Online Unsupervised Adaptation of Latent Representation for Myoelectric Control During User-Decoder Co-Adaptation

Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis control. However, the statistical characteristics of EMG signals change over time (e.g., because of changes in the electrode location), which m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural systems and rehabilitation engineering Ročník 33; s. 1026 - 1037
Hlavní autori: Deng, Hanjie, Wei, Zhikai, Hu, Xuhui, Zeng, Hong, Song, Aiguo, Zhang, Dingguo, Farina, Dario
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 2025
Predmet:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis control. However, the statistical characteristics of EMG signals change over time (e.g., because of changes in the electrode location), which makes interfaces based on static mapping unstable. Thus the user-decoder co-adaptation is needed during online operations. Nevertheless, current online decoder adaptation approaches present several practical challenges, such as expensive data labeling and slow convergence. Thus we introduce an unsupervised decoder adaptation method that converges rapidly. We use an autoencoder to extract motor intent representation in the latent manifold space rather than the sensor space, and further introduce an online unsupervised adaptation scheme based on Moore-Penrose Inverse, a noniterative approach suited for fast network re-training, to track the evolving manifold. A validation experiment first showed that the convergence time of the proposed adaptation scheme was reduced to about 50% of that for state-of-the-art methods. Online experiments further evaluated cursor and prosthetic hand control by the proposed myocontrol interface, where perturbations were representatively introduced by shifting the electrodes. Results showed that our scheme reached comparable improvements in robustness as supervised counterparts. Moreover, in a cup relocation test with a prosthetic hand, the completion time in the post-adaptation phase with electrode shift was comparable to that in the baseline phase without shift. These results suggest that our method effectively improves the accessibility and reliability of decoder adaptation, which has the potential to reduce the translational gap of myoelectric control interfaces by effective co-adaptation during operation.
AbstractList Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis control. However, the statistical characteristics of EMG signals change over time (e.g., because of changes in the electrode location), which makes interfaces based on static mapping unstable. Thus the user-decoder co-adaptation is needed during online operations. Nevertheless, current online decoder adaptation approaches present several practical challenges, such as expensive data labeling and slow convergence. Thus we introduce an unsupervised decoder adaptation method that converges rapidly. We use an autoencoder to extract motor intent representation in the latent manifold space rather than the sensor space, and further introduce an online unsupervised adaptation scheme based on Moore-Penrose Inverse, a noniterative approach suited for fast network re-training, to track the evolving manifold. A validation experiment first showed that the convergence time of the proposed adaptation scheme was reduced to about 50% of that for state-of-the-art methods. Online experiments further evaluated cursor and prosthetic hand control by the proposed myocontrol interface, where perturbations were representatively introduced by shifting the electrodes. Results showed that our scheme reached comparable improvements in robustness as supervised counterparts. Moreover, in a cup relocation test with a prosthetic hand, the completion time in the post-adaptation phase with electrode shift was comparable to that in the baseline phase without shift. These results suggest that our method effectively improves the accessibility and reliability of decoder adaptation, which has the potential to reduce the translational gap of myoelectric control interfaces by effective co-adaptation during operation.Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis control. However, the statistical characteristics of EMG signals change over time (e.g., because of changes in the electrode location), which makes interfaces based on static mapping unstable. Thus the user-decoder co-adaptation is needed during online operations. Nevertheless, current online decoder adaptation approaches present several practical challenges, such as expensive data labeling and slow convergence. Thus we introduce an unsupervised decoder adaptation method that converges rapidly. We use an autoencoder to extract motor intent representation in the latent manifold space rather than the sensor space, and further introduce an online unsupervised adaptation scheme based on Moore-Penrose Inverse, a noniterative approach suited for fast network re-training, to track the evolving manifold. A validation experiment first showed that the convergence time of the proposed adaptation scheme was reduced to about 50% of that for state-of-the-art methods. Online experiments further evaluated cursor and prosthetic hand control by the proposed myocontrol interface, where perturbations were representatively introduced by shifting the electrodes. Results showed that our scheme reached comparable improvements in robustness as supervised counterparts. Moreover, in a cup relocation test with a prosthetic hand, the completion time in the post-adaptation phase with electrode shift was comparable to that in the baseline phase without shift. These results suggest that our method effectively improves the accessibility and reliability of decoder adaptation, which has the potential to reduce the translational gap of myoelectric control interfaces by effective co-adaptation during operation.
Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis control. However, the statistical characteristics of EMG signals change over time (e.g., because of changes in the electrode location), which makes interfaces based on static mapping unstable. Thus the user-decoder co-adaptation is needed during online operations. Nevertheless, current online decoder adaptation approaches present several practical challenges, such as expensive data labeling and slow convergence. Thus we introduce an unsupervised decoder adaptation method that converges rapidly. We use an autoencoder to extract motor intent representation in the latent manifold space rather than the sensor space, and further introduce an online unsupervised adaptation scheme based on Moore-Penrose Inverse, a noniterative approach suited for fast network re-training, to track the evolving manifold. A validation experiment first showed that the convergence time of the proposed adaptation scheme was reduced to about 50% of that for state-of-the-art methods. Online experiments further evaluated cursor and prosthetic hand control by the proposed myocontrol interface, where perturbations were representatively introduced by shifting the electrodes. Results showed that our scheme reached comparable improvements in robustness as supervised counterparts. Moreover, in a cup relocation test with a prosthetic hand, the completion time in the post-adaptation phase with electrode shift was comparable to that in the baseline phase without shift. These results suggest that our method effectively improves the accessibility and reliability of decoder adaptation, which has the potential to reduce the translational gap of myoelectric control interfaces by effective co-adaptation during operation.
Author Song, Aiguo
Zhang, Dingguo
Zeng, Hong
Wei, Zhikai
Hu, Xuhui
Deng, Hanjie
Farina, Dario
Author_xml – sequence: 1
  givenname: Hanjie
  surname: Deng
  fullname: Deng, Hanjie
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Province Key Laboratory of Robot Sensing and Control, and the School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Zhikai
  orcidid: 0009-0001-6820-9164
  surname: Wei
  fullname: Wei, Zhikai
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Province Key Laboratory of Robot Sensing and Control, and the School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Xuhui
  orcidid: 0000-0001-7632-3090
  surname: Hu
  fullname: Hu, Xuhui
  organization: Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
– sequence: 4
  givenname: Hong
  orcidid: 0000-0002-4587-6263
  surname: Zeng
  fullname: Zeng, Hong
  email: hzeng@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Province Key Laboratory of Robot Sensing and Control, and the School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Aiguo
  orcidid: 0000-0002-1982-6780
  surname: Song
  fullname: Song, Aiguo
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Province Key Laboratory of Robot Sensing and Control, and the School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 6
  givenname: Dingguo
  surname: Zhang
  fullname: Zhang, Dingguo
  organization: Department of Electronic and Electrical Engineering, University of Bath, Bath, U.K
– sequence: 7
  givenname: Dario
  orcidid: 0000-0002-7883-2697
  surname: Farina
  fullname: Farina, Dario
  organization: Department of Bioengineering, Imperial College London, London, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40031560$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URP_AF0AI5cglyzi2N_ax2haotFCpdM-WY08qV1k7tb2V-u3JNktBHDh5PPN7b6R5p-QoxICEvKewoBTU59sfP28uFw00YsEEF5LKV-SECiFraCgc7WvGa84aOCanOd8D0HYp2jfkmAMwKpZwQh6uw-ADVpuQdyOmR5_RVefOjMUUH0MV-2ptCoZS3eCYME_VPOhjqr4_RRzQluRttYqhpDhUF7vkw121yZjqC7TRYZpm9R_Lt-R1b4aM7w7vGdl8ubxdfavX11-vVufr2nLGS90oDlIBFYYJK4Qz0nS8McYhBUGBdx2VLVcAhqMBaZlqpr_pO9Uaya1iZ-Rq9nXR3Osx-a1JTzoar58bMd1pk4q3A2plKW2Ri27ZIXdLphhVbdMqdL1rDfST16fZa0zxYYe56K3PFofBBIy7rBltGQemlJjQjwd0123RvSz-ffIJaGbApphzwv4FoaD3uernXPU-V33IdRLJf0TWz-csyfjh_9IPs9Qj4l-7FHApJPsFJP-wbQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1126_scirobotics_aea9377
Cites_doi 10.1186/s12984-018-0363-1
10.1109/TRO.2015.2395731
10.1109/TBME.2019.2952890
10.1038/s41551-020-0542-9
10.1016/j.jbiomech.2010.01.027
10.1109/TBME.2022.3194104
10.1109/TNSRE.2013.2278411
10.1109/TNSRE.2020.3038374
10.1109/TNSRE.2022.3171394
10.1007/s00521-021-06233-x
10.1109/TNSRE.2023.3347540
10.1109/TNSRE.2022.3181284
10.1109/LRA.2023.3330053
10.1038/s41593-019-0555-4
10.1109/TNSRE.2015.2401134
10.1038/nn.3265
10.1073/pnas.0500199102
10.1109/TNSRE.2019.2962189
10.1109/TNSRE.2020.3029099
10.1126/scirobotics.adp3260
10.1016/j.neuron.2014.04.048
10.1109/JSEN.2021.3098120
10.1126/scirobotics.aat3630
10.1109/TNSRE.2019.2894464
10.1016/j.neunet.2013.02.008
10.1016/S1364-6613(99)01294-2
10.1186/s12984-020-00681-7
10.1371/journal.pone.0186132
10.1109/TNSRE.2015.2417775
10.1088/1741-2552/aa620b
10.1016/j.cobme.2023.100462
10.1109/TNSRE.2019.2907200
10.3390/s19092203
10.1016/j.ifacol.2018.11.544
10.1016/j.neunet.2021.01.009
10.1162/NECO_a_00460
10.1152/jn.00670.2012
10.1016/j.ifacol.2023.01.109
10.1109/TBME.2022.3150665
10.1007/978-3-319-44781-0_6
10.1109/TNSRE.2012.2185066
10.1109/TNSRE.2013.2287383
10.1109/TNSRE.2020.2979743
10.1109/TBME.2023.3323601
10.1109/TBME.2023.3237081
10.1038/s41598-017-04255-x
10.1109/TNSRE.2022.3173708
10.1109/TNSRE.2023.3237181
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1109/TNSRE.2025.3545818
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1037
ExternalDocumentID oai_doaj_org_article_9c117e45b6be4d6393197279edfd7a0f
40031560
10_1109_TNSRE_2025_3545818
10904858
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Jiangsu Province Key Research and Development Program Projects
  grantid: SBE2023020386
  funderid: 10.13039/501100013058
– fundername: European Research Council Synergy Grant NaturalBionicS
  grantid: 810346
– fundername: Joint Fund Project
  grantid: 8091B042206
– fundername: National Natural Science Foundation of China
  grantid: 62173089; 62303453
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c434t-294089015a35c55da8ab42aade105104bb1874900a4ea08c392874afb97a84c93
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439391200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:28:55 EDT 2025
Thu Jul 10 17:15:52 EDT 2025
Sat May 31 02:13:59 EDT 2025
Sat Nov 29 08:11:28 EST 2025
Tue Nov 18 21:24:08 EST 2025
Wed Aug 27 01:48:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-294089015a35c55da8ab42aade105104bb1874900a4ea08c392874afb97a84c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-6820-9164
0000-0001-7632-3090
0000-0002-4587-6263
0000-0002-7883-2697
0000-0002-1982-6780
OpenAccessLink https://ieeexplore.ieee.org/document/10904858
PMID 40031560
PQID 3173403995
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_9c117e45b6be4d6393197279edfd7a0f
ieee_primary_10904858
proquest_miscellaneous_3173403995
crossref_citationtrail_10_1109_TNSRE_2025_3545818
pubmed_primary_40031560
crossref_primary_10_1109_TNSRE_2025_3545818
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
Kasun (ref34) 2013; 28
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref29
  doi: 10.1186/s12984-018-0363-1
– ident: ref9
  doi: 10.1109/TRO.2015.2395731
– ident: ref13
  doi: 10.1109/TBME.2019.2952890
– ident: ref26
  doi: 10.1038/s41551-020-0542-9
– ident: ref40
  doi: 10.1016/j.jbiomech.2010.01.027
– ident: ref1
  doi: 10.1109/TBME.2022.3194104
– ident: ref42
  doi: 10.1109/TNSRE.2013.2278411
– ident: ref44
  doi: 10.1109/TNSRE.2020.3038374
– ident: ref14
  doi: 10.1109/TNSRE.2022.3171394
– ident: ref35
  doi: 10.1007/s00521-021-06233-x
– ident: ref17
  doi: 10.1109/TNSRE.2023.3347540
– ident: ref4
  doi: 10.1109/TNSRE.2022.3181284
– ident: ref12
  doi: 10.1109/LRA.2023.3330053
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  ident: ref34
  article-title: Representational learning with elms for big data
  publication-title: IEEE Intell. Syst.
– ident: ref46
  doi: 10.1038/s41593-019-0555-4
– ident: ref22
  doi: 10.1109/TNSRE.2015.2401134
– ident: ref45
  doi: 10.1038/nn.3265
– ident: ref30
  doi: 10.1073/pnas.0500199102
– ident: ref15
  doi: 10.1109/TNSRE.2019.2962189
– ident: ref16
  doi: 10.1109/TNSRE.2020.3029099
– ident: ref41
  doi: 10.1126/scirobotics.adp3260
– ident: ref10
  doi: 10.1016/j.neuron.2014.04.048
– ident: ref38
  doi: 10.1109/JSEN.2021.3098120
– ident: ref2
  doi: 10.1126/scirobotics.aat3630
– ident: ref23
  doi: 10.1109/TNSRE.2019.2894464
– ident: ref28
  doi: 10.1016/j.neunet.2013.02.008
– ident: ref37
  doi: 10.1016/S1364-6613(99)01294-2
– ident: ref11
  doi: 10.1186/s12984-020-00681-7
– ident: ref39
  doi: 10.1371/journal.pone.0186132
– ident: ref7
  doi: 10.1109/TNSRE.2015.2417775
– ident: ref49
  doi: 10.1088/1741-2552/aa620b
– ident: ref8
  doi: 10.1016/j.cobme.2023.100462
– ident: ref19
  doi: 10.1109/TNSRE.2019.2907200
– ident: ref24
  doi: 10.3390/s19092203
– ident: ref43
  doi: 10.1016/j.ifacol.2018.11.544
– ident: ref21
  doi: 10.1016/j.neunet.2021.01.009
– ident: ref48
  doi: 10.1162/NECO_a_00460
– ident: ref36
  doi: 10.1152/jn.00670.2012
– ident: ref25
  doi: 10.1016/j.ifacol.2023.01.109
– ident: ref20
  doi: 10.1109/TBME.2022.3150665
– ident: ref31
  doi: 10.1007/978-3-319-44781-0_6
– ident: ref27
  doi: 10.1109/TNSRE.2012.2185066
– ident: ref47
  doi: 10.1109/TNSRE.2013.2287383
– ident: ref3
  doi: 10.1109/TNSRE.2020.2979743
– ident: ref33
  doi: 10.1109/TBME.2023.3323601
– ident: ref32
  doi: 10.1109/TBME.2023.3237081
– ident: ref6
  doi: 10.1038/s41598-017-04255-x
– ident: ref5
  doi: 10.1109/TNSRE.2022.3173708
– ident: ref18
  doi: 10.1109/TNSRE.2023.3237181
SSID ssj0017657
Score 2.452096
Snippet Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1026
SubjectTerms Adult
Algorithms
Artificial Limbs
Autoencoders
Calibration
decoder adaptation
Decoding
electrode shift
Electrodes
Electromyography
Electromyography - methods
Female
Humans
Male
Manifolds
Muscle, Skeletal - physiology
Myoelectric control
online manifold learning
Online Systems
Perturbation methods
Reproducibility of Results
Robot sensing systems
Robustness
Training
unsupervised autoencoder
Unsupervised Machine Learning
User-Computer Interface
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMXxMIC5SUjARdk1qntOD4u-xAHqNDSSnuzxo9IK6G09LES_56ZOO2WA3DhEimJnYdnPP4cZ76PsTdQq6x0HYVVuNGmSgKkicLEqqYxJ4IuYhN2MmmurtzXPakv-ies0AOXhjt2saps1ibUIeuE46kioSzrcmqTBdlS9JXWbSdTw_qBrXuOT-zOWmg1ltt0GemOp5Nvl-c4MRybD4pWjUjuY29I6pn7B6mVP6POfvS5eMDuD7CRn5THPWR3cveQvd2nCObTwg_A3_HL39i3H7EfhU-Uz7rVZkGxYZUTP0mwKAX4vOWfEXJ2a6y5uE1H6jgCWv7l57xI5VxHflr-a-dnfW4jn6H7irNMWfFLPCduL3nEZhfn09NPYpBaEFErvRZjp2VD0ACUicYkaCDoMUDKFfVaHQJp9zkpQWdACyKqwn1og7PQ6OjUY3bQzbv8lPEmQbIJQ0NoGg0hNKlOppVVDhHBhzIjVm1b28ehJUgO47vv5yPS-d5CnizkBwuN2PtdnUVh4fhr6Y9kxF1JYtDuD6Bf-cGv_L_8asSOyAX2bucw2Bm8-OutT3jsibS8Al2eb1YekZjSklKFR-xJcZZdbU3BE8Hls__xaM_ZPXrd8iHoBTtYLzf5Jbsbb9bXq-WrviP8ArbCCRE
  priority: 102
  providerName: Directory of Open Access Journals
Title Online Unsupervised Adaptation of Latent Representation for Myoelectric Control During User-Decoder Co-Adaptation
URI https://ieeexplore.ieee.org/document/10904858
https://www.ncbi.nlm.nih.gov/pubmed/40031560
https://www.proquest.com/docview/3173403995
https://doaj.org/article/9c117e45b6be4d6393197279edfd7a0f
Volume 33
WOSCitedRecordID wos001439391200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxYELzwLhsTIScEFpnbUdO8fShzjACpVdaW-WX5EqVcmyDyT-PTN2drscisQlysN2Ht-M_cXjmSHkva155KL2peKwEbIKpWXSl9JXNY453oqcbEJNJno-b74PzurJFybGmBafxWPcTbb80PsNTpWd4CJCoaU-IAdK1dlZa2cyUHUK6wkaLErBx2zrIcOak-nkx9UF_AuO5TFHQxFm-NgbhVKw_iG7yt1EMw04l4_-81Efk4cDs6SnWRSekHuxe0o-7EcRptMcQoB-pFd_Beh-Rn7mkKN01q02C-w-VjHQ02AXuQDtW_oVWGm3hpqLW4-ljgLnpd9-9zmbzrWnZ3npOz1P7o90BhJenkd0nF_CtfK2ySMyu7yYnn0ph2wMpRdcrMtxI5hG9mC59FIGq60TY2tDrFCxhXOY3q9hzIpoAWQgXnBsW9coq4Vv-HNy2PVdfEmoDjaoAL2H01pY53Sog2xZFZ0HfsJlQaotOsYPXwIzZtyY9MvCGpMQNYioGRAtyKddnUUO1PHP0p8R9F1JDLKdTgCIZtBZ0_iqUlFIV7soAlA5jjnaVBNDG5RlbUGOEPi922XMC_JuK0MGlBUtMLaL_WZlgKxxwdCbuCAvsnDtagvsX4F_vrqj1dfkAb5Bnv55Qw7Xy018S-77X-vr1XIEGjHXozSjMEp68Qf9Zwhk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagIMELZwvhNBLwgtI68ThxHksPFbFdobIr9c3yFakSSpY9kPj3eOzsdnkoEi9RDts5vhn7c8YzQ8h7XXHPobJ5zcMGROFyzYTNhS0qHHOshpRsoh6P5eVl821wVo--MN77uPjM7-NutOW73q7wV9kBLiIEKeRtckcAlCy5a22MBnUVA3sGHYYceMnWPjKsOZiMv1-chNlgKfY5moowx8fWOBTD9Q_5VW6mmnHIOX34nw_7iDwYuCU9TMLwmNzy3RPyYTuOMJ2kIAL0I734K0T3U_IzBR2l026xmmEHsvCOHjo9SwVo39JR4KXdMtScXfssdTSwXnr-u0_5dK4sPUqL3-lxdICk0yDj-bFH1_l5uJZfN7lLpqcnk6OzfMjHkFvgsMzLBphE_qC5sEI4LbWBUmvnC1RtMAYT_DWMafA6wByoVzjWrWlqLcE2fI_sdH3nnxMqnXa1C_2HkRK0MdJVTrSs8MYGhsJFRoo1OsoOXwJzZvxQcdLCGhURVYioGhDNyKdNnVkK1fHP0p8R9E1JDLMdTwQQ1aC1qrFFUXsQpjIeXCBzHLO01Y13ras1azOyi8Bv3S5hnpF3axlSQV3RBqM7368WKtA1Dgz9iTPyLAnXpjZgDxsY6IsbWn1L7p1Nzkdq9GX89SW5j2-Tfga9IjvL-cq_Jnftr-XVYv4m6sUfaWcJzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Unsupervised+Adaptation+of+Latent+Representation+for+Myoelectric+Control+During+User-Decoder+Co-Adaptation&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Deng%2C+Hanjie&rft.au=Wei%2C+Zhikai&rft.au=Hu%2C+Xuhui&rft.au=Zeng%2C+Hong&rft.date=2025&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=33&rft.spage=1026&rft.epage=1037&rft_id=info:doi/10.1109%2FTNSRE.2025.3545818&rft.externalDocID=10904858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon