Analytic continuation from limited noisy Matsubara data
This note proposes new algorithms for estimating spectral distribution from limited noisy Matsubara data. We consider both the cases of the spectral distribution with a sparse or a continuous support. In both cases, the proposed algorithm first constructs an accurate approximation of the Matsubara d...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 469; s. 111549 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge
Elsevier Inc
15.11.2022
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This note proposes new algorithms for estimating spectral distribution from limited noisy Matsubara data. We consider both the cases of the spectral distribution with a sparse or a continuous support. In both cases, the proposed algorithm first constructs an accurate approximation of the Matsubara data, uses a novel conformal map to transform the domain, and applies Prony's method to estimate the spectral distribution. Numerical results are provided to demonstrate the performance of the algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2022.111549 |