Integrated computation model of lithium-ion battery subject to nail penetration

[Display omitted] •A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational model.•Governing factors of the penetration induced short-circuit is discussed.•Critical safety battery design guidance is suggested. The nail penet...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 183; pp. 278 - 289
Main Authors: Liu, Binghe, Yin, Sha, Xu, Jun
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2016
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational model.•Governing factors of the penetration induced short-circuit is discussed.•Critical safety battery design guidance is suggested. The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design.
AbstractList The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design.
[Display omitted] •A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational model.•Governing factors of the penetration induced short-circuit is discussed.•Critical safety battery design guidance is suggested. The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design.
Author Liu, Binghe
Xu, Jun
Yin, Sha
Author_xml – sequence: 1
  givenname: Binghe
  surname: Liu
  fullname: Liu, Binghe
  organization: Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Sha
  surname: Yin
  fullname: Yin, Sha
  organization: Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
  email: junxu@buaa.edu.cn
  organization: Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
BookMark eNqFkMtOwzAQRS1UJErhF1CWbBJs5y2xAFU8KlXqBtaWH5PiKImL7SD173EIbNh0Zc3VnPHMuUSLwQyA0A3BCcGkuGsTfoAB7P6Y0FAnuJryM7QkVUnjmpBqgZY4xUVMC1JfoEvnWowxJRQv0W4zeNhb7kFF0vSH0XOvzRD1RkEXmSbqtP_QYx9PoeDegz1GbhQtSB95Ew1cd9H0vbc_4BU6b3jn4Pr3XaH356e39Wu83b1s1o_bWGZp5uMyEwJTSTkOKyuepUIVAhNOs6rJiRQNJUTkJRVpXSrFqzRTTV5XTZFneaaoTFfodp57sOZzBOdZr52EruMDmNExGi5MSUpzHFrv51ZpjXMWGib1fGXYWXeMYDZ5ZC3788gmjwxXUx7w4h9-sLrn9ngafJhBCB6-NFjmpIZBgtI22GPK6FMjvgFX0JSh
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2024_107947
crossref_primary_10_1016_j_jpowsour_2025_238104
crossref_primary_10_1016_j_apenergy_2022_119527
crossref_primary_10_1080_15376494_2024_2359648
crossref_primary_10_12677_mos_2025_144326
crossref_primary_10_3390_polym13121971
crossref_primary_10_1016_j_enchem_2022_100082
crossref_primary_10_1016_j_engfailanal_2022_106399
crossref_primary_10_1016_j_renene_2024_120762
crossref_primary_10_3390_batteries8110243
crossref_primary_10_1016_j_apenergy_2020_114518
crossref_primary_10_1016_j_jpowsour_2024_235471
crossref_primary_10_1016_j_pecs_2018_11_002
crossref_primary_10_1007_s41918_024_00233_w
crossref_primary_10_1016_j_applthermaleng_2020_115129
crossref_primary_10_1038_s41598_020_58021_7
crossref_primary_10_4271_2018_01_1446
crossref_primary_10_1016_j_apenergy_2023_121610
crossref_primary_10_1002_batt_201900081
crossref_primary_10_1016_j_energy_2025_136682
crossref_primary_10_1016_j_apenergy_2019_113365
crossref_primary_10_1080_13588265_2019_1632545
crossref_primary_10_1007_s10973_020_10149_4
crossref_primary_10_1016_j_engfailanal_2017_09_003
crossref_primary_10_1016_j_compstruct_2019_03_046
crossref_primary_10_1016_j_jpowsour_2025_236610
crossref_primary_10_3390_sym12020246
crossref_primary_10_1016_j_pecs_2019_03_002
crossref_primary_10_1177_09544070221104858
crossref_primary_10_1016_j_jclepro_2018_03_259
crossref_primary_10_1016_j_est_2021_103270
crossref_primary_10_1016_j_tws_2024_111985
crossref_primary_10_1080_13588265_2020_1766397
crossref_primary_10_1016_j_jclepro_2020_124094
crossref_primary_10_1016_j_jpowsour_2024_235213
crossref_primary_10_3390_polym12030648
crossref_primary_10_1002_er_5600
crossref_primary_10_3390_en15218244
crossref_primary_10_1016_j_ijmecsci_2020_105496
crossref_primary_10_1016_j_est_2023_108518
crossref_primary_10_1016_j_prime_2023_100342
crossref_primary_10_1016_j_apenergy_2019_05_015
crossref_primary_10_1002_aenm_202002869
crossref_primary_10_1016_j_est_2025_116940
crossref_primary_10_1016_j_est_2025_117239
crossref_primary_10_1007_s11340_017_0282_2
crossref_primary_10_1016_j_est_2020_102090
crossref_primary_10_1002_est2_130
crossref_primary_10_1007_s12206_023_0731_z
crossref_primary_10_1007_s41918_024_00232_x
crossref_primary_10_1002_er_4588
crossref_primary_10_1016_j_est_2023_107145
crossref_primary_10_1016_j_jpowsour_2022_231602
crossref_primary_10_1016_j_procir_2023_02_181
crossref_primary_10_1002_er_6920
crossref_primary_10_1016_j_jpowsour_2021_230830
crossref_primary_10_1016_j_jpowsour_2023_233509
crossref_primary_10_1016_j_est_2024_114073
crossref_primary_10_1016_j_ijimpeng_2025_105239
crossref_primary_10_1016_j_jpowsour_2020_228360
crossref_primary_10_3390_app15052713
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119590
crossref_primary_10_1016_j_apenergy_2019_113343
crossref_primary_10_1016_j_cej_2025_164331
crossref_primary_10_1016_j_est_2025_118294
crossref_primary_10_1016_j_jpowsour_2018_02_024
crossref_primary_10_1088_1755_1315_268_1_012065
crossref_primary_10_3390_en13184636
crossref_primary_10_1016_j_jpowsour_2018_04_092
crossref_primary_10_3390_en10101636
crossref_primary_10_1016_j_energy_2020_117906
crossref_primary_10_1016_j_ijmecsci_2025_110392
crossref_primary_10_1016_j_jpowsour_2020_227939
crossref_primary_10_1016_j_jpowsour_2019_226928
crossref_primary_10_1016_j_rser_2021_110790
crossref_primary_10_3390_batteries10100353
crossref_primary_10_3390_en15020623
crossref_primary_10_1007_s10694_025_01707_z
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126020
crossref_primary_10_1016_j_est_2024_112624
crossref_primary_10_1016_j_est_2024_114489
crossref_primary_10_1016_j_jpowsour_2020_228070
crossref_primary_10_1016_j_electacta_2017_10_045
crossref_primary_10_1016_j_jpowsour_2019_227468
crossref_primary_10_1016_j_jpowsour_2019_227501
crossref_primary_10_1016_j_ssi_2024_116471
crossref_primary_10_1007_s11581_020_03706_2
crossref_primary_10_1016_j_est_2020_101577
crossref_primary_10_1088_2515_7655_adb5c0
crossref_primary_10_1016_j_jpowsour_2025_238265
crossref_primary_10_1016_j_est_2024_111543
crossref_primary_10_1016_j_jclepro_2019_03_065
crossref_primary_10_3390_app11031247
crossref_primary_10_3390_en14185960
crossref_primary_10_1016_j_egyr_2022_05_183
crossref_primary_10_1016_j_energy_2022_126027
crossref_primary_10_1016_j_est_2023_107320
crossref_primary_10_1016_j_est_2024_110570
crossref_primary_10_1371_journal_pone_0172424
crossref_primary_10_1016_j_energy_2022_123715
crossref_primary_10_1002_er_4965
crossref_primary_10_1016_j_est_2023_107688
crossref_primary_10_2298_TSCI230402196Y
crossref_primary_10_3390_batteries8050048
crossref_primary_10_1016_j_energy_2023_130145
crossref_primary_10_1016_j_engfailanal_2018_04_041
crossref_primary_10_1016_j_est_2023_108929
crossref_primary_10_1016_j_jpowsour_2025_237102
crossref_primary_10_1016_j_applthermaleng_2018_10_011
crossref_primary_10_1007_s10694_020_00967_1
crossref_primary_10_1016_j_energy_2022_126166
crossref_primary_10_1016_j_est_2024_112004
crossref_primary_10_1016_j_jpowsour_2023_233777
crossref_primary_10_1016_j_cej_2024_154732
crossref_primary_10_1007_s00158_018_1901_y
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_036
crossref_primary_10_1016_j_jpowsour_2022_231733
crossref_primary_10_1002_advs_202302496
crossref_primary_10_1002_er_5126
crossref_primary_10_1016_j_est_2023_107505
crossref_primary_10_1371_journal_pone_0185922
crossref_primary_10_1016_j_jpowsour_2020_228678
crossref_primary_10_1016_j_apenergy_2023_121790
crossref_primary_10_1016_j_est_2024_112371
crossref_primary_10_1038_s41598_019_49616_w
crossref_primary_10_1002_adma_202008088
crossref_primary_10_3390_en9110865
crossref_primary_10_1016_j_jpowsour_2021_229897
crossref_primary_10_1016_j_est_2024_112824
crossref_primary_10_1016_j_est_2025_116358
crossref_primary_10_1109_TIE_2018_2889623
crossref_primary_10_1016_j_psep_2025_107471
crossref_primary_10_1016_j_jpowsour_2019_227667
crossref_primary_10_3390_en16155823
crossref_primary_10_1016_j_jpowsour_2018_05_097
crossref_primary_10_1038_s41598_024_58891_1
crossref_primary_10_1088_2516_1083_ac8333
crossref_primary_10_3390_en16176346
crossref_primary_10_1016_j_cej_2021_133536
crossref_primary_10_1016_j_est_2021_102768
crossref_primary_10_1002_bte2_20250036
crossref_primary_10_3390_polym14173664
crossref_primary_10_1016_j_apenergy_2018_06_126
crossref_primary_10_1002_er_4774
Cites_doi 10.1016/j.jpowsour.2013.09.145
10.1016/j.electacta.2011.01.012
10.1149/1.2054684
10.1016/j.electacta.2008.04.023
10.1149/1.2817888
10.1016/j.apenergy.2016.04.016
10.1039/c4ra00983e
10.1016/j.engfailanal.2015.03.025
10.1016/j.apenergy.2015.10.019
10.1016/j.apenergy.2016.03.108
10.1149/1.3597614
10.1039/C5RA17865G
10.1016/j.jpowsour.2013.11.069
10.1149/2.012405eel
10.1016/j.jpowsour.2013.09.128
10.1016/j.electacta.2014.03.113
10.1038/nature16502
10.1016/j.jpowsour.2011.05.026
10.1007/s11027-014-9611-2
10.1149/1.1785013
10.1039/c3ra23502e
10.1038/424635b
10.1149/2.132306jes
10.1016/j.jpowsour.2009.05.002
10.1016/j.matdes.2016.01.082
10.1149/1.3591799
10.1149/1.2783772
10.1016/j.apenergy.2015.04.118
10.1149/2.0351409jes
10.1016/j.jpowsour.2015.04.162
10.1016/j.apenergy.2016.01.012
10.1149/1.3095513
10.1016/j.jpowsour.2013.03.170
10.1016/j.apenergy.2015.12.068
10.1016/j.jpowsour.2012.04.055
10.1149/2.096206jes
10.1038/srep21829
10.1016/j.apenergy.2015.03.080
10.1016/j.jpowsour.2013.10.004
10.1016/j.jpowsour.2012.07.057
10.1016/j.commatsci.2013.10.002
10.1016/j.apenergy.2014.08.013
10.1016/j.apenergy.2015.12.021
10.1016/j.apenergy.2014.04.092
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2016.08.101
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 289
ExternalDocumentID 10_1016_j_apenergy_2016_08_101
S0306261916311990
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c434t-74bb02c2a0201da43bd6b01a248f51cbf211b572b397dda834df598f65454d2c3
ISICitedReferencesCount 181
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391897600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 21:37:05 EDT 2025
Sat Nov 29 07:23:52 EST 2025
Tue Nov 18 21:17:03 EST 2025
Fri Feb 23 02:32:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Short circuit
Coupled computation modeling
Nail penetration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-74bb02c2a0201da43bd6b01a248f51cbf211b572b397dda834df598f65454d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0306261916311990-fx1_lrg.jpg
PQID 2000313250
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2000313250
crossref_citationtrail_10_1016_j_apenergy_2016_08_101
crossref_primary_10_1016_j_apenergy_2016_08_101
elsevier_sciencedirect_doi_10_1016_j_apenergy_2016_08_101
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sahraei, Kahn, Meier, Wierzbicki (b0085) 2015; 5
Xu, Liu, Wang, Shang (b0205) 2015; 53
Wang, Zhang, Ge, Xu, Ji, Yang (b0010) 2016; 529
Bertram (b0190) 2005
Sahraei, Campbell, Wierzbicki (b0090) 2012; 220
Malavé, Berger, Zhu, Kee (b0175) 2014; 130
Lai, Ciucci (b0220) 2011; 56
Srinivasan, Newman (b0125) 2004; 151
Guo, Kim, White (b0155) 2013; 240
Kim, Pesaran, Smith, Lee, Santhanagopalan (b0160) 2011; 158
Zhao, Liu, Gu (b0070) 2016; 173
Newman, Thomas-Alyea (b0225) 2012
Wu, Xiao, Huang, Yan (b0170) 2014; 83
Tang, Albertus, Newman (b0110) 2009; 156
Ramadass, Fang, Zhang (b0150) 2014; 248
Chen, Yan, Sun, Qi, Li (b0235) 2014; 161
Franco (b0165) 2013; 3
Nyman, Behm, Lindbergh (b0135) 2008; 53
Fang, Ramadass, Zhang (b0055) 2014; 248
Xu, Liu, Wang, Hu (b0095) 2016; 172
Shi, Xiao, Huang, Kia (b0210) 2011; 196
Multiphysics C. COMSOL multiphysics user guide (Version 4.3 a). COMSOL, AB; 2012.
Wang, Tseng, Zhao, Wei (b0040) 2014; 134
Holman (b0240) 1963
Ling, Wang, Fang, Gao, Zhang (b0030) 2015; 148
Rao, Wang, Huang (b0035) 2016; 164
Stephenson, Hartman, Harb, Wheeler (b0115) 2007; 154
Chen, Sun, Qi, Li (b0025) 2014; 3
Miranda, Costa, Almeida, Lanceros-Mendez (b0230) 2016; 165
Doyle (b0100) 1995
Feng, He, Ouyang, Lu, Wu, Kulp (b0065) 2015; 154
Lai, Ali, Pan (b0080) 2014; 248
Xu, Wang, Guan, Yin (b0195) 2016; 95
Feng, He, Ouyang, Lu, Wu, Kulp (b0045) 2015; 154
Barai, Mukherjee (b0180) 2013; 160
Zhang, Santhanagopalan, Sprague, Pesaran (b0185) 2015; 290
Zavalis, Behm, Lindbergh (b0140) 2012; 159
Greve, Fehrenbach (b0075) 2012; 214
Gerver, Meyers (b0120) 2011; 158
Santhanagopalan, Ramadass, Zhang (b0145) 2009; 194
Chen, Yan, Sun, Qi, Li (b0200) 2014; 4
Kumaresan, Sikha, White (b0130) 2008; 155
Hammami, Raymond, Armand (b0060) 2003; 424
Ping, Wang, Huang, Sun, Chen (b0015) 2014; 129
Chiu, Lin, Yeh, Lin, Chen (b0050) 2014; 251
Xu, Liu, Hu (b0250) 2016; 6
Feng, Weng, Ouyang, Sun (b0020) 2016; 161
Fuller, Doyle, Newman (b0105) 1994; 141
Zhou, Wang, Hao, Johnson, Wang, Hao (b0005) 2015; 20
Merlin, Delaunay, Soto, Traonvouez (b0245) 2016; 166
Holman (10.1016/j.apenergy.2016.08.101_b0240) 1963
Zhang (10.1016/j.apenergy.2016.08.101_b0185) 2015; 290
Santhanagopalan (10.1016/j.apenergy.2016.08.101_b0145) 2009; 194
Xu (10.1016/j.apenergy.2016.08.101_b0195) 2016; 95
Greve (10.1016/j.apenergy.2016.08.101_b0075) 2012; 214
Tang (10.1016/j.apenergy.2016.08.101_b0110) 2009; 156
Fuller (10.1016/j.apenergy.2016.08.101_b0105) 1994; 141
Srinivasan (10.1016/j.apenergy.2016.08.101_b0125) 2004; 151
Barai (10.1016/j.apenergy.2016.08.101_b0180) 2013; 160
Xu (10.1016/j.apenergy.2016.08.101_b0205) 2015; 53
Shi (10.1016/j.apenergy.2016.08.101_b0210) 2011; 196
Doyle (10.1016/j.apenergy.2016.08.101_b0100) 1995
Miranda (10.1016/j.apenergy.2016.08.101_b0230) 2016; 165
Rao (10.1016/j.apenergy.2016.08.101_b0035) 2016; 164
Zavalis (10.1016/j.apenergy.2016.08.101_b0140) 2012; 159
Chen (10.1016/j.apenergy.2016.08.101_b0025) 2014; 3
10.1016/j.apenergy.2016.08.101_b0215
Feng (10.1016/j.apenergy.2016.08.101_b0065) 2015; 154
Xu (10.1016/j.apenergy.2016.08.101_b0250) 2016; 6
Nyman (10.1016/j.apenergy.2016.08.101_b0135) 2008; 53
Chiu (10.1016/j.apenergy.2016.08.101_b0050) 2014; 251
Guo (10.1016/j.apenergy.2016.08.101_b0155) 2013; 240
Stephenson (10.1016/j.apenergy.2016.08.101_b0115) 2007; 154
Zhao (10.1016/j.apenergy.2016.08.101_b0070) 2016; 173
Ping (10.1016/j.apenergy.2016.08.101_b0015) 2014; 129
Feng (10.1016/j.apenergy.2016.08.101_b0045) 2015; 154
Chen (10.1016/j.apenergy.2016.08.101_b0235) 2014; 161
Zhou (10.1016/j.apenergy.2016.08.101_b0005) 2015; 20
Lai (10.1016/j.apenergy.2016.08.101_b0080) 2014; 248
Fang (10.1016/j.apenergy.2016.08.101_b0055) 2014; 248
Feng (10.1016/j.apenergy.2016.08.101_b0020) 2016; 161
Newman (10.1016/j.apenergy.2016.08.101_b0225) 2012
Malavé (10.1016/j.apenergy.2016.08.101_b0175) 2014; 130
Xu (10.1016/j.apenergy.2016.08.101_b0095) 2016; 172
Ramadass (10.1016/j.apenergy.2016.08.101_b0150) 2014; 248
Bertram (10.1016/j.apenergy.2016.08.101_b0190) 2005
Chen (10.1016/j.apenergy.2016.08.101_b0200) 2014; 4
Wu (10.1016/j.apenergy.2016.08.101_b0170) 2014; 83
Ling (10.1016/j.apenergy.2016.08.101_b0030) 2015; 148
Wang (10.1016/j.apenergy.2016.08.101_b0040) 2014; 134
Kim (10.1016/j.apenergy.2016.08.101_b0160) 2011; 158
Merlin (10.1016/j.apenergy.2016.08.101_b0245) 2016; 166
Franco (10.1016/j.apenergy.2016.08.101_b0165) 2013; 3
Hammami (10.1016/j.apenergy.2016.08.101_b0060) 2003; 424
Sahraei (10.1016/j.apenergy.2016.08.101_b0090) 2012; 220
Sahraei (10.1016/j.apenergy.2016.08.101_b0085) 2015; 5
Kumaresan (10.1016/j.apenergy.2016.08.101_b0130) 2008; 155
Wang (10.1016/j.apenergy.2016.08.101_b0010) 2016; 529
Gerver (10.1016/j.apenergy.2016.08.101_b0120) 2011; 158
Lai (10.1016/j.apenergy.2016.08.101_b0220) 2011; 56
References_xml – volume: 95
  start-page: 319
  year: 2016
  end-page: 328
  ident: b0195
  article-title: Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries
  publication-title: Mater Des
– volume: 20
  start-page: 777
  year: 2015
  end-page: 795
  ident: b0005
  article-title: Plug-in electric vehicle market penetration and incentives: a global review
  publication-title: Mitig Adapt Strateg Glob Change
– volume: 165
  start-page: 318
  year: 2016
  end-page: 328
  ident: b0230
  article-title: Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries
  publication-title: Appl Energy
– volume: 164
  start-page: 659
  year: 2016
  end-page: 669
  ident: b0035
  article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system
  publication-title: Appl Energy
– volume: 6
  start-page: 21829
  year: 2016
  ident: b0250
  article-title: State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries
  publication-title: Sci Rep
– volume: 248
  start-page: 1090
  year: 2014
  end-page: 1098
  ident: b0055
  article-title: Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model
  publication-title: J Power Sources
– volume: 424
  start-page: 635
  year: 2003
  end-page: 636
  ident: b0060
  article-title: Runaway risk of forming toxic compounds
  publication-title: Nature
– volume: 154
  start-page: A1146
  year: 2007
  end-page: A1155
  ident: b0115
  article-title: Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries
  publication-title: J Electrochem Soc
– volume: 220
  start-page: 360
  year: 2012
  end-page: 372
  ident: b0090
  article-title: Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions
  publication-title: J Power Sources
– volume: 156
  start-page: A390
  year: 2009
  end-page: A399
  ident: b0110
  article-title: Two-dimensional modeling of lithium deposition during cell charging
  publication-title: J Electrochem Soc
– volume: 4
  start-page: 14904
  year: 2014
  end-page: 14914
  ident: b0200
  article-title: Deformation and fracture behaviors of microporous polymer separators for lithium ion batteries
  publication-title: RSC Adv
– volume: 134
  start-page: 229
  year: 2014
  end-page: 238
  ident: b0040
  article-title: Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies
  publication-title: Appl Energy
– volume: 151
  start-page: A1530
  year: 2004
  end-page: A1538
  ident: b0125
  article-title: Design and optimization of a natural graphite/iron phosphate lithium-ion cell
  publication-title: J Electrochem Soc
– volume: 240
  start-page: 80
  year: 2013
  end-page: 94
  ident: b0155
  article-title: A three-dimensional multi-physics model for a Li-ion battery
  publication-title: J Power Sources
– volume: 158
  start-page: A835
  year: 2011
  end-page: A843
  ident: b0120
  article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations
  publication-title: J Electrochem Soc
– volume: 529
  year: 2016
  ident: b0010
  article-title: Lithium-ion battery structure that self-heats at low temperatures
  publication-title: Nature
– volume: 248
  start-page: 769
  year: 2014
  end-page: 776
  ident: b0150
  article-title: Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique
  publication-title: J Power Sources
– volume: 196
  start-page: 8129
  year: 2011
  end-page: 8139
  ident: b0210
  article-title: Modeling stresses in the separator of a pouch lithium-ion cell
  publication-title: J Power Sources
– volume: 83
  start-page: 127
  year: 2014
  end-page: 136
  ident: b0170
  article-title: A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell
  publication-title: Comput Mater Sci
– volume: 141
  start-page: 1
  year: 1994
  end-page: 10
  ident: b0105
  article-title: Simulation and optimization of the dual lithium ion insertion cell
  publication-title: J Electrochem Soc
– volume: 161
  start-page: A1241
  year: 2014
  end-page: A1246
  ident: b0235
  article-title: Probing the roles of polymeric separators in lithium-ion battery capacity fade at elevated temperatures
  publication-title: J Electrochem Soc
– volume: 53
  start-page: 6356
  year: 2008
  end-page: 6365
  ident: b0135
  article-title: Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte
  publication-title: Electrochim Acta
– volume: 53
  start-page: 97
  year: 2015
  end-page: 110
  ident: b0205
  article-title: Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing
  publication-title: Eng Fail Anal
– volume: 166
  start-page: 107
  year: 2016
  end-page: 116
  ident: b0245
  article-title: Heat transfer enhancement in latent heat thermal storage systems: comparative study of different solutions and thermal contact investigation between the exchanger and the PCM
  publication-title: Appl Energy
– volume: 5
  start-page: 80369
  year: 2015
  end-page: 80380
  ident: b0085
  article-title: Modelling of cracks developed in lithium-ion cells under mechanical loading
  publication-title: RSC Adv
– volume: 159
  start-page: A848
  year: 2012
  end-page: A859
  ident: b0140
  article-title: Investigation of short-circuit scenarios in a lithium-ion battery cell
  publication-title: J Electrochem Soc
– volume: 214
  start-page: 377
  year: 2012
  end-page: 385
  ident: b0075
  article-title: Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells
  publication-title: J Power Sources
– year: 1995
  ident: b0100
  article-title: Design and simulation of lithium rechargeable batteries
– volume: 290
  start-page: 102
  year: 2015
  end-page: 113
  ident: b0185
  article-title: Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse
  publication-title: J Power Sources
– volume: 251
  start-page: 254
  year: 2014
  end-page: 263
  ident: b0050
  article-title: An electrochemical modeling of lithium-ion battery nail penetration
  publication-title: J Power Sources
– volume: 158
  start-page: A955
  year: 2011
  end-page: A969
  ident: b0160
  article-title: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales
  publication-title: J Electrochem Soc
– volume: 56
  start-page: 4369
  year: 2011
  end-page: 4377
  ident: b0220
  article-title: Mathematical modeling of porous battery electrodes—revisit of Newman’s model
  publication-title: Electrochim Acta
– volume: 3
  start-page: 13027
  year: 2013
  end-page: 13058
  ident: b0165
  article-title: Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges
  publication-title: RSC Adv
– reference: Multiphysics C. COMSOL multiphysics user guide (Version 4.3 a). COMSOL, AB; 2012.
– volume: 160
  start-page: A955
  year: 2013
  end-page: A967
  ident: b0180
  article-title: Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes
  publication-title: J Electrochem Soc
– volume: 161
  start-page: 168
  year: 2016
  end-page: 180
  ident: b0020
  article-title: Online internal short circuit detection for a large format lithium ion battery
  publication-title: Appl Energy
– year: 1963
  ident: b0240
  article-title: Heat transfer
– volume: 130
  start-page: 707
  year: 2014
  end-page: 717
  ident: b0175
  article-title: A computational model of the mechanical behavior within reconstructed Li
  publication-title: Electrochim Acta
– volume: 155
  start-page: A164
  year: 2008
  end-page: A171
  ident: b0130
  article-title: Thermal model for a Li-ion cell
  publication-title: J Electrochem Soc
– volume: 154
  start-page: 74
  year: 2015
  end-page: 91
  ident: b0065
  article-title: Thermal runaway propagation model for designing a safer battery pack with 25
  publication-title: Appl Energy
– volume: 172
  start-page: 180
  year: 2016
  end-page: 189
  ident: b0095
  article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies
  publication-title: Appl Energy
– year: 2012
  ident: b0225
  article-title: Electrochemical systems
– volume: 3
  start-page: A41
  year: 2014
  end-page: A44
  ident: b0025
  article-title: A coupled penetration-tension method for evaluating the reliability of battery separators
  publication-title: ECS Electrochem Lett
– volume: 173
  start-page: 29
  year: 2016
  end-page: 39
  ident: b0070
  article-title: Simulation and experimental study on lithium ion battery short circuit
  publication-title: Appl Energy
– volume: 248
  start-page: 789
  year: 2014
  end-page: 808
  ident: b0080
  article-title: Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions
  publication-title: J Power Sources
– volume: 194
  start-page: 550
  year: 2009
  end-page: 557
  ident: b0145
  article-title: Analysis of internal short-circuit in a lithium ion cell
  publication-title: J Power Sources
– volume: 129
  start-page: 261
  year: 2014
  end-page: 273
  ident: b0015
  article-title: Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method
  publication-title: Appl Energy
– start-page: 205
  year: 2005
  end-page: 225
  ident: b0190
  article-title: Elasticity and plasticity of large deformations, vol. 6
– volume: 154
  start-page: 74
  year: 2015
  end-page: 91
  ident: b0045
  article-title: Thermal runaway propagation model for designing a safer battery pack with 25
  publication-title: Appl Energy
– volume: 148
  start-page: 403
  year: 2015
  end-page: 409
  ident: b0030
  article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling
  publication-title: Appl Energy
– volume: 248
  start-page: 769
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0150
  article-title: Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.145
– volume: 56
  start-page: 4369
  year: 2011
  ident: 10.1016/j.apenergy.2016.08.101_b0220
  article-title: Mathematical modeling of porous battery electrodes—revisit of Newman’s model
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.01.012
– volume: 141
  start-page: 1
  year: 1994
  ident: 10.1016/j.apenergy.2016.08.101_b0105
  article-title: Simulation and optimization of the dual lithium ion insertion cell
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2054684
– volume: 53
  start-page: 6356
  year: 2008
  ident: 10.1016/j.apenergy.2016.08.101_b0135
  article-title: Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2008.04.023
– volume: 155
  start-page: A164
  year: 2008
  ident: 10.1016/j.apenergy.2016.08.101_b0130
  article-title: Thermal model for a Li-ion cell
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2817888
– volume: 173
  start-page: 29
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0070
  article-title: Simulation and experimental study on lithium ion battery short circuit
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.04.016
– year: 1963
  ident: 10.1016/j.apenergy.2016.08.101_b0240
– volume: 4
  start-page: 14904
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0200
  article-title: Deformation and fracture behaviors of microporous polymer separators for lithium ion batteries
  publication-title: RSC Adv
  doi: 10.1039/c4ra00983e
– volume: 53
  start-page: 97
  year: 2015
  ident: 10.1016/j.apenergy.2016.08.101_b0205
  article-title: Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2015.03.025
– volume: 161
  start-page: 168
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0020
  article-title: Online internal short circuit detection for a large format lithium ion battery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.019
– volume: 172
  start-page: 180
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0095
  article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.108
– year: 1995
  ident: 10.1016/j.apenergy.2016.08.101_b0100
– volume: 158
  start-page: A955
  year: 2011
  ident: 10.1016/j.apenergy.2016.08.101_b0160
  article-title: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3597614
– volume: 5
  start-page: 80369
  year: 2015
  ident: 10.1016/j.apenergy.2016.08.101_b0085
  article-title: Modelling of cracks developed in lithium-ion cells under mechanical loading
  publication-title: RSC Adv
  doi: 10.1039/C5RA17865G
– volume: 251
  start-page: 254
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0050
  article-title: An electrochemical modeling of lithium-ion battery nail penetration
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.11.069
– volume: 3
  start-page: A41
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0025
  article-title: A coupled penetration-tension method for evaluating the reliability of battery separators
  publication-title: ECS Electrochem Lett
  doi: 10.1149/2.012405eel
– volume: 248
  start-page: 789
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0080
  article-title: Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.128
– volume: 130
  start-page: 707
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0175
  article-title: A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.03.113
– volume: 529
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0010
  article-title: Lithium-ion battery structure that self-heats at low temperatures
  publication-title: Nature
  doi: 10.1038/nature16502
– year: 2012
  ident: 10.1016/j.apenergy.2016.08.101_b0225
– volume: 196
  start-page: 8129
  year: 2011
  ident: 10.1016/j.apenergy.2016.08.101_b0210
  article-title: Modeling stresses in the separator of a pouch lithium-ion cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.05.026
– volume: 20
  start-page: 777
  year: 2015
  ident: 10.1016/j.apenergy.2016.08.101_b0005
  article-title: Plug-in electric vehicle market penetration and incentives: a global review
  publication-title: Mitig Adapt Strateg Glob Change
  doi: 10.1007/s11027-014-9611-2
– volume: 151
  start-page: A1530
  year: 2004
  ident: 10.1016/j.apenergy.2016.08.101_b0125
  article-title: Design and optimization of a natural graphite/iron phosphate lithium-ion cell
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1785013
– volume: 3
  start-page: 13027
  year: 2013
  ident: 10.1016/j.apenergy.2016.08.101_b0165
  article-title: Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges
  publication-title: RSC Adv
  doi: 10.1039/c3ra23502e
– volume: 424
  start-page: 635
  year: 2003
  ident: 10.1016/j.apenergy.2016.08.101_b0060
  article-title: Runaway risk of forming toxic compounds
  publication-title: Nature
  doi: 10.1038/424635b
– volume: 160
  start-page: A955
  year: 2013
  ident: 10.1016/j.apenergy.2016.08.101_b0180
  article-title: Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes
  publication-title: J Electrochem Soc
  doi: 10.1149/2.132306jes
– volume: 194
  start-page: 550
  year: 2009
  ident: 10.1016/j.apenergy.2016.08.101_b0145
  article-title: Analysis of internal short-circuit in a lithium ion cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.05.002
– volume: 95
  start-page: 319
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0195
  article-title: Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.01.082
– volume: 158
  start-page: A835
  year: 2011
  ident: 10.1016/j.apenergy.2016.08.101_b0120
  article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3591799
– volume: 154
  start-page: A1146
  year: 2007
  ident: 10.1016/j.apenergy.2016.08.101_b0115
  article-title: Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2783772
– volume: 154
  start-page: 74
  year: 2015
  ident: 10.1016/j.apenergy.2016.08.101_b0045
  article-title: Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.118
– volume: 161
  start-page: A1241
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0235
  article-title: Probing the roles of polymeric separators in lithium-ion battery capacity fade at elevated temperatures
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0351409jes
– volume: 290
  start-page: 102
  year: 2015
  ident: 10.1016/j.apenergy.2016.08.101_b0185
  article-title: Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.04.162
– volume: 166
  start-page: 107
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0245
  article-title: Heat transfer enhancement in latent heat thermal storage systems: comparative study of different solutions and thermal contact investigation between the exchanger and the PCM
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.012
– start-page: 205
  year: 2005
  ident: 10.1016/j.apenergy.2016.08.101_b0190
– volume: 156
  start-page: A390
  year: 2009
  ident: 10.1016/j.apenergy.2016.08.101_b0110
  article-title: Two-dimensional modeling of lithium deposition during cell charging
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3095513
– volume: 240
  start-page: 80
  year: 2013
  ident: 10.1016/j.apenergy.2016.08.101_b0155
  article-title: A three-dimensional multi-physics model for a Li-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.170
– volume: 165
  start-page: 318
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0230
  article-title: Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.068
– volume: 214
  start-page: 377
  year: 2012
  ident: 10.1016/j.apenergy.2016.08.101_b0075
  article-title: Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.04.055
– volume: 154
  start-page: 74
  year: 2015
  ident: 10.1016/j.apenergy.2016.08.101_b0065
  article-title: Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.118
– volume: 159
  start-page: A848
  year: 2012
  ident: 10.1016/j.apenergy.2016.08.101_b0140
  article-title: Investigation of short-circuit scenarios in a lithium-ion battery cell
  publication-title: J Electrochem Soc
  doi: 10.1149/2.096206jes
– volume: 6
  start-page: 21829
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0250
  article-title: State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries
  publication-title: Sci Rep
  doi: 10.1038/srep21829
– volume: 148
  start-page: 403
  year: 2015
  ident: 10.1016/j.apenergy.2016.08.101_b0030
  article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.080
– volume: 248
  start-page: 1090
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0055
  article-title: Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.10.004
– volume: 220
  start-page: 360
  year: 2012
  ident: 10.1016/j.apenergy.2016.08.101_b0090
  article-title: Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.07.057
– volume: 83
  start-page: 127
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0170
  article-title: A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2013.10.002
– ident: 10.1016/j.apenergy.2016.08.101_b0215
– volume: 134
  start-page: 229
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0040
  article-title: Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.013
– volume: 164
  start-page: 659
  year: 2016
  ident: 10.1016/j.apenergy.2016.08.101_b0035
  article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.021
– volume: 129
  start-page: 261
  year: 2014
  ident: 10.1016/j.apenergy.2016.08.101_b0015
  article-title: Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.092
SSID ssj0002120
Score 2.5902002
Snippet [Display omitted] •A coupling model to predict battery penetration process is established.•Penetration test is designed and validates the computational...
The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 278
SubjectTerms batteries
cost effectiveness
Coupled computation modeling
electrochemistry
Lithium-ion battery
mechanical properties
Nail penetration
prediction
quantitative analysis
Short circuit
temperature
thermal properties
Title Integrated computation model of lithium-ion battery subject to nail penetration
URI https://dx.doi.org/10.1016/j.apenergy.2016.08.101
https://www.proquest.com/docview/2000313250
Volume 183
WOSCitedRecordID wos000391897600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEe0BhMG5fJSLxNgdixc3mcUNGG0EBioPIU-ZKonUYaLQ0a_57jS1JvA8YeeLEqq3bdnK_Hn91zvoPQKy5gW1K6iKpMZxFj0AiuWFQorjJaqVrYaPevH7Lj43w2Kz75mq2dLSeQNU1-cVG0_9XU0AfGNqmztzD3OCl0wGswOrRgdmj_yfBHgwCEzVdrex9OaEveGGoIvHu-6L9HplNadc2f-10vzX2MIaKNWJztt-ABvZ5uyF4HylrZhMExlmfRW5TAJjgfYfLNaRN8no9uf9a7LJAmvGggaRC04ROs4jQyB67LzjMJ3Z8rx-N3UuqKA11z0u6-4PS1aN1yTYBdaoRUif-4S6rYV3arMYZwCE87LYd5SjNPGeem_y7aoBkv8gnaODiazt6PuzP1Up3Dlwmyxn-_oj8Rlitbt-UjJ5vooT9I4AMHgEfoTtVsoQeBvOQW2p6usxjhrd6Nd4_RxzVGcIARbDGClzUOMII9RrDHCF4tscEIDjDyBH15Nz15exj5yhqRYglbRRmTMqaKCjgsEC1YInUqYyIoy2tOlKwpIZJnVAJb1VrkCdM1PMw6Bb7NNFXJNpo0y6baQbggtWCMCZkDs04rniepEdhNOKkEYUTvIj48vlJ52XlT_eSs_LsBd9GbcVzrhFduHFEM1ik9fXS0sATg3Tj25WDOEvyr-dNMNNWy70yZVitvyuOnt17RM3R__UN6jiar8756ge6pH6tFd77nkfkLUZSikQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+computation+model+of+lithium-ion+battery+subject+to+nail+penetration&rft.jtitle=Applied+energy&rft.au=Liu%2C+Binghe&rft.au=Yin%2C+Sha&rft.au=Xu%2C+Jun&rft.date=2016-12-01&rft.issn=0306-2619&rft.volume=183&rft.spage=278&rft.epage=289&rft_id=info:doi/10.1016%2Fj.apenergy.2016.08.101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2016_08_101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon