Analytic continuation from limited noisy Matsubara data

This note proposes new algorithms for estimating spectral distribution from limited noisy Matsubara data. We consider both the cases of the spectral distribution with a sparse or a continuous support. In both cases, the proposed algorithm first constructs an accurate approximation of the Matsubara d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 469; s. 111549
Hlavní autor: Ying, Lexing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Elsevier Inc 15.11.2022
Elsevier Science Ltd
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This note proposes new algorithms for estimating spectral distribution from limited noisy Matsubara data. We consider both the cases of the spectral distribution with a sparse or a continuous support. In both cases, the proposed algorithm first constructs an accurate approximation of the Matsubara data, uses a novel conformal map to transform the domain, and applies Prony's method to estimate the spectral distribution. Numerical results are provided to demonstrate the performance of the algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2022.111549