – volume: 61 start-page: 2628 year: 2013 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater – volume: 65 start-page: 1848 year: 2013 end-page: 1858 article-title: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems publication-title: JOM – volume: 75 start-page: 297 year: 2014 article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems publication-title: Acta Mater – volume: 18 start-page: 015012 year: 2010 article-title: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool publication-title: Model. Simul. Mat. Sci. Eng – volume: 33 start-page: 3218 year: 2018 end-page: 3225 article-title: Model interatomic potentials and lattice strain in high entropy alloys publication-title: J. Mater. Res – volume: 65 start-page: 1848 year: 2013 end-page: 1858 article-title: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloy systems publication-title: JOM – volume: 5 start-page: 201 year: 1972 end-page: 209 ident: CR47 article-title: Further studies on the nickel-aluminium system. I. [beta]-NiAl and [delta]-Ni2Al3 phase fields publication-title: J. Appl. Cryst doi: 10.1107/S0021889872009203 – volume: 1 start-page: 02340423 year: 2017 ident: CR22 article-title: Local lattice distortion in high-entropy alloys publication-title: Phys. Rev. Mater – volume: 59 start-page: 3393 year: 1999 ident: CR34 article-title: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.3393 – volume: 18 start-page: 015012 year: 2010 ident: CR51 article-title: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool publication-title: Model. Simul. Mat. Sci. Eng doi: 10.1088/0965-0393/18/1/015012 – volume: 65 start-page: 1780 year: 2013 ident: CR12 article-title: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy publication-title: J. Mater – volume: 345 start-page: 1153 year: 2014 ident: CR13 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 31 start-page: 1805392 year: 2019 ident: CR56 article-title: Balancing scattering channels. A panoscopic approach towards zero temperature coefficient of resistance using high entropy alloys publication-title: Adv. Mater doi: 10.1002/adma.201805392 – volume: 65 start-page: 224114 year: 2002 ident: CR42 article-title: Embedded-atom potential for B2-NiAl publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.224114 – year: 1985 ident: CR49 publication-title: Person's Handbook of Crystallographic Data for Intermetallic Phases 1-3, ASM Internat – year: 1986 ident: CR31 publication-title: Introduction to Solid State Physics – volume: 69 start-page: 2137 year: 2017 ident: CR26 article-title: Simulation and modeling in high entropy alloys publication-title: JOM doi: 10.1007/s11837-017-2524-2 – volume: 6 start-page: 299 year: 2004 ident: CR7 article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater doi: 10.1002/adem.200300567 – volume: 4 start-page: 57 year: 2014 ident: CR15 article-title: Guidelines in predicting phase formation of high-entropy alloys publication-title: MRS Commun doi: 10.1557/mrc.2014.11 – volume: 7 start-page: 3778 year: 2017 ident: CR39 article-title: First principles theory of the hcp-fcc phase transition in cobalt publication-title: Sci. Rep doi: 10.1038/s41598-017-03877-5 – volume: 53 start-page: 112 year: 2014 ident: CR19 article-title: A geometrical parameter for the formation of disordered solid solutions in multi-component alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2014.04.019 – volume: 648 start-page: 15 year: 2015 ident: CR57 article-title: Effects of Al addition on microstructure and mechanical properties of Al CoCrFeNi high-entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.09.034 – volume: 60 start-page: 22 year: 1999 ident: CR27 article-title: Competing plastic deformation mechanisms in nanophase metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.22 – volume: 45 start-page: 184 year: 2014 ident: CR16 article-title: On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-013-2097-9 – volume: 258 start-page: 26 year: 1998 ident: CR29 article-title: Interatomic potentials and dislocation simulation for the ternary B2 Ni-35Al-12Fe alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(98)00912-5 – volume: 65 start-page: 1848 year: 2013 end-page: 1858 ident: CR8 article-title: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloy systems publication-title: JOM doi: 10.1007/s11837-013-0776-z – volume: 118 start-page: 184905 year: 2015 ident: CR55 article-title: High-entropy alloys as high-temperature thermoelectric materials publication-title: J. Appl. Phys doi: 10.1063/1.4935489 – volume: 9 start-page: 4520 year: 2018 ident: CR54 article-title: Predictive multiphase evolution in Al-containing high-entropy alloys publication-title: Nat. Commun doi: 10.1038/s41467-018-06757-2 – volume: 69 start-page: 2024 year: 2017 ident: CR4 article-title: Recent progress in high entropy alloy research publication-title: JOM doi: 10.1007/s11837-017-2484-6 – volume: 122 start-page: 448 year: 2017 ident: CR3 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater doi: 10.1016/j.actamat.2016.08.081 – volume: 23 start-page: 065006 year: 2015 ident: CR45 article-title: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation publication-title: Model. Simul. Mat. Sci. Eng doi: 10.1088/0965-0393/23/6/065006 – volume: 17 start-page: 38 year: 2017 ident: CR21 article-title: Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys publication-title: Extreme Mech. Lett doi: 10.1016/j.eml.2017.09.015 – volume: 65 start-page: 1848 year: 2013 end-page: 1858 ident: CR52 article-title: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems publication-title: JOM doi: 10.1007/s11837-013-0776-z – volume: 15 start-page: 4504 year: 2013 ident: CR18 article-title: Searching for next single-phase high-entropy alloy compositions publication-title: Entropy doi: 10.3390/e15104504 – volume: 17 start-page: 10 year: 2013 ident: CR24 article-title: The feedback loop between theory, simulation and experiment for plasticity and property modeling publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2013.03.003 – volume: 132 start-page: 212 year: 2013 end-page: 215 ident: CR9 article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.12.015 – start-page: 1 year: 2014 ident: CR1 article-title: High-entropy alloys publication-title: High-Entropy Alloys – year: 1975 ident: CR36 publication-title: Interfacial Phenomena in Metals and Alloys – year: 1984 ident: CR32 publication-title: Handbook of Chemistry and Physics – volume: 10 start-page: 59 year: 2020 ident: CR53 article-title: Generalized stacking fault energy of Al-doped CrMnFeCoNi high-entropy alloy publication-title: Nanomaterials doi: 10.3390/nano10010059 – volume: 75 start-page: 297 year: 2014 ident: CR20 article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems publication-title: Acta Mater doi: 10.1016/j.actamat.2014.04.033 – volume: 4 start-page: 359 year: 1996 ident: CR61 article-title: Atomistic simulations in ternary Ni-Ti-Al alloys publication-title: Model. Simul. Mat. Sci. Eng doi: 10.1088/0965-0393/4/4/003 – volume: 33 start-page: 3218 year: 2018 end-page: 3225 ident: CR30 article-title: Model interatomic potentials and lattice strain in high entropy alloys publication-title: J. Mater. Res doi: 10.1557/jmr.2018.245 – volume: 44 start-page: 8927 year: 1991 ident: CR37 article-title: Corrected effective-medium study of metal-surface relaxation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.8927 – volume: 12 start-page: 2559 year: 1997 end-page: 2570 ident: CR43 article-title: Shear faults and dislocation core structures in B2 CoAl publication-title: J. Mater. Res doi: 10.1557/JMR.1997.0340 – volume: 54 start-page: 4519 year: 1996 ident: CR38 article-title: Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.4519 – volume: 45 start-page: 4463 year: 1997 end-page: 4473 ident: CR44 article-title: Shear faults and dislocation core structure simulations in B2 FeAl publication-title: Acta Mater doi: 10.1016/S1359-6454(97)00138-9 – volume: 20 start-page: 208 year: 2005 end-page: 218 ident: CR46 article-title: Effect of Fe segregation on the migration of a mon-Symmetric Σ5 Tilt grain boundary in Al publication-title: J. Mater. Res doi: 10.1557/JMR.2005.0024 – volume: 69 start-page: 2084 year: 2017 ident: CR25 article-title: Unique challenges for modeling defect dynamics in concentrated solid-solution alloys publication-title: JOM doi: 10.1007/s11837-017-2461-0 – volume: 4 start-page: 23 year: 1996 ident: CR60 article-title: Interatomic potentials for ternary Nb-Ti-Al alloys publication-title: Model. Simul. Mat. Sci. Eng doi: 10.1088/0965-0393/4/1/004 – volume: 61 start-page: 1 year: 2014 ident: CR2 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci doi: 10.1016/j.pmatsci.2013.10.001 – volume: 3 start-page: 201 year: 1995 ident: CR59 article-title: Interatomic potentials for B2 NiAl and martensitic phases publication-title: Model. Simul. Mat. Sci. Eng doi: 10.1088/0965-0393/3/2/005 – volume: 61 start-page: 2628 year: 2013 ident: CR6 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2013.01.042 – volume: 52 start-page: 105 year: 2014 ident: CR17 article-title: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2014.04.001 – volume: 375 start-page: 213 year: 2004 ident: CR5 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 589 start-page: 143 year: 2014 ident: CR58 article-title: Phases, microstructure and mechanical properties of Al CoCrFeNi high-entropy alloys at elevated temperatures publication-title: J. Alloys Compd doi: 10.1016/j.jallcom.2013.11.084 – volume: 117 start-page: 1 year: 1995 ident: CR50 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys doi: 10.1006/jcph.1995.1039 – volume: 26 start-page: 51 year: 2012 ident: CR10 article-title: Effects of Al addition on the microstructure and mechanical property of Al CoCrFeNi high-entropy alloys publication-title: Intermetallics – year: 1977 ident: CR33 publication-title: Single Crystal Elastic Constants and Calculated Aggregate Properties – volume: 22 start-page: 295502 year: 2010 ident: CR40 article-title: Structure and magnetism of bulk Fe and Cr: From plane waves to LCAO methods publication-title: J. Phys.: Condens. Matter – volume: 6 start-page: 8736 year: 2015 ident: CR14 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun doi: 10.1038/ncomms9736 – volume: 15–18 start-page: 111 year: 1987 end-page: 116 ident: CR35 article-title: Positron lifetime spectroscopy and trapping at vacancies in aluminium publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.15-18.111 – volume: 68 start-page: 526 year: 2013 ident: CR11 article-title: Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy publication-title: Scr. Mater doi: 10.1016/j.scriptamat.2012.12.002 – volume: 52 start-page: 1451 year: 2004 end-page: 1467 ident: CR41 article-title: Atomistic modeling of the γ and γ'-phases of the Ni-Al system publication-title: Acta Mater doi: 10.1016/j.actamat.2003.11.026 – volume: 18 start-page: 321 year: 2016 ident: CR23 article-title: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment publication-title: Entropy doi: 10.3390/e18090321 – volume: 44 start-page: 409 year: 1996 ident: CR62 article-title: Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe-Cr alloys publication-title: Acta Mater doi: 10.1016/1359-6454(95)00145-5 – volume: 79 start-page: 921 year: 1999 ident: CR28 article-title: Transition from dislocation core spreading to dislocation dissociation in a series of B2 compounds publication-title: Philos. Mag. A doi: 10.1080/01418619908210339 – volume: 135 start-page: 257 year: 1994 ident: CR48 article-title: Structure and magnetic properties of FeAl Rh alloys publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(94)90355-7 – ident: S0884291420002940_ref58 doi: 10.1016/j.jallcom.2013.11.084 – ident: S0884291420002940_ref42 doi: 10.1103/PhysRevB.65.224114 – ident: S0884291420002940_ref48 doi: 10.1016/0304-8853(94)90355-7 – ident: S0884291420002940_ref52 doi: 10.1007/s11837-013-0776-z – ident: S0884291420002940_ref37 doi: 10.1103/PhysRevB.44.8927 – ident: S0884291420002940_ref15 doi: 10.1557/mrc.2014.11 – ident: S0884291420002940_ref11 doi: 10.1016/j.scriptamat.2012.12.002 – ident: S0884291420002940_ref29 doi: 10.1016/S0921-5093(98)00912-5 – ident: S0884291420002940_ref57 doi: 10.1016/j.msea.2015.09.034 – ident: S0884291420002940_ref27 doi: 10.1103/PhysRevB.60.22 – ident: S0884291420002940_ref43 doi: 10.1557/JMR.1997.0340 – ident: S0884291420002940_ref20 doi: 10.1016/j.actamat.2014.04.033 – ident: S0884291420002940_ref59 doi: 10.1088/0965-0393/3/2/005 – volume-title: Interfacial Phenomena in Metals and Alloys year: 1975 ident: S0884291420002940_ref36 – ident: S0884291420002940_ref6 doi: 10.1016/j.actamat.2013.01.042 – ident: S0884291420002940_ref35 doi: 10.4028/www.scientific.net/MSF.15-18.111 – ident: S0884291420002940_ref13 doi: 10.1126/science.1254581 – ident: S0884291420002940_ref38 doi: 10.1103/PhysRevB.54.4519 – ident: S0884291420002940_ref4 doi: 10.1007/s11837-017-2484-6 – volume: 17 start-page: 10 year: 2013 ident: S0884291420002940_ref24 article-title: The feedback loop between theory, simulation and experiment for plasticity and property modeling publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2013.03.003 – volume-title: Person's Handbook of Crystallographic Data for Intermetallic Phases 1-3, ASM Internat year: 1985 ident: S0884291420002940_ref49 – volume: 65 start-page: 1780 year: 2013 ident: S0884291420002940_ref12 article-title: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy publication-title: J. Mater – volume-title: Handbook of Chemistry and Physics year: 1984 ident: S0884291420002940_ref32 – ident: S0884291420002940_ref62 doi: 10.1016/1359-6454(95)00145-5 – ident: S0884291420002940_ref45 doi: 10.1088/0965-0393/23/6/065006 – ident: S0884291420002940_ref23 doi: 10.3390/e18090321 – volume: 1 start-page: 02340423 year: 2017 ident: S0884291420002940_ref22 article-title: Local lattice distortion in high-entropy alloys publication-title: Phys. Rev. Mater – ident: S0884291420002940_ref19 doi: 10.1016/j.intermet.2014.04.019 – ident: S0884291420002940_ref34 doi: 10.1103/PhysRevB.59.3393 – ident: S0884291420002940_ref30 doi: 10.1557/jmr.2018.245 – ident: S0884291420002940_ref50 doi: 10.1006/jcph.1995.1039 – ident: S0884291420002940_ref44 doi: 10.1016/S1359-6454(97)00138-9 – ident: S0884291420002940_ref8 doi: 10.1007/s11837-013-0776-z – ident: S0884291420002940_ref17 doi: 10.1016/j.intermet.2014.04.001 – ident: S0884291420002940_ref18 doi: 10.3390/e15104504 – volume: 22 start-page: 295502 year: 2010 ident: S0884291420002940_ref40 article-title: Structure and magnetism of bulk Fe and Cr: From plane waves to LCAO methods publication-title: J. Phys.: Condens. Matter – ident: S0884291420002940_ref54 doi: 10.1038/s41467-018-06757-2 – ident: S0884291420002940_ref7 doi: 10.1002/adem.200300567 – ident: S0884291420002940_ref14 doi: 10.1038/ncomms9736 – ident: S0884291420002940_ref39 doi: 10.1038/s41598-017-03877-5 – ident: S0884291420002940_ref53 doi: 10.3390/nano10010059 – ident: S0884291420002940_ref5 doi: 10.1016/j.msea.2003.10.257 – ident: S0884291420002940_ref3 doi: 10.1016/j.actamat.2016.08.081 – volume-title: Single Crystal Elastic Constants and Calculated Aggregate Properties year: 1977 ident: S0884291420002940_ref33 – ident: S0884291420002940_ref46 doi: 10.1557/JMR.2005.0024 – ident: S0884291420002940_ref16 doi: 10.1007/s11661-013-2097-9 – ident: S0884291420002940_ref28 doi: 10.1080/01418619908210339 – ident: S0884291420002940_ref51 doi: 10.1088/0965-0393/18/1/015012 – volume-title: High-Entropy Alloys year: 2014 ident: S0884291420002940_ref1 – ident: S0884291420002940_ref56 doi: 10.1002/adma.201805392 – ident: S0884291420002940_ref21 doi: 10.1016/j.eml.2017.09.015 – ident: S0884291420002940_ref47 doi: 10.1107/S0021889872009203 – ident: S0884291420002940_ref41 doi: 10.1016/j.actamat.2003.11.026 – ident: S0884291420002940_ref2 doi: 10.1016/j.pmatsci.2013.10.001 – ident: S0884291420002940_ref26 doi: 10.1007/s11837-017-2524-2 – volume-title: Introduction to Solid State Physics year: 1986 ident: S0884291420002940_ref31 – ident: S0884291420002940_ref55 doi: 10.1063/1.4935489 – ident: S0884291420002940_ref9 doi: 10.1016/j.ultramic.2012.12.015 – ident: S0884291420002940_ref61 doi: 10.1088/0965-0393/4/4/003 – ident: S0884291420002940_ref10 doi: 10.1016/j.intermet.2012.03.005 – ident: S0884291420002940_ref25 doi: 10.1007/s11837-017-2461-0 – ident: S0884291420002940_ref60 doi: 10.1088/0965-0393/4/1/004 |
| SSID | ssj0015074 |
| Score | 2.670637 |
| Snippet | A set of embedded atom model (EAM) interatomic potentials was developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at... |
| SourceID | proquest crossref springer cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3031 |
| SubjectTerms | Alloy development Alloys Aluminum Applied and Technical Physics Biomaterials Chromium Cobalt Complex systems Computational Materials Science Computer simulation Copper Ductility Embedded atom method Energy Entropy Face centered cubic lattice Grain size Heat of mixing High entropy alloys Inorganic Chemistry Intermetallic phases Iron Materials Engineering Materials research Materials Science Mixtures Nanotechnology Nickel Qualitative analysis Short range order Transition metals Trends |
| SummonAdditionalLinks | – databaseName: Materials Science Database dbid: KB. link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60KujBt1hf5ODjINsm2002OYmKRRCKBwVvobvJQqVtalOF3vwP_kN_iTN5tCrqxcteMrAhM7vzzc7m-wAOOaZcE7ddJpXRTCgucUlJxTzbiLbCnOQrk4lNyFbLf3gIbosDt7S4VlnuidlGHSWazsjrXFBuDdyGfTZ4YqQaRd3VQkJjFuaIJYGkG24uapMuAmIdkaNIwXjgiOLiu-vK-mOPyEC5XeMkVzylVfianqaY81ubNMs-zZX_vvcqLBe40zrPA2UNZuL-Oix9YiNch4XsNqhON-CGFNK6FlFJUBe-19HWIBnRvSIMVgthrtWM31_fWh0cLoc0JDicdy0iP2Z0XpwMxha19MfpJtw3r-4ur1mhusC0aIgRCwyPY25cuy2MiRypIxUoX9vaw2LCRcRoTCxJ1QoLDT_wfMm1tp22LZTE0kebxhZU-kk_3gbL05HvqUBGDUQR0sPdw9jKiQSCEOEpGVThZPLhw2LtpCGVJeiiEF0UkotCdFEVTku3hLogLycNje4v1kcT60FO2vGL3V7ps-n0U4f9-BjhrqS_zBy3CsdlUPz98jt_T7MLi2SZ80nuQWU0fI73YV6_jDrp8CCL6A-mMf-L priority: 102 providerName: ProQuest |
| Title | Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys |
| URI | https://www.cambridge.org/core/product/identifier/S0884291420002940/type/journal_article https://link.springer.com/article/10.1557/jmr.2020.294 https://www.proquest.com/docview/2463899530 https://www.proquest.com/docview/3267433115 |
| Volume | 35 |
| WOSCitedRecordID | wos000595310900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: 7WY dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: M0C dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database (Proquest) customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: KB. dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2044-5326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gh58i_VRcvBxkMhmu8lmj1osgljEt6fQ3WShUtvSVMGb_8F_6C9xJk3qAxW9DAmZkGV2N_NNZvINwCZHl2uThu9KbY0rNJe4paR2A2ZFQ6NPCrXNmk3Iej28uVGneaCYFtXuRUoye1NnPXowbL-7J_pOzva4EqMwjo4upI14dn41zBogthED1ChcrjyRF7p_vfsjjcJnd_SOMb-kRTNvU5v97zjnYCbHlc7-YCHMw0jSXoDpD2yDCzCZVXuadBGOqQNayyGqCMqy3zeN0-30qW4IF6ODMNapJa_PL_UmimqPRAfFfsshcmOXvgd3uk8Opeyf0iW4rB1eVI_cvKuCa0RF9F1leZJw67OGsDb2pIm10qFhJsBgwUdEaG0iqWsVBhKhCkLJjWFegwktMbQxtrIMY-1OO1kBJzBxGGgl4wqiBBng28Ey7cUCQYYItFQl2BkaOsr3RhpR2IGGitBQERkqQkOVYLeYhsjk5OTUI6P1g_bWULs7IOX4QW-9mNH3x3NBIE35FfbtZYSzkv4i8_wSbBcT_PvgV_-quAZTdDhgjlyHsX7vIdmACfPYb6a9MozK69syjB8c1k_P8Oz4YA_lCauWs1X-BtUg96M |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFH8aGwh2GDBAdAzwgcEBmTmuEyeHaZoK1aaOisOQdgu1Y0tFXVOaAuqN78D32IfaJ-G9_GkBsd124OJLnDiJf8_vZ_v59wBeSHS53g1Cro23XBmp0aS04ZHwamDQJ8XGl8kmdL8fn54mH1bgvDkLQ2GVzZhYDtRZbmmNfFcq8q1J2Bb7ky-cskbR7mqTQqOCRc_Nv-OUrdg7eov9uyNl991J55DXWQW4VW0144mXzkkfioHyPgu0zUxiYitshGQ5REbkvdOUtQmJdJxEsZbWimAglNFI7a1v43NvwJpSaA4UKig6i10L5FaqYq2KyyRQdaB9GOrdz2ckPirFG0npkZcyDn-6wyXH_WtbtvR23bv_23-6Bxs1r2YHlSHchxU33oT139QWN-FWGe1qiwfQowxwI0ZSGRRlcDa0bJLPKG4KjZEhjWddd_HjZ3-IRWdKRY7FwYiRuDOn9fB8MmcUsjAvHsLHa_muR7A6zsfuMbDIZnFkEp21kSXpCEdHL0yQKSRZKjI6acGrRUen9dhQpDTtQkikCImUIJEiJFrwuoFBamtxdsoRMrqk9s6i9qQSJbmk3naDkWXzS4D88zLSeU2n6IKwBS8bEF798ltXN_Mcbh-evD9Oj4_6vSdwh-6qtDO3YXU2_eqewk37bTYsps9Ka2Lw6bph-Qvim1va |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFH_axh_BAbYBojA2HxgcJtPEdeLkgNC0rWIqqnbYtHHKaseWitqmNAXUG9-Bb8PH4ZPwXv60MG277bCLL3HiJP49v5_t598DeC3Q5TrbC7jSznCphUKTUpqHnpM9jT4p0q5INqG63ejsLD5agt_1WRgKq6zHxGKgTjNDa-RNIcm3xkHLa7oqLOJov_1h_JVTBinaaa3TaZQQ6djZD5y-5e8P97Gvt4VoHxzvfeRVhgFuZEtOeeyEtcIFXk86l_rKpDrWkfFMiMQ5QHbknFWUwQlJdRSHkRLGeH7Pk1ohzTeuhc9dhjsKcU8WpU4_z3cwkGfJksFKLmJfVkH3QaCaX4YkRCq8d4JSJS8kHf53jQu-e2GLtvB87ce3-Z-twqOKb7Pd0kDWYMmO1uHhPyqM63CviII1-RPoUGa4ASMJDYo-GPYNG2dTiqdCI2VI71nb_vn5q9vHYm9CRYbF7oCR6DOndfJsPGMUyjDLn8LJjXzXM1gZZSP7HFho0ijUsUpbyJ5UiKOm87SfSiRfMtQqbsDbeacn1ZiRJzQdQ3gkCI-E4JEgPBqwU0MiMZVoO-UOGVxRe3tee1yKlVxRb6PGy6L5BVguvYw0X9HpOj9owJsakNe__Ivrm9mC-4jG5NNht_MSHtBNpaTmBqxMJ9_sK7hrvk_7-WSzMCwG5zeNyr-0j2T4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+interatomic+potentials+for+Fe%E2%80%93Ni%E2%80%93Cr%E2%80%93Co%E2%80%93Al+high-entropy+alloys&rft.jtitle=Journal+of+materials+research&rft.au=Farkas%2C+Diana&rft.au=Caro%2C+Alfredo&rft.date=2020-11-30&rft.pub=Springer+International+Publishing&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=35&rft.issue=22&rft.spage=3031&rft.epage=3040&rft_id=info:doi/10.1557%2Fjmr.2020.294&rft.externalDocID=10_1557_jmr_2020_294 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |