Analytic continuation from limited noisy Matsubara data

This note proposes new algorithms for estimating spectral distribution from limited noisy Matsubara data. We consider both the cases of the spectral distribution with a sparse or a continuous support. In both cases, the proposed algorithm first constructs an accurate approximation of the Matsubara d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 469; S. 111549
1. Verfasser: Ying, Lexing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Elsevier Inc 15.11.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This note proposes new algorithms for estimating spectral distribution from limited noisy Matsubara data. We consider both the cases of the spectral distribution with a sparse or a continuous support. In both cases, the proposed algorithm first constructs an accurate approximation of the Matsubara data, uses a novel conformal map to transform the domain, and applies Prony's method to estimate the spectral distribution. Numerical results are provided to demonstrate the performance of the algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2022.111549