Integrated computation model of lithium-ion battery subject to nail penetration
[Display omitted] •A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational model.•Governing factors of the penetration induced short-circuit is discussed.•Critical safety battery design guidance is suggested. The nail penet...
Saved in:
| Published in: | Applied energy Vol. 183; pp. 278 - 289 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2016
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational model.•Governing factors of the penetration induced short-circuit is discussed.•Critical safety battery design guidance is suggested.
The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design. |
|---|---|
| AbstractList | The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design. [Display omitted] •A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational model.•Governing factors of the penetration induced short-circuit is discussed.•Critical safety battery design guidance is suggested. The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design. |
| Author | Liu, Binghe Xu, Jun Yin, Sha |
| Author_xml | – sequence: 1 givenname: Binghe surname: Liu fullname: Liu, Binghe organization: Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Sha surname: Yin fullname: Yin, Sha organization: Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Jun surname: Xu fullname: Xu, Jun email: junxu@buaa.edu.cn organization: Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, Beijing 100191, China |
| BookMark | eNqFkMtOwzAQRS1UJErhF1CWbBJs5y2xAFU8KlXqBtaWH5PiKImL7SD173EIbNh0Zc3VnPHMuUSLwQyA0A3BCcGkuGsTfoAB7P6Y0FAnuJryM7QkVUnjmpBqgZY4xUVMC1JfoEvnWowxJRQv0W4zeNhb7kFF0vSH0XOvzRD1RkEXmSbqtP_QYx9PoeDegz1GbhQtSB95Ew1cd9H0vbc_4BU6b3jn4Pr3XaH356e39Wu83b1s1o_bWGZp5uMyEwJTSTkOKyuepUIVAhNOs6rJiRQNJUTkJRVpXSrFqzRTTV5XTZFneaaoTFfodp57sOZzBOdZr52EruMDmNExGi5MSUpzHFrv51ZpjXMWGib1fGXYWXeMYDZ5ZC3788gmjwxXUx7w4h9-sLrn9ngafJhBCB6-NFjmpIZBgtI22GPK6FMjvgFX0JSh |
| CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2024_107947 crossref_primary_10_1016_j_jpowsour_2025_238104 crossref_primary_10_1016_j_apenergy_2022_119527 crossref_primary_10_1080_15376494_2024_2359648 crossref_primary_10_12677_mos_2025_144326 crossref_primary_10_3390_polym13121971 crossref_primary_10_1016_j_enchem_2022_100082 crossref_primary_10_1016_j_engfailanal_2022_106399 crossref_primary_10_1016_j_renene_2024_120762 crossref_primary_10_3390_batteries8110243 crossref_primary_10_1016_j_apenergy_2020_114518 crossref_primary_10_1016_j_jpowsour_2024_235471 crossref_primary_10_1016_j_pecs_2018_11_002 crossref_primary_10_1007_s41918_024_00233_w crossref_primary_10_1016_j_applthermaleng_2020_115129 crossref_primary_10_1038_s41598_020_58021_7 crossref_primary_10_4271_2018_01_1446 crossref_primary_10_1016_j_apenergy_2023_121610 crossref_primary_10_1002_batt_201900081 crossref_primary_10_1016_j_energy_2025_136682 crossref_primary_10_1016_j_apenergy_2019_113365 crossref_primary_10_1080_13588265_2019_1632545 crossref_primary_10_1007_s10973_020_10149_4 crossref_primary_10_1016_j_engfailanal_2017_09_003 crossref_primary_10_1016_j_compstruct_2019_03_046 crossref_primary_10_1016_j_jpowsour_2025_236610 crossref_primary_10_3390_sym12020246 crossref_primary_10_1016_j_pecs_2019_03_002 crossref_primary_10_1177_09544070221104858 crossref_primary_10_1016_j_jclepro_2018_03_259 crossref_primary_10_1016_j_est_2021_103270 crossref_primary_10_1016_j_tws_2024_111985 crossref_primary_10_1080_13588265_2020_1766397 crossref_primary_10_1016_j_jclepro_2020_124094 crossref_primary_10_1016_j_jpowsour_2024_235213 crossref_primary_10_3390_polym12030648 crossref_primary_10_1002_er_5600 crossref_primary_10_3390_en15218244 crossref_primary_10_1016_j_ijmecsci_2020_105496 crossref_primary_10_1016_j_est_2023_108518 crossref_primary_10_1016_j_prime_2023_100342 crossref_primary_10_1016_j_apenergy_2019_05_015 crossref_primary_10_1002_aenm_202002869 crossref_primary_10_1016_j_est_2025_116940 crossref_primary_10_1016_j_est_2025_117239 crossref_primary_10_1007_s11340_017_0282_2 crossref_primary_10_1016_j_est_2020_102090 crossref_primary_10_1002_est2_130 crossref_primary_10_1007_s12206_023_0731_z crossref_primary_10_1007_s41918_024_00232_x crossref_primary_10_1002_er_4588 crossref_primary_10_1016_j_est_2023_107145 crossref_primary_10_1016_j_jpowsour_2022_231602 crossref_primary_10_1016_j_procir_2023_02_181 crossref_primary_10_1002_er_6920 crossref_primary_10_1016_j_jpowsour_2021_230830 