On cluster tree for nested and multi-density data clustering

Clustering is one of the important data mining tasks. Nested clusters or clusters of multi-density are very prevalent in data sets. In this paper, we develop a hierarchical clustering approach—a cluster tree to determine such cluster structure and understand hidden information present in data sets o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 43; číslo 9; s. 3130 - 3143
Hlavní autoři: Li, Xutao, Ye, Yunming, Li, Mark Junjie, Ng, Michael K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.09.2010
Elsevier
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering is one of the important data mining tasks. Nested clusters or clusters of multi-density are very prevalent in data sets. In this paper, we develop a hierarchical clustering approach—a cluster tree to determine such cluster structure and understand hidden information present in data sets of nested clusters or clusters of multi-density. We embed the agglomerative k-means algorithm in the generation of cluster tree to detect such clusters. Experimental results on both synthetic data sets and real data sets are presented to illustrate the effectiveness of the proposed method. Compared with some existing clustering algorithms (DBSCAN, X-means, BIRCH, CURE, NBC, OPTICS, Neural Gas, Tree-SOM, EnDBSAN and LDBSCAN), our proposed cluster tree approach performs better than these methods.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2010.03.020