Thermal efficiency of radiated tetra-hybrid nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection

Applications The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and industrialist because of their dominant characteristics. These broadly use in chemical, applied thermal, mechanical engineering, and biotechnology. Par...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science progress (1916) Ročník 106; číslo 1; s. 368504221149797
Hlavní autori: Adnan, Abbas, Waseem, Z. Bani-Fwaz, Mutasem, Kenneth Asogwa, Kanayo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London, England SAGE Publications 01.01.2023
Sage Publications Ltd
Predmet:
ISSN:0036-8504, 2047-7163
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Applications The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and industrialist because of their dominant characteristics. These broadly use in chemical, applied thermal, mechanical engineering, and biotechnology. Particularly, heat transfer over a cylindrical surface is important in automobiles and heavy machinery. Purpose and Methodology Keeping in front the heat transfer applications, a model for Tetra-Composite Nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra is developed over a vertically oriented cylinder in this study. The existing traditional model was modified with innovative effects of nonlinear thermal radiations, magnetic field, absorber surface of the cylinder, and effective thermophysical characteristics of tetra nanofluid. Then, a new heat transfer model was achieved successfully after performing some mathematical operations. Major Findings The mathematical analysis was performed via RK and determined the results graphically. The study gives suitable parametric ranges for high thermal efficiency and fluid movement. Applied magnetics forces were observed excellent to control the fluid motion, whereas curvature and buoyancy forces favor the motion. Thermal mechanism in Tetra nanofluid is dominant over ternary nanoliquid and nonlinear thermal radiations increased the heat transfer rate.
AbstractList Applications The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and industrialist because of their dominant characteristics. These broadly use in chemical, applied thermal, mechanical engineering, and biotechnology. Particularly, heat transfer over a cylindrical surface is important in automobiles and heavy machinery. Purpose and Methodology Keeping in front the heat transfer applications, a model for Tetra-Composite Nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra is developed over a vertically oriented cylinder in this study. The existing traditional model was modified with innovative effects of nonlinear thermal radiations, magnetic field, absorber surface of the cylinder, and effective thermophysical characteristics of tetra nanofluid. Then, a new heat transfer model was achieved successfully after performing some mathematical operations. Major Findings The mathematical analysis was performed via RK and determined the results graphically. The study gives suitable parametric ranges for high thermal efficiency and fluid movement. Applied magnetics forces were observed excellent to control the fluid motion, whereas curvature and buoyancy forces favor the motion. Thermal mechanism in Tetra nanofluid is dominant over ternary nanoliquid and nonlinear thermal radiations increased the heat transfer rate.
Applications The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and industrialist because of their dominant characteristics. These broadly use in chemical, applied thermal, mechanical engineering, and biotechnology. Particularly, heat transfer over a cylindrical surface is important in automobiles and heavy machinery. Purpose and Methodology Keeping in front the heat transfer applications, a model for Tetra-Composite Nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra is developed over a vertically oriented cylinder in this study. The existing traditional model was modified with innovative effects of nonlinear thermal radiations, magnetic field, absorber surface of the cylinder, and effective thermophysical characteristics of tetra nanofluid. Then, a new heat transfer model was achieved successfully after performing some mathematical operations. Major Findings The mathematical analysis was performed via RK and determined the results graphically. The study gives suitable parametric ranges for high thermal efficiency and fluid movement. Applied magnetics forces were observed excellent to control the fluid motion, whereas curvature and buoyancy forces favor the motion. Thermal mechanism in Tetra nanofluid is dominant over ternary nanoliquid and nonlinear thermal radiations increased the heat transfer rate.
The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and industrialist because of their dominant characteristics. These broadly use in chemical, applied thermal, mechanical engineering, and biotechnology. Particularly, heat transfer over a cylindrical surface is important in automobiles and heavy machinery. Keeping in front the heat transfer applications, a model for Tetra-Composite Nanofluid [(Al O -CuO-TiO -Ag)/water] is developed over a vertically oriented cylinder in this study. The existing traditional model was modified with innovative effects of nonlinear thermal radiations, magnetic field, absorber surface of the cylinder, and effective thermophysical characteristics of tetra nanofluid. Then, a new heat transfer model was achieved successfully after performing some mathematical operations. The mathematical analysis was performed via RK and determined the results graphically. The study gives suitable parametric ranges for high thermal efficiency and fluid movement. Applied magnetics forces were observed excellent to control the fluid motion, whereas curvature and buoyancy forces favor the motion. Thermal mechanism in Tetra nanofluid is dominant over ternary nanoliquid and nonlinear thermal radiations increased the heat transfer rate.
Author Z. Bani-Fwaz, Mutasem
Abbas, Waseem
Adnan
Kenneth Asogwa, Kanayo
AuthorAffiliation 2 Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
3 Department of Mathematics, Nigeria Maritime University, Okerenkoko, Nigeria
1 Department of Mathematics, 66933 Mohi-ud-Din Islamic University , Nerian Sharif AJ&K, Pakistan
AuthorAffiliation_xml – name: 2 Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
– name: 1 Department of Mathematics, 66933 Mohi-ud-Din Islamic University , Nerian Sharif AJ&K, Pakistan
– name: 3 Department of Mathematics, Nigeria Maritime University, Okerenkoko, Nigeria
Author_xml – sequence: 1
  orcidid: 0000-0003-0071-4743
  surname: Adnan
  fullname: Adnan
  email: adnan_abbasi89@yahoo.com
– sequence: 2
  givenname: Waseem
  surname: Abbas
  fullname: Abbas, Waseem
  email: adnan_abbasi89@yahoo.com
– sequence: 3
  givenname: Mutasem
  orcidid: 0000-0003-0426-1657
  surname: Z. Bani-Fwaz
  fullname: Z. Bani-Fwaz, Mutasem
– sequence: 4
  givenname: Kanayo
  surname: Kenneth Asogwa
  fullname: Kenneth Asogwa, Kanayo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36617882$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEYhS1URNPCA7BBltjQxbS-TOyZFYoiCkiVsgkrhEYeXxJHjh08M6nm_Xgw_iQtV8HCsqXznXN8u0BnMUWL0EtKrimV8oYQLqopKRmjtKxlLZ-gCSOlLCQV_AxNDnpxAM7RRddtCKFTKqpn6JwLQWVVsQn6tlzbvFUBW-e89jbqESeHszJe9dbg3vZZFeuxzd7gqGJyYYDV5zezwBa8mA-LYukXrJitrm7uwZG_HB14iMZmvINsq1offD8eGqzuO5z2oMDovVYhjFgFv4pQpcfgj65uaDdA4j7hrQIJQOy8DQarCFjatv7Ip7gHzKf4HD11KnT2xcN8iT7dvlvOPxR3i_cf57O7Qpe87IvKVdIZUcPlOCkrUhHOHDOCt1KwFkRuGDEtl0YrYoWWTJSlq3XL2VTIuuWX6O0pdze0W2u0jXDU0Oyy36o8Nkn55ncl-nWzSvuGEl7XTDJIeP2QkNPXwXZ9s0lDjrDphsmalUTQKQfq1a89Pwoenw0AeQJ0Tl2XrWu079XhKqDWB-hrDh-k-euDgJP-4XwM_5_n-uTp1Mr-3PC_Dd8BO2TNNA
CitedBy_id crossref_primary_10_1007_s43452_024_01010_8
crossref_primary_10_1038_s41598_024_51262_w
crossref_primary_10_32604_fhmt_2023_044300
crossref_primary_10_1016_j_sajce_2023_12_003
crossref_primary_10_1080_10407790_2023_2270155
crossref_primary_10_1007_s10973_025_14624_8
crossref_primary_10_1016_j_rinp_2025_108176
crossref_primary_10_1016_j_csite_2024_105281
crossref_primary_10_1007_s12668_024_01456_3
crossref_primary_10_1007_s42452_024_06439_3
crossref_primary_10_1002_zamm_202300195
crossref_primary_10_1007_s10973_023_12418_4
crossref_primary_10_1016_j_heliyon_2024_e35731
crossref_primary_10_1177_09544089241253734
crossref_primary_10_1038_s41598_023_35695_3
crossref_primary_10_1093_jcde_qwae011
crossref_primary_10_1080_10255842_2023_2245520
crossref_primary_10_1093_jcde_qwae086
crossref_primary_10_1063_5_0271553
crossref_primary_10_1088_1402_4896_ad4ace
crossref_primary_10_1016_j_jrras_2025_101750
crossref_primary_10_1007_s00170_025_15065_1
crossref_primary_10_1063_5_0211706
crossref_primary_10_1016_j_jrras_2024_101213
crossref_primary_10_1007_s10409_024_24507_x
crossref_primary_10_1007_s10973_025_14489_x
crossref_primary_10_1016_j_molliq_2025_128485
crossref_primary_10_1080_10407790_2024_2346922
crossref_primary_10_1140_epjs_s11734_024_01184_5
crossref_primary_10_1016_j_rineng_2025_104786
crossref_primary_10_1615_JPorMedia_2024051759
crossref_primary_10_1080_10407782_2024_2359047
crossref_primary_10_1007_s40430_025_05595_w
crossref_primary_10_1155_er_5510496
crossref_primary_10_1002_zamm_202300442
crossref_primary_10_1007_s10973_023_12448_y
crossref_primary_10_1007_s42452_024_06367_2
crossref_primary_10_1177_16878132241234609
crossref_primary_10_1016_j_thradv_2025_100040
crossref_primary_10_1515_ntrev_2024_0014
crossref_primary_10_1063_5_0141498
crossref_primary_10_1016_j_cjph_2023_10_006
crossref_primary_10_1142_S1793292025500316
crossref_primary_10_1007_s10973_023_12723_y
crossref_primary_10_1108_MMMS_12_2023_0416
crossref_primary_10_1515_phys_2023_0197
crossref_primary_10_1016_j_triboint_2025_110532
crossref_primary_10_1007_s10973_023_12397_6
crossref_primary_10_1007_s10973_024_13986_9
crossref_primary_10_1002_zamm_202200622
crossref_primary_10_3390_app13064070
crossref_primary_10_1007_s13538_025_01747_4
crossref_primary_10_1007_s41939_025_00747_w
crossref_primary_10_1093_jcde_qwae029
crossref_primary_10_1007_s12668_023_01280_1
crossref_primary_10_1016_j_csite_2025_106603
Cites_doi 10.1016/j.rinp.2017.10.015
10.1002/htj.22196
10.1016/j.jpcs.2018.01.046
10.1155/2022/8929985
10.1177/1687814019879842
10.1016/j.cjph.2022.07.003
10.1038/s41598-022-13423-7
10.1016/j.cjph.2020.11.019
10.1108/HFF-12-2014-0387
10.3390/molecules25112592
10.1016/j.powtec.2016.12.058
10.1002/htj.22646
10.1166/jon.2016.1277
10.1016/j.csite.2022.102568
10.1007/s11012-012-9584-8
10.1177/16878132221106577
10.1016/j.icheatmasstransfer.2021.105425
10.18280/ijht.370421
10.1038/s41598-022-07045-2
10.1080/17455030.2022.2065043
10.3389/fenrg.2022.888389
10.1063/5.0037580
10.1038/s41598-020-80750-y
10.1016/j.aej.2021.03.062
10.1038/s41598-020-74393-2
10.1080/17455030.2022.2092233
10.1007/s00542-019-04332-3
10.1080/17455030.2022.2119300
10.1108/HFF-04-2014-0095
10.1155/2022/1854381
10.3389/fchem.2022.879276
10.1166/jon.2019.1574
10.1155/2020/9523630
10.1002/htj.21714
10.1063/1.4951675
ContentType Journal Article
Copyright The Author(s) 2023
2023. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/ ) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023 2023 SAGE Publications
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/ ) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023 2023 SAGE Publications
DBID AFRWT
AAYXX
CITATION
NPM
8FD
F28
FR3
JQ2
K9.
5PM
DOI 10.1177/00368504221149797
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
PubMed
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2047-7163
ExternalDocumentID PMC10399272
36617882
10_1177_00368504221149797
10.1177_00368504221149797
Genre Journal Article
GroupedDBID ---
-~X
0R~
123
53G
54M
79B
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
AADUE
AAFWJ
AALJN
AARIX
AASGM
ABBHK
ABCQX
ABDBF
ABIWW
ABJCF
ABKRH
ABPVG
ABQXT
ABRHV
ABUWG
ABXSQ
ACDXX
ACIWK
ACLDX
ACOFE
ACPRK
ACPRP
ACROE
ACUHS
ADBBV
ADEBD
ADMLS
ADOGD
ADULT
AEDFJ
AEGXH
AENEX
AETEA
AEUPB
AEUYN
AEWDL
AEXNY
AFCOW
AFKRA
AFKRG
AFPKN
AFRAH
AFRWT
AFUIA
AGNHF
AJUZI
AKJNG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMPZH
AORZM
APEBS
ARAPS
ARTOV
ATCPS
BBNVY
BDDNI
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BVXVI
CAKTK
CCPQU
CFDXU
CS3
CZ9
D1I
D1J
D1K
DOPDO
DU5
EBD
EBS
EHMNL
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HH5
HHL
HMCUK
IL9
IPSME
J8X
JAAYA
JBMMH
JENOY
JFNAL
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JST
K6-
K6V
K7-
KB.
KC.
L6V
L7B
LK5
LK8
M0K
M1P
M7P
M7R
M7S
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
ROL
RPM
RWL
RXW
SA0
SAUOL
SCDPB
SCNPE
SFC
SV3
TAE
UKHRP
UQL
YNT
ZPPRI
ZRKOI
AAYXX
ACHEB
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
M4V
NPM
8FD
F28
FR3
JQ2
K9.
5PM
ID FETCH-LOGICAL-c434t-8f87fd69163f77808032f2d63b762bf873d20db37dca0e6c72644f9cb325679b3
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983636400034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0036-8504
IngestDate Thu Aug 21 18:41:41 EDT 2025
Sat Oct 11 07:21:43 EDT 2025
Thu Apr 03 07:10:06 EDT 2025
Tue Nov 18 22:38:48 EST 2025
Sat Nov 29 08:11:48 EST 2025
Tue Jun 17 22:42:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tetra nanofluid
magnetic field
thermophysical characteristics
vertical cylinder
permeability
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-8f87fd69163f77808032f2d63b762bf873d20db37dca0e6c72644f9cb325679b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0071-4743
0000-0003-0426-1657
OpenAccessLink http://dx.doi.org/10.1177/00368504221149797
PMID 36617882
PQID 2792406153
PQPubID 1586336
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10399272
proquest_journals_2792406153
pubmed_primary_36617882
crossref_citationtrail_10_1177_00368504221149797
crossref_primary_10_1177_00368504221149797
sage_journals_10_1177_00368504221149797
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
– name: London
– name: Sage UK: London, England
PublicationTitle Science progress (1916)
PublicationTitleAlternate Sci Prog
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Ibrahim, Negera 2020; 2020
Sarkar, Rabbi, Arifuzzaman 2019
Chamkha, Rashad, Aly 2013; 48
Tlili, Khan, Ramadan 2019; 8
Ullah, Khan, Wahab 2022; 2022
Gireesha, Mahanthesh, Rashidi 2015; 7
Mohyud-Din, Khan, Ahmed 2020; 25
Adnan 2022
Mackolil, Shehzad, Al-Kouz 2021
Dinarvand 2019; 25
Kumbhakar, Nandi, Chamkha 2022; 79
Ahmed, Khan, Mohyud-Din 2018; 119
Li, Muhammad, Bilal 2021; 60
Adnan, Ashraf 2022
Fallah, Dinarvand, Yazdi 2019; 5
Khan, Shafquatullah, Malik 2017; 7
Gireesha, Thammanna, Gorla 2016; 5
Dinarvand, Hosseini, Pop 2015; 25
Hussain, Malik 2021; 126
Ashraf, Alghtani, Khan 2022; 2022
Alharbia, Bani-Fwaz, Eldin 2022
Anjum, Khan, Mousa 2022
Ali, Marwat, Asghar 2019
Gul, Kashifullah, Alghamdi 2021
Afsana, Nag, Molla, Thohura 2021; 2324
2022
Dinarvand, Hosseini, Pop 2016; 26
Dinarvand, Hosseini, Pop 2016; 311
Mondal, Das, Kundu 2020; 49
Kumar, Uma 2022
Ranan, Thriveni, Muhammad 2022
Murtaza, Hussain, Rehman 2022
Islam, Khan, Kumam 2020; 10
Abbas, Nadeem, Saleem 2021; 69
Reza, Rostami 2019; 49
Adnan, Shemseldin, Khan 2022
Basir, Uddin, Ismail 2016; 6
Ashraf, Khan, Andualem 2022; 12
bibr22-00368504221149797
bibr32-00368504221149797
bibr12-00368504221149797
bibr15-00368504221149797
bibr18-00368504221149797
bibr25-00368504221149797
bibr35-00368504221149797
bibr38-00368504221149797
bibr28-00368504221149797
bibr30-00368504221149797
bibr5-00368504221149797
bibr20-00368504221149797
bibr2-00368504221149797
bibr33-00368504221149797
bibr9-00368504221149797
bibr36-00368504221149797
Gireesha BJ (bibr16-00368504221149797) 2015; 7
bibr29-00368504221149797
bibr3-00368504221149797
bibr13-00368504221149797
bibr19-00368504221149797
bibr6-00368504221149797
bibr23-00368504221149797
bibr10-00368504221149797
bibr8-00368504221149797
bibr37-00368504221149797
bibr24-00368504221149797
bibr4-00368504221149797
bibr31-00368504221149797
Reza M (bibr27-00368504221149797) 2019; 49
bibr17-00368504221149797
bibr7-00368504221149797
Fallah B (bibr26-00368504221149797) 2019; 5
bibr34-00368504221149797
bibr1-00368504221149797
bibr11-00368504221149797
bibr14-00368504221149797
bibr21-00368504221149797
References_xml – volume: 5
  start-page: 976
  year: 2019
  end-page: 988
  article-title: MHD flow and heat transfer of SiC-TiO /DO hybrid nanofluid due to a permeable spinning disk by a novel algorithm
  publication-title: J Appl Comput Mech
– volume: 10
  year: 2020
  article-title: Radiative mixed convection flow of Maxwell nanofluid over a stretching cylinder with Joule heating and heat source/sink effects
  publication-title: Sci Rep
– volume: 311
  start-page: 147
  year: 2016
  end-page: 156
  article-title: Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model
  publication-title: Powder Technol
– volume: 26
  start-page: 40
  year: 2016
  end-page: 62
  article-title: Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 79
  start-page: 38
  year: 2022
  end-page: 56
  article-title: Unsteady hybrid nanofluid flow over a convectively heated cylinder with inclined magnetic field and viscous dissipation: A multiple regression analysis
  publication-title: Chin J Phys
– year: 2021
  article-title: Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk
  publication-title: Sci Rep
– volume: 69
  start-page: 109
  year: 2021
  end-page: 117
  article-title: MHD of hybrid nanofluid flow over nonlinear stretching cylinder
  publication-title: Chin J Phys
– volume: 8
  start-page: 179
  year: 2019
  end-page: 186
  article-title: MHD flow of nanofluid flow across horizontal circular cylinder: Steady forced convection
  publication-title: J Nanofluids
– volume: 49
  start-page: 2183
  year: 2020
  end-page: 2193
  article-title: Influence of an inclined stretching cylinder over MHD mixed convective nanofluid flow due to chemical reaction and viscous dissipation
  publication-title: Heat Transfer
– year: 2022
  article-title: Heat transfer inspection in [(ZnO-MWCNTs)/water-EG(50:50)]hnf with thermal radiation ray and convective condition over a Riga surface
  publication-title: Waves Random Complex Media
– volume: 5
  start-page: 911
  year: 2016
  end-page: 919
  article-title: Numerical investigation on boundary layer flow of a nanofluid towards an inclined plate with convective boundary: Boungiorno nanofluid model
  publication-title: J Nanofluids
– year: 2022
  article-title: Numerical thermal featuring in γAl O -C H O nanofluid under the influence of thermal radiation and convective heat condition by inducing novel effects of effective Prandtl number model (EPNM)
  publication-title: Adv Mech Eng
– volume: 2324
  start-page: 050024
  year: 2021
  article-title: Natural convection flow of nanofluids over horizontal circular cylinder with uniform surface heat flux
  publication-title: AIP Conf Proc
– year: 2022
  article-title: Numerical energy storage efficiency of MWCNTs-propylene glycol by inducing thermal radiations and combined convection effects in the constitutive model
  publication-title: Front Chem
– year: 2019
  article-title: Viscous flow over a stretching (shrinking) and porous cylinder of non-uniform radius
  publication-title: Adv Mech Eng
– volume: 49
  start-page: 149
  year: 2019
  end-page: 169
  article-title: Mixed convection of a Cu-Ag/water hybrid nanofluid along a vertical porous cylinder via modified Tiwari-Das model
  publication-title: J Theor Appl Mech
– year: 2022
  article-title: Numerical heat performance of TiO /Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel
  publication-title: Case Stud Therm Eng
– volume: 60
  start-page: 4787
  year: 2021
  end-page: 4796
  article-title: Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk
  publication-title: Alex Eng J
– volume: 25
  year: 2020
  article-title: Thermal transport investigation in magneto-radiative GO-MoS /H O-C H O hybrid nanofluid subject to Cattaneo–Christov model
  publication-title: Molecules
– volume: 25
  start-page: 2609
  year: 2019
  end-page: 2623
  article-title: Nodal/saddle stagnation-point boundary layer flow of CuO–ag/water hybrid nanofluid: A novel hybridity model
  publication-title: Microsyst Technol
– volume: 25
  start-page: 1176
  year: 2015
  end-page: 1197
  article-title: Unsteady convective heat and mass transfer of a nanofluid in howarth’s stagnation point by Buongiorno’s model
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 12
  year: 2022
  article-title: Thermal transport investigation and shear drag at solid–liquid interface of modified permeable radiative-SRID subject to Darcy–Forchheimer fluid flow composed by γ-nanomaterial
  publication-title: Sci Rep
– volume: 119
  start-page: 296
  year: 2018
  end-page: 308
  article-title: A theoretical investigation of unsteady thermally stratified flow of γAl O −H O and γAl O −C2H O nanofluids through a thin slit
  publication-title: J Phys Chem Solids
– year: 2019
  article-title: MHD radiative flow of Casson and Williamson nanofluids over an inclined cylindrical surface with chemical reaction effects
  publication-title: Int J Heat Technol
– year: 2022
  article-title: MHD Casson nanofluid flow over a stretching surface with melting heat transfer condition
  publication-title: Heat Transfer
– year: 2021
  article-title: Exponential heat source effects on the stagnation-point heat transport of Williamson nanoliquid with nonlinear Boussinesq approximation
  publication-title: Heat Transfer
– volume: 2022
  year: 2022
  article-title: Thermal transport in radiative nanofluids by considering the influence of convective heat condition
  publication-title: J Nanomater
– year: 2022
  article-title: Energy transformation and entropy investigation in the nanofluid composed by γ-nanomaterial over a permeable convective surface with solar thermal radiation: A numerical analysis
  publication-title: Front Energy Res
– volume: 2020
  year: 2020
  article-title: The investigation of MHD Williamson nanofluid over stretching cylinder with the effect of activation energy
  publication-title: Adv Math Phys
– volume: 7
  start-page: 4001
  year: 2017
  end-page: 4012
  article-title: Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating
  publication-title: Results Phys
– year: 2022
  article-title: Thermal efficiency in hybrid (Al O -CuO/H O) and ternary hybrid nanofluids (Al O -CuO-Cu/H O) by considering the novel effects of imposed magnetic field and convective heat condition
  publication-title: Waves Random Complex Media
– volume: 6
  year: 2016
  article-title: Nanofluid slip flow over a stretching cylinder with Schmidt and Péclet number effects
  publication-title: AIP Adv
– volume: 2022
  year: 2022
  article-title: Entropy generation analysis for MHD flow of hybrid nanofluids over a curved stretching surface with shape effects
  publication-title: J Nanomater
– year: 2022
  article-title: Significance of aggregation of nanoparticles, activation energy, and Hall current to enhance the heat transfer phenomena in a nanofluid: A sensitivity analysis
  publication-title: Waves Random Complex Media
– volume: 7
  start-page: 247
  year: 2015
  end-page: 260
  article-title: MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/sink
  publication-title: Int J Ind Math
– volume: 48
  start-page: 71
  year: 2013
  end-page: 81
  article-title: Transient natural convection flow of a nanofluid over a vertical cylinder
  publication-title: Meccanica
– volume: 126
  start-page: 105425
  year: 2021
  article-title: MHD nanofluid flow over stretching cylinder with convective boundary conditions and Nield conditions in the presence of gyrotactic swimming microorganism: A biomathematical model,
  publication-title: Int Commun Heat Mass Transfer
– year: 2022
  article-title: Thermal enhancement in Falkner–Skan flow of the nanofluid by considering molecular diameter and freezing temperature
  publication-title: Sci Rep
– ident: bibr11-00368504221149797
  doi: 10.1016/j.rinp.2017.10.015
– ident: bibr17-00368504221149797
  doi: 10.1002/htj.22196
– volume: 49
  start-page: 149
  year: 2019
  ident: bibr27-00368504221149797
  publication-title: J Theor Appl Mech
– ident: bibr28-00368504221149797
  doi: 10.1016/j.jpcs.2018.01.046
– ident: bibr7-00368504221149797
  doi: 10.1155/2022/8929985
– ident: bibr1-00368504221149797
  doi: 10.1177/1687814019879842
– ident: bibr12-00368504221149797
  doi: 10.1016/j.cjph.2022.07.003
– ident: bibr23-00368504221149797
  doi: 10.1038/s41598-022-13423-7
– ident: bibr4-00368504221149797
  doi: 10.1016/j.cjph.2020.11.019
– ident: bibr30-00368504221149797
  doi: 10.1108/HFF-12-2014-0387
– ident: bibr29-00368504221149797
  doi: 10.3390/molecules25112592
– ident: bibr38-00368504221149797
  doi: 10.1016/j.powtec.2016.12.058
– ident: bibr8-00368504221149797
  doi: 10.1002/htj.22646
– ident: bibr18-00368504221149797
  doi: 10.1166/jon.2016.1277
– ident: bibr20-00368504221149797
  doi: 10.1016/j.csite.2022.102568
– ident: bibr2-00368504221149797
  doi: 10.1007/s11012-012-9584-8
– ident: bibr35-00368504221149797
  doi: 10.1177/16878132221106577
– ident: bibr13-00368504221149797
  doi: 10.1016/j.icheatmasstransfer.2021.105425
– ident: bibr15-00368504221149797
  doi: 10.18280/ijht.370421
– ident: bibr36-00368504221149797
  doi: 10.1038/s41598-022-07045-2
– ident: bibr19-00368504221149797
  doi: 10.1080/17455030.2022.2065043
– ident: bibr37-00368504221149797
  doi: 10.3389/fenrg.2022.888389
– ident: bibr6-00368504221149797
  doi: 10.1063/5.0037580
– ident: bibr21-00368504221149797
  doi: 10.1038/s41598-020-80750-y
– ident: bibr22-00368504221149797
  doi: 10.1016/j.aej.2021.03.062
– ident: bibr3-00368504221149797
  doi: 10.1038/s41598-020-74393-2
– volume: 7
  start-page: 247
  year: 2015
  ident: bibr16-00368504221149797
  publication-title: Int J Ind Math
– ident: bibr32-00368504221149797
  doi: 10.1080/17455030.2022.2092233
– ident: bibr24-00368504221149797
  doi: 10.1007/s00542-019-04332-3
– ident: bibr25-00368504221149797
  doi: 10.1080/17455030.2022.2119300
– ident: bibr31-00368504221149797
  doi: 10.1108/HFF-04-2014-0095
– ident: bibr33-00368504221149797
  doi: 10.1155/2022/1854381
– volume: 5
  start-page: 976
  year: 2019
  ident: bibr26-00368504221149797
  publication-title: J Appl Comput Mech
– ident: bibr34-00368504221149797
  doi: 10.3389/fchem.2022.879276
– ident: bibr10-00368504221149797
  doi: 10.1166/jon.2019.1574
– ident: bibr9-00368504221149797
  doi: 10.1155/2020/9523630
– ident: bibr14-00368504221149797
  doi: 10.1002/htj.21714
– ident: bibr5-00368504221149797
  doi: 10.1063/1.4951675
SSID ssj0015168
Score 2.546749
Snippet Applications The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and...
The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and industrialist because...
Applications The nanofluids and their upgraded version (ternary and tetra nanofluids) have a very rich thermal mechanism and convinced engineers and...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 368504221149797
SubjectTerms Aluminum oxide
Biotechnology
Convection
Cylinders
Heat transfer
Magnetic fields
Mathematical analysis
Mechanical engineering
Movement
Nanofluids
Original Manuscript
Permeability
Thermodynamic efficiency
Thermophysical models
Thermophysical properties
Titanium dioxide
Title Thermal efficiency of radiated tetra-hybrid nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection
URI https://journals.sagepub.com/doi/full/10.1177/00368504221149797
https://www.ncbi.nlm.nih.gov/pubmed/36617882
https://www.proquest.com/docview/2792406153
https://pubmed.ncbi.nlm.nih.gov/PMC10399272
Volume 106
WOSCitedRecordID wos000983636400034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2047-7163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015168
  issn: 0036-8504
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2sQdeEONaGMgPXDYijzRubo_d2IREaXnoxCSEosRJtkhZUtp0W_l9_DDOcZxLWzHBAy9RFMd22vP5nOPj48-EvIrAYYscYTI0Lwy0ZMycyI2Y6AoBFg18BktuFB7Yw6FzduZ-2djcrvbCXKV2ljk3N-7kv4oanoGwcevsP4i7bhQewD0IHa4gdrj-reBB2aaYqZHIgSvX0KfIQYDeZREVU59dLHCnlpb5WR6nc7h7bR6Cr9lPjRFnR_MRGycjg_VBDyBR6LWPS-rmB1lXnpw7Rb7jy6gk-V40WSHwb2nyhGcQfbrQwMk_Bz2uiUWayFqzeYCBH_R4L30oQrpYmURX7a-DiTq-j7nwosaMcp4rPSRzylBDI8mUi2GBJpoRZg3c-wHYaO0r2GkVn8YAuXboZwmDn_RT-4z56E3RJz_zF3lrsxJgNz-_9tuBEYOvBEbaOU9lUmGTJyVNATIxm-XZxweRfGYgbQVMIPmSedCt1XGwbnbkwjc2iS0aMKnuuXaZd7xM8T0ceSeng4E3Pj4bv5n8YHj6GWYJqKNgNskdwzZdtwoNqNUws2s5NXk0dKBW5yVx2Gqfy_7V2qRpPfe3lcAofarxfXJPTYZovwTxDtmIsgdkR4l5RvcUJ_r-Q_JLoZo2qKZ5TCtU0zaqaY1q-m1vDdH77yWav8saVGKZtrFMFZYpYpk2WKYKy7TCMlVYpkVOKyxTiWUKWKYVlmmD5Ufk9OR4fPSRqQNImOjxXsGc2LHj0AIg89i2kYGVG7ERWjwAFyKAQh4aehhwOxS-HlnCxtlF7IqAw0TCdgP-mGxleRY9JbTH9dDXwRu23BhcwC40xkF_OpFpBrYbmx2iV2LzhGLnx0NiUq9bEfKvSrpD3tVVJiU1zW0v71ZY8JSymnlIHooOvck75EkJi7olbuHmYcfoEGcJMPULyEu_XJIlF5KfHrNLXMOGqm8RW01_f_y6Z7d_3XNytxngu2SrmM6jF2RbXBXJbPpSjpXf4lsNlA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+efficiency+of+radiated+tetra-hybrid+nanofluid+%5B%28Al2O3-CuO-TiO2-Ag%29%2Fwater%5Dtetra+under+permeability+effects+over+vertically+aligned+cylinder+subject+to+magnetic+field+and+combined+convection&rft.jtitle=Science+progress+%281916%29&rft.au=Adnan&rft.au=Abbas+Waseem&rft.au=Z+Bani-Fwaz+Mutasem&rft.au=Kanayo%2C+Kenneth+Asogwa&rft.date=2023-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=0036-8504&rft.eissn=2047-7163&rft.volume=106&rft.issue=1&rft_id=info:doi/10.1177%2F00368504221149797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8504&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8504&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8504&client=summon