crossref_primary_10_1016_j_jpowsour_2023_233509 crossref_primary_10_1016_j_est_2024_114073 crossref_primary_10_1016_j_ijimpeng_2025_105239 crossref_primary_10_1016_j_jpowsour_2020_228360 crossref_primary_10_3390_app15052713 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119590 crossref_primary_10_1016_j_apenergy_2019_113343 crossref_primary_10_1016_j_cej_2025_164331 crossref_primary_10_1016_j_est_2025_118294 crossref_primary_10_1016_j_jpowsour_2018_02_024 crossref_primary_10_1088_1755_1315_268_1_012065 crossref_primary_10_3390_en13184636 crossref_primary_10_1016_j_jpowsour_2018_04_092 crossref_primary_10_3390_en10101636 crossref_primary_10_1016_j_energy_2020_117906 crossref_primary_10_1016_j_ijmecsci_2025_110392 crossref_primary_10_1016_j_jpowsour_2020_227939 crossref_primary_10_1016_j_jpowsour_2019_226928 crossref_primary_10_1016_j_rser_2021_110790 crossref_primary_10_3390_batteries10100353 crossref_primary_10_3390_en15020623 crossref_primary_10_1007_s10694_025_01707_z crossref_primary_10_1016_j_ijheatmasstransfer_2024_126020 crossref_primary_10_1016_j_est_2024_112624 crossref_primary_10_1016_j_est_2024_114489 crossref_primary_10_1016_j_jpowsour_2020_228070 crossref_primary_10_1016_j_electacta_2017_10_045 crossref_primary_10_1016_j_jpowsour_2019_227468 crossref_primary_10_1016_j_jpowsour_2019_227501 crossref_primary_10_1016_j_ssi_2024_116471 crossref_primary_10_1007_s11581_020_03706_2 crossref_primary_10_1016_j_est_2020_101577 crossref_primary_10_1088_2515_7655_adb5c0 crossref_primary_10_1016_j_jpowsour_2025_238265 crossref_primary_10_1016_j_est_2024_111543 crossref_primary_10_1016_j_jclepro_2019_03_065 crossref_primary_10_3390_app11031247 crossref_primary_10_3390_en14185960 crossref_primary_10_1016_j_egyr_2022_05_183 crossref_primary_10_1016_j_energy_2022_126027 crossref_primary_10_1016_j_est_2023_107320 crossref_primary_10_1016_j_est_2024_110570 crossref_primary_10_1371_journal_pone_0172424 crossref_primary_10_1016_j_energy_2022_123715 crossref_primary_10_1002_er_4965 crossref_primary_10_1016_j_est_2023_107688 crossref_primary_10_2298_TSCI230402196Y crossref_primary_10_3390_batteries8050048 crossref_primary_10_1016_j_energy_2023_130145 crossref_primary_10_1016_j_engfailanal_2018_04_041 crossref_primary_10_1016_j_est_2023_108929 crossref_primary_10_1016_j_jpowsour_2025_237102 crossref_primary_10_1016_j_applthermaleng_2018_10_011 crossref_primary_10_1007_s10694_020_00967_1 crossref_primary_10_1016_j_energy_2022_126166 crossref_primary_10_1016_j_est_2024_112004 crossref_primary_10_1016_j_jpowsour_2023_233777 crossref_primary_10_1016_j_cej_2024_154732 crossref_primary_10_1007_s00158_018_1901_y crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_036 crossref_primary_10_1016_j_jpowsour_2022_231733 crossref_primary_10_1002_advs_202302496 crossref_primary_10_1002_er_5126 crossref_primary_10_1016_j_est_2023_107505 crossref_primary_10_1371_journal_pone_0185922 crossref_primary_10_1016_j_jpowsour_2020_228678 crossref_primary_10_1016_j_apenergy_2023_121790 crossref_primary_10_1016_j_est_2024_112371 crossref_primary_10_1038_s41598_019_49616_w crossref_primary_10_1002_adma_202008088 crossref_primary_10_3390_en9110865 crossref_primary_10_1016_j_jpowsour_2021_229897 crossref_primary_10_1016_j_est_2024_112824 crossref_primary_10_1016_j_est_2025_116358 crossref_primary_10_1109_TIE_2018_2889623 crossref_primary_10_1016_j_psep_2025_107471 crossref_primary_10_1016_j_jpowsour_2019_227667 crossref_primary_10_3390_en16155823 crossref_primary_10_1016_j_jpowsour_2018_05_097 crossref_primary_10_1038_s41598_024_58891_1 crossref_primary_10_1088_2516_1083_ac8333 crossref_primary_10_3390_en16176346 crossref_primary_10_1016_j_cej_2021_133536 crossref_primary_10_1016_j_est_2021_102768 crossref_primary_10_1002_bte2_20250036 crossref_primary_10_3390_polym14173664 crossref_primary_10_1016_j_apenergy_2018_06_126 crossref_primary_10_1002_er_4774 |
| Cites_doi | 10.1016/j.jpowsour.2013.09.145 10.1016/j.electacta.2011.01.012 10.1149/1.2054684 10.1016/j.electacta.2008.04.023 10.1149/1.2817888 10.1016/j.apenergy.2016.04.016 10.1039/c4ra00983e 10.1016/j.engfailanal.2015.03.025 10.1016/j.apenergy.2015.10.019 10.1016/j.apenergy.2016.03.108 10.1149/1.3597614 10.1039/C5RA17865G 10.1016/j.jpowsour.2013.11.069 10.1149/2.012405eel 10.1016/j.jpowsour.2013.09.128 10.1016/j.electacta.2014.03.113 10.1038/nature16502 10.1016/j.jpowsour.2011.05.026 10.1007/s11027-014-9611-2 10.1149/1.1785013 10.1039/c3ra23502e 10.1038/424635b 10.1149/2.132306jes 10.1016/j.jpowsour.2009.05.002 10.1016/j.matdes.2016.01.082 10.1149/1.3591799 10.1149/1.2783772 10.1016/j.apenergy.2015.04.118 10.1149/2.0351409jes 10.1016/j.jpowsour.2015.04.162 10.1016/j.apenergy.2016.01.012 10.1149/1.3095513 10.1016/j.jpowsour.2013.03.170 10.1016/j.apenergy.2015.12.068 10.1016/j.jpowsour.2012.04.055 10.1149/2.096206jes 10.1038/srep21829 10.1016/j.apenergy.2015.03.080 10.1016/j.jpowsour.2013.10.004 10.1016/j.jpowsour.2012.07.057 10.1016/j.commatsci.2013.10.002 10.1016/j.apenergy.2014.08.013 10.1016/j.apenergy.2015.12.021 10.1016/j.apenergy.2014.04.092 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2016.08.101 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 289 |
| ExternalDocumentID | 10_1016_j_apenergy_2016_08_101 S0306261916311990 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c434t-74bb02c2a0201da43bd6b01a248f51cbf211b572b397dda834df598f65454d2c3 |
| ISICitedReferencesCount | 181 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391897600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 21:37:05 EDT 2025 Sat Nov 29 07:23:52 EST 2025 Tue Nov 18 21:17:03 EST 2025 Fri Feb 23 02:32:50 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion battery Short circuit Coupled computation modeling Nail penetration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c434t-74bb02c2a0201da43bd6b01a248f51cbf211b572b397dda834df598f65454d2c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0306261916311990-fx1_lrg.jpg |
| PQID | 2000313250 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2000313250 crossref_citationtrail_10_1016_j_apenergy_2016_08_101 crossref_primary_10_1016_j_apenergy_2016_08_101 elsevier_sciencedirect_doi_10_1016_j_apenergy_2016_08_101 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-01 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sahraei, Kahn, Meier, Wierzbicki (b0085) 2015; 5 Xu, Liu, Wang, Shang (b0205) 2015; 53 Wang, Zhang, Ge, Xu, Ji, Yang (b0010) 2016; 529 Bertram (b0190) 2005 Sahraei, Campbell, Wierzbicki (b0090) 2012; 220 Malavé, Berger, Zhu, Kee (b0175) 2014; 130 Lai, Ciucci (b0220) 2011; 56 Srinivasan, Newman (b0125) 2004; 151 Guo, Kim, White (b0155) 2013; 240 Kim, Pesaran, Smith, Lee, Santhanagopalan (b0160) 2011; 158 Zhao, Liu, Gu (b0070) 2016; 173 Newman, Thomas-Alyea (b0225) 2012 Wu, Xiao, Huang, Yan (b0170) 2014; 83 Tang, Albertus, Newman (b0110) 2009; 156 Ramadass, Fang, Zhang (b0150) 2014; 248 Chen, Yan, Sun, Qi, Li (b0235) 2014; 161 Franco (b0165) 2013; 3 Nyman, Behm, Lindbergh (b0135) 2008; 53 Fang, Ramadass, Zhang (b0055) 2014; 248 Xu, Liu, Wang, Hu (b0095) 2016; 172 Shi, Xiao, Huang, Kia (b0210) 2011; 196 Multiphysics C. COMSOL multiphysics user guide (Version 4.3 a). COMSOL, AB; 2012. Wang, Tseng, Zhao, Wei (b0040) 2014; 134 Holman (b0240) 1963 Ling, Wang, Fang, Gao, Zhang (b0030) 2015; 148 Rao, Wang, Huang (b0035) 2016; 164 Stephenson, Hartman, Harb, Wheeler (b0115) 2007; 154 Chen, Sun, Qi, Li (b0025) 2014; 3 Miranda, Costa, Almeida, Lanceros-Mendez (b0230) 2016; 165 Doyle (b0100) 1995 Feng, He, Ouyang, Lu, Wu, Kulp (b0065) 2015; 154 Lai, Ali, Pan (b0080) 2014; 248 Xu, Wang, Guan, Yin (b0195) 2016; 95 Feng, He, Ouyang, Lu, Wu, Kulp (b0045) 2015; 154 Barai, Mukherjee (b0180) 2013; 160 Zhang, Santhanagopalan, Sprague, Pesaran (b0185) 2015; 290 Zavalis, Behm, Lindbergh (b0140) 2012; 159 Greve, Fehrenbach (b0075) 2012; 214 Gerver, Meyers (b0120) 2011; 158 Santhanagopalan, Ramadass, Zhang (b0145) 2009; 194 Chen, Yan, Sun, Qi, Li (b0200) 2014; 4 Kumaresan, Sikha, White (b0130) 2008; 155 Hammami, Raymond, Armand (b0060) 2003; 424 Ping, Wang, Huang, Sun, Chen (b0015) 2014; 129 Chiu, Lin, Yeh, Lin, Chen (b0050) 2014; 251 Xu, Liu, Hu (b0250) 2016; 6 Feng, Weng, Ouyang, Sun (b0020) 2016; 161 Fuller, Doyle, Newman (b0105) 1994; 141 Zhou, Wang, Hao, Johnson, Wang, Hao (b0005) 2015; 20 Merlin, Delaunay, Soto, Traonvouez (b0245) 2016; 166 Holman (10.1016/j.apenergy.2016.08.101_b0240) 1963 Zhang (10.1016/j.apenergy.2016.08.101_b0185) 2015; 290 Santhanagopalan (10.1016/j.apenergy.2016.08.101_b0145) 2009; 194 Xu (10.1016/j.apenergy.2016.08.101_b0195) 2016; 95 Greve (10.1016/j.apenergy.2016.08.101_b0075) 2012; 214 Tang (10.1016/j.apenergy.2016.08.101_b0110) 2009; 156 Fuller (10.1016/j.apenergy.2016.08.101_b0105) 1994; 141 Srinivasan (10.1016/j.apenergy.2016.08.101_b0125) 2004; 151 Barai (10.1016/j.apenergy.2016.08.101_b0180) 2013; 160 Xu (10.1016/j.apenergy.2016.08.101_b0205) 2015; 53 Shi (10.1016/j.apenergy.2016.08.101_b0210) 2011; 196 Doyle (10.1016/j.apenergy.2016.08.101_b0100) 1995 Miranda (10.1016/j.apenergy.2016.08.101_b0230) 2016; 165 Rao (10.1016/j.apenergy.2016.08.101_b0035) 2016; 164 Zavalis (10.1016/j.apenergy.2016.08.101_b0140) 2012; 159 Chen (10.1016/j.apenergy.2016.08.101_b0025) 2014; 3 10.1016/j.apenergy.2016.08.101_b0215 Feng (10.1016/j.apenergy.2016.08.101_b0065) 2015; 154 Xu (10.1016/j.apenergy.2016.08.101_b0250) 2016; 6 Nyman (10.1016/j.apenergy.2016.08.101_b0135) 2008; 53 Chiu (10.1016/j.apenergy.2016.08.101_b0050) 2014; 251 Guo (10.1016/j.apenergy.2016.08.101_b0155) 2013; 240 Stephenson (10.1016/j.apenergy.2016.08.101_b0115) 2007; 154 Zhao (10.1016/j.apenergy.2016.08.101_b0070) 2016; 173 Ping (10.1016/j.apenergy.2016.08.101_b0015) 2014; 129 Feng (10.1016/j.apenergy.2016.08.101_b0045) 2015; 154 Chen (10.1016/j.apenergy.2016.08.101_b0235) 2014; 161 Zhou (10.1016/j.apenergy.2016.08.101_b0005) 2015; 20 Lai (10.1016/j.apenergy.2016.08.101_b0080) 2014; 248 Fang (10.1016/j.apenergy.2016.08.101_b0055) 2014; 248 Feng (10.1016/j.apenergy.2016.08.101_b0020) 2016; 161 Newman (10.1016/j.apenergy.2016.08.101_b0225) 2012 Malavé (10.1016/j.apenergy.2016.08.101_b0175) 2014; 130 Xu (10.1016/j.apenergy.2016.08.101_b0095) 2016; 172 Ramadass (10.1016/j.apenergy.2016.08.101_b0150) 2014; 248 Bertram (10.1016/j.apenergy.2016.08.101_b0190) 2005 Chen (10.1016/j.apenergy.2016.08.101_b0200) 2014; 4 Wu (10.1016/j.apenergy.2016.08.101_b0170) 2014; 83 Ling (10.1016/j.apenergy.2016.08.101_b0030) 2015; 148 Wang (10.1016/j.apenergy.2016.08.101_b0040) 2014; 134 Kim (10.1016/j.apenergy.2016.08.101_b0160) 2011; 158 Merlin (10.1016/j.apenergy.2016.08.101_b0245) 2016; 166 Franco (10.1016/j.apenergy.2016.08.101_b0165) 2013; 3 Hammami (10.1016/j.apenergy.2016.08.101_b0060) 2003; 424 Sahraei (10.1016/j.apenergy.2016.08.101_b0090) 2012; 220 Sahraei (10.1016/j.apenergy.2016.08.101_b0085) 2015; 5 Kumaresan (10.1016/j.apenergy.2016.08.101_b0130) 2008; 155 Wang (10.1016/j.apenergy.2016.08.101_b0010) 2016; 529 Gerver (10.1016/j.apenergy.2016.08.101_b0120) 2011; 158 Lai (10.1016/j.apenergy.2016.08.101_b0220) 2011; 56 |
| References_xml | – volume: 95 start-page: 319 year: 2016 end-page: 328 ident: b0195 article-title: Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries publication-title: Mater Des – volume: 20 start-page: 777 year: 2015 end-page: 795 ident: b0005 article-title: Plug-in electric vehicle market penetration and incentives: a global review publication-title: Mitig Adapt Strateg Glob Change – volume: 165 start-page: 318 year: 2016 end-page: 328 ident: b0230 article-title: Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries publication-title: Appl Energy – volume: 164 start-page: 659 year: 2016 end-page: 669 ident: b0035 article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system publication-title: Appl Energy – volume: 6 start-page: 21829 year: 2016 ident: b0250 article-title: State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries publication-title: Sci Rep – volume: 248 start-page: 1090 year: 2014 end-page: 1098 ident: b0055 article-title: Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model publication-title: J Power Sources – volume: 424 start-page: 635 year: 2003 end-page: 636 ident: b0060 article-title: Runaway risk of forming toxic compounds publication-title: Nature – volume: 154 start-page: A1146 year: 2007 end-page: A1155 ident: b0115 article-title: Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries publication-title: J Electrochem Soc – volume: 220 start-page: 360 year: 2012 end-page: 372 ident: b0090 article-title: Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions publication-title: J Power Sources – volume: 156 start-page: A390 year: 2009 end-page: A399 ident: b0110 article-title: Two-dimensional modeling of lithium deposition during cell charging publication-title: J Electrochem Soc – volume: 4 start-page: 14904 year: 2014 end-page: 14914 ident: b0200 article-title: Deformation and fracture behaviors of microporous polymer separators for lithium ion batteries publication-title: RSC Adv – volume: 134 start-page: 229 year: 2014 end-page: 238 ident: b0040 article-title: Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies publication-title: Appl Energy – volume: 151 start-page: A1530 year: 2004 end-page: A1538 ident: b0125 article-title: Design and optimization of a natural graphite/iron phosphate lithium-ion cell publication-title: J Electrochem Soc – volume: 240 start-page: 80 year: 2013 end-page: 94 ident: b0155 article-title: A three-dimensional multi-physics model for a Li-ion battery publication-title: J Power Sources – volume: 158 start-page: A835 year: 2011 end-page: A843 ident: b0120 article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations publication-title: J Electrochem Soc – volume: 529 year: 2016 ident: b0010 article-title: Lithium-ion battery structure that self-heats at low temperatures publication-title: Nature – volume: 248 start-page: 769 year: 2014 end-page: 776 ident: b0150 article-title: Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique publication-title: J Power Sources – volume: 196 start-page: 8129 year: 2011 end-page: 8139 ident: b0210 article-title: Modeling stresses in the separator of a pouch lithium-ion cell publication-title: J Power Sources – volume: 83 start-page: 127 year: 2014 end-page: 136 ident: b0170 article-title: A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell publication-title: Comput Mater Sci – volume: 141 start-page: 1 year: 1994 end-page: 10 ident: b0105 article-title: Simulation and optimization of the dual lithium ion insertion cell publication-title: J Electrochem Soc – volume: 161 start-page: A1241 year: 2014 end-page: A1246 ident: b0235 article-title: Probing the roles of polymeric separators in lithium-ion battery capacity fade at elevated temperatures publication-title: J Electrochem Soc – volume: 53 start-page: 6356 year: 2008 end-page: 6365 ident: b0135 article-title: Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte publication-title: Electrochim Acta – volume: 53 start-page: 97 year: 2015 end-page: 110 ident: b0205 article-title: Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing publication-title: Eng Fail Anal – volume: 166 start-page: 107 year: 2016 end-page: 116 ident: b0245 article-title: Heat transfer enhancement in latent heat thermal storage systems: comparative study of different solutions and thermal contact investigation between the exchanger and the PCM publication-title: Appl Energy – volume: 5 start-page: 80369 year: 2015 end-page: 80380 ident: b0085 article-title: Modelling of cracks developed in lithium-ion cells under mechanical loading publication-title: RSC Adv – volume: 159 start-page: A848 year: 2012 end-page: A859 ident: b0140 article-title: Investigation of short-circuit scenarios in a lithium-ion battery cell publication-title: J Electrochem Soc – volume: 214 start-page: 377 year: 2012 end-page: 385 ident: b0075 article-title: Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells publication-title: J Power Sources – year: 1995 ident: b0100 article-title: Design and simulation of lithium rechargeable batteries – volume: 290 start-page: 102 year: 2015 end-page: 113 ident: b0185 article-title: Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse publication-title: J Power Sources – volume: 251 start-page: 254 year: 2014 end-page: 263 ident: b0050 article-title: An electrochemical modeling of lithium-ion battery nail penetration publication-title: J Power Sources – volume: 158 start-page: A955 year: 2011 end-page: A969 ident: b0160 article-title: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales publication-title: J Electrochem Soc – volume: 56 start-page: 4369 year: 2011 end-page: 4377 ident: b0220 article-title: Mathematical modeling of porous battery electrodes—revisit of Newman’s model publication-title: Electrochim Acta – volume: 3 start-page: 13027 year: 2013 end-page: 13058 ident: b0165 article-title: Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges publication-title: RSC Adv – reference: Multiphysics C. COMSOL multiphysics user guide (Version 4.3 a). COMSOL, AB; 2012. – volume: 160 start-page: A955 year: 2013 end-page: A967 ident: b0180 article-title: Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes publication-title: J Electrochem Soc – volume: 161 start-page: 168 year: 2016 end-page: 180 ident: b0020 article-title: Online internal short circuit detection for a large format lithium ion battery publication-title: Appl Energy – year: 1963 ident: b0240 article-title: Heat transfer – volume: 130 start-page: 707 year: 2014 end-page: 717 ident: b0175 article-title: A computational model of the mechanical behavior within reconstructed Li publication-title: Electrochim Acta – volume: 155 start-page: A164 year: 2008 end-page: A171 ident: b0130 article-title: Thermal model for a Li-ion cell publication-title: J Electrochem Soc – volume: 154 start-page: 74 year: 2015 end-page: 91 ident: b0065 article-title: Thermal runaway propagation model for designing a safer battery pack with 25 publication-title: Appl Energy – volume: 172 start-page: 180 year: 2016 end-page: 189 ident: b0095 article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies publication-title: Appl Energy – year: 2012 ident: b0225 article-title: Electrochemical systems – volume: 3 start-page: A41 year: 2014 end-page: A44 ident: b0025 article-title: A coupled penetration-tension method for evaluating the reliability of battery separators publication-title: ECS Electrochem Lett – volume: 173 start-page: 29 year: 2016 end-page: 39 ident: b0070 article-title: Simulation and experimental study on lithium ion battery short circuit publication-title: Appl Energy – volume: 248 start-page: 789 year: 2014 end-page: 808 ident: b0080 article-title: Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions publication-title: J Power Sources – volume: 194 start-page: 550 year: 2009 end-page: 557 ident: b0145 article-title: Analysis of internal short-circuit in a lithium ion cell publication-title: J Power Sources – volume: 129 start-page: 261 year: 2014 end-page: 273 ident: b0015 article-title: Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method publication-title: Appl Energy – start-page: 205 year: 2005 end-page: 225 ident: b0190 article-title: Elasticity and plasticity of large deformations, vol. 6 – volume: 154 start-page: 74 year: 2015 end-page: 91 ident: b0045 article-title: Thermal runaway propagation model for designing a safer battery pack with 25 publication-title: Appl Energy – volume: 148 start-page: 403 year: 2015 end-page: 409 ident: b0030 article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling publication-title: Appl Energy – volume: 248 start-page: 769 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0150 article-title: Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.145 – volume: 56 start-page: 4369 year: 2011 ident: 10.1016/j.apenergy.2016.08.101_b0220 article-title: Mathematical modeling of porous battery electrodes—revisit of Newman’s model publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.01.012 – volume: 141 start-page: 1 year: 1994 ident: 10.1016/j.apenergy.2016.08.101_b0105 article-title: Simulation and optimization of the dual lithium ion insertion cell publication-title: J Electrochem Soc doi: 10.1149/1.2054684 – volume: 53 start-page: 6356 year: 2008 ident: 10.1016/j.apenergy.2016.08.101_b0135 article-title: Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.04.023 – volume: 155 start-page: A164 year: 2008 ident: 10.1016/j.apenergy.2016.08.101_b0130 article-title: Thermal model for a Li-ion cell publication-title: J Electrochem Soc doi: 10.1149/1.2817888 – volume: 173 start-page: 29 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0070 article-title: Simulation and experimental study on lithium ion battery short circuit publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.04.016 – year: 1963 ident: 10.1016/j.apenergy.2016.08.101_b0240 – volume: 4 start-page: 14904 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0200 article-title: Deformation and fracture behaviors of microporous polymer separators for lithium ion batteries publication-title: RSC Adv doi: 10.1039/c4ra00983e – volume: 53 start-page: 97 year: 2015 ident: 10.1016/j.apenergy.2016.08.101_b0205 article-title: Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2015.03.025 – volume: 161 start-page: 168 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0020 article-title: Online internal short circuit detection for a large format lithium ion battery publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.019 – volume: 172 start-page: 180 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0095 article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.108 – year: 1995 ident: 10.1016/j.apenergy.2016.08.101_b0100 – volume: 158 start-page: A955 year: 2011 ident: 10.1016/j.apenergy.2016.08.101_b0160 article-title: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales publication-title: J Electrochem Soc doi: 10.1149/1.3597614 – volume: 5 start-page: 80369 year: 2015 ident: 10.1016/j.apenergy.2016.08.101_b0085 article-title: Modelling of cracks developed in lithium-ion cells under mechanical loading publication-title: RSC Adv doi: 10.1039/C5RA17865G – volume: 251 start-page: 254 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0050 article-title: An electrochemical modeling of lithium-ion battery nail penetration publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.11.069 – volume: 3 start-page: A41 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0025 article-title: A coupled penetration-tension method for evaluating the reliability of battery separators publication-title: ECS Electrochem Lett doi: 10.1149/2.012405eel – volume: 248 start-page: 789 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0080 article-title: Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.128 – volume: 130 start-page: 707 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0175 article-title: A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.03.113 – volume: 529 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0010 article-title: Lithium-ion battery structure that self-heats at low temperatures publication-title: Nature doi: 10.1038/nature16502 – year: 2012 ident: 10.1016/j.apenergy.2016.08.101_b0225 – volume: 196 start-page: 8129 year: 2011 ident: 10.1016/j.apenergy.2016.08.101_b0210 article-title: Modeling stresses in the separator of a pouch lithium-ion cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.05.026 – volume: 20 start-page: 777 year: 2015 ident: 10.1016/j.apenergy.2016.08.101_b0005 article-title: Plug-in electric vehicle market penetration and incentives: a global review publication-title: Mitig Adapt Strateg Glob Change doi: 10.1007/s11027-014-9611-2 – volume: 151 start-page: A1530 year: 2004 ident: 10.1016/j.apenergy.2016.08.101_b0125 article-title: Design and optimization of a natural graphite/iron phosphate lithium-ion cell publication-title: J Electrochem Soc doi: 10.1149/1.1785013 – volume: 3 start-page: 13027 year: 2013 ident: 10.1016/j.apenergy.2016.08.101_b0165 article-title: Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges publication-title: RSC Adv doi: 10.1039/c3ra23502e – volume: 424 start-page: 635 year: 2003 ident: 10.1016/j.apenergy.2016.08.101_b0060 article-title: Runaway risk of forming toxic compounds publication-title: Nature doi: 10.1038/424635b – volume: 160 start-page: A955 year: 2013 ident: 10.1016/j.apenergy.2016.08.101_b0180 article-title: Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes publication-title: J Electrochem Soc doi: 10.1149/2.132306jes – volume: 194 start-page: 550 year: 2009 ident: 10.1016/j.apenergy.2016.08.101_b0145 article-title: Analysis of internal short-circuit in a lithium ion cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.05.002 – volume: 95 start-page: 319 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0195 article-title: Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries publication-title: Mater Des doi: 10.1016/j.matdes.2016.01.082 – volume: 158 start-page: A835 year: 2011 ident: 10.1016/j.apenergy.2016.08.101_b0120 article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations publication-title: J Electrochem Soc doi: 10.1149/1.3591799 – volume: 154 start-page: A1146 year: 2007 ident: 10.1016/j.apenergy.2016.08.101_b0115 article-title: Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries publication-title: J Electrochem Soc doi: 10.1149/1.2783772 – volume: 154 start-page: 74 year: 2015 ident: 10.1016/j.apenergy.2016.08.101_b0045 article-title: Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.118 – volume: 161 start-page: A1241 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0235 article-title: Probing the roles of polymeric separators in lithium-ion battery capacity fade at elevated temperatures publication-title: J Electrochem Soc doi: 10.1149/2.0351409jes – volume: 290 start-page: 102 year: 2015 ident: 10.1016/j.apenergy.2016.08.101_b0185 article-title: Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.04.162 – volume: 166 start-page: 107 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0245 article-title: Heat transfer enhancement in latent heat thermal storage systems: comparative study of different solutions and thermal contact investigation between the exchanger and the PCM publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.012 – start-page: 205 year: 2005 ident: 10.1016/j.apenergy.2016.08.101_b0190 – volume: 156 start-page: A390 year: 2009 ident: 10.1016/j.apenergy.2016.08.101_b0110 article-title: Two-dimensional modeling of lithium deposition during cell charging publication-title: J Electrochem Soc doi: 10.1149/1.3095513 – volume: 240 start-page: 80 year: 2013 ident: 10.1016/j.apenergy.2016.08.101_b0155 article-title: A three-dimensional multi-physics model for a Li-ion battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.170 – volume: 165 start-page: 318 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0230 article-title: Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.068 – volume: 214 start-page: 377 year: 2012 ident: 10.1016/j.apenergy.2016.08.101_b0075 article-title: Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.04.055 – volume: 154 start-page: 74 year: 2015 ident: 10.1016/j.apenergy.2016.08.101_b0065 article-title: Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.118 – volume: 159 start-page: A848 year: 2012 ident: 10.1016/j.apenergy.2016.08.101_b0140 article-title: Investigation of short-circuit scenarios in a lithium-ion battery cell publication-title: J Electrochem Soc doi: 10.1149/2.096206jes – volume: 6 start-page: 21829 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0250 article-title: State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries publication-title: Sci Rep doi: 10.1038/srep21829 – volume: 148 start-page: 403 year: 2015 ident: 10.1016/j.apenergy.2016.08.101_b0030 article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.080 – volume: 248 start-page: 1090 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0055 article-title: Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.10.004 – volume: 220 start-page: 360 year: 2012 ident: 10.1016/j.apenergy.2016.08.101_b0090 article-title: Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.07.057 – volume: 83 start-page: 127 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0170 article-title: A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2013.10.002 – ident: 10.1016/j.apenergy.2016.08.101_b0215 – volume: 134 start-page: 229 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0040 article-title: Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.013 – volume: 164 start-page: 659 year: 2016 ident: 10.1016/j.apenergy.2016.08.101_b0035 article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.021 – volume: 129 start-page: 261 year: 2014 ident: 10.1016/j.apenergy.2016.08.101_b0015 article-title: Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.092 |
| SSID | ssj0002120 |
| Score | 2.5902002 |
| Snippet | [Display omitted]
•A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational... The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 278 |
| SubjectTerms | batteries cost effectiveness Coupled computation modeling electrochemistry Lithium-ion battery mechanical properties Nail penetration prediction quantitative analysis Short circuit temperature thermal properties |
| Title | Integrated computation model of lithium-ion battery subject to nail penetration |
| URI | https://dx.doi.org/10.1016/j.apenergy.2016.08.101 https://www.proquest.com/docview/2000313250 |
| Volume | 183 |
| WOSCitedRecordID | wos000391897600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEe0BhMG5fJSLxNgdixc3mcUNGG0EBioPIU-ZKonUYaLQ0a_57jS1JvA8YeeLEqq3bdnK_Hn91zvoPQKy5gW1K6iKpMZxFj0AiuWFQorjJaqVrYaPevH7Lj43w2Kz75mq2dLSeQNU1-cVG0_9XU0AfGNqmztzD3OCl0wGswOrRgdmj_yfBHgwCEzVdrex9OaEveGGoIvHu-6L9HplNadc2f-10vzX2MIaKNWJztt-ABvZ5uyF4HylrZhMExlmfRW5TAJjgfYfLNaRN8no9uf9a7LJAmvGggaRC04ROs4jQyB67LzjMJ3Z8rx-N3UuqKA11z0u6-4PS1aN1yTYBdaoRUif-4S6rYV3arMYZwCE87LYd5SjNPGeem_y7aoBkv8gnaODiazt6PuzP1Up3Dlwmyxn-_oj8Rlitbt-UjJ5vooT9I4AMHgEfoTtVsoQeBvOQW2p6usxjhrd6Nd4_RxzVGcIARbDGClzUOMII9RrDHCF4tscEIDjDyBH15Nz15exj5yhqRYglbRRmTMqaKCjgsEC1YInUqYyIoy2tOlKwpIZJnVAJb1VrkCdM1PMw6Bb7NNFXJNpo0y6baQbggtWCMCZkDs04rniepEdhNOKkEYUTvIj48vlJ52XlT_eSs_LsBd9GbcVzrhFduHFEM1ik9fXS0sATg3Tj25WDOEvyr-dNMNNWy70yZVitvyuOnt17RM3R__UN6jiar8756ge6pH6tFd77nkfkLUZSikQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+computation+model+of+lithium-ion+battery+subject+to+nail+penetration&rft.jtitle=Applied+energy&rft.au=Liu%2C+Binghe&rft.au=Yin%2C+Sha&rft.au=Xu%2C+Jun&rft.date=2016-12-01&rft.issn=0306-2619&rft.volume=183&rft.spage=278&rft.epage=289&rft_id=info:doi/10.1016%2Fj.apenergy.2016.08.101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2016_08_101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |