A comprehensive review of EEG-based brain-computer interface paradigms
Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. pa...
Uložené v:
| Vydané v: | Journal of neural engineering Ročník 16; číslo 1; s. 011001 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
01.02.2019
|
| Predmet: | |
| ISSN: | 1741-2552, 1741-2552 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed. |
|---|---|
| AbstractList | Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed. Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed. |
| Author | Borhani, Soheil Zhao, Xiaopeng Sellers, Eric W Abiri, Reza Jiang, Yang |
| Author_xml | – sequence: 1 givenname: Reza surname: Abiri fullname: Abiri, Reza organization: Department of Neurology, University of California, San Francisco/Berkeley, CA 94158, United States of America. Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States of America – sequence: 2 givenname: Soheil surname: Borhani fullname: Borhani, Soheil – sequence: 3 givenname: Eric W surname: Sellers fullname: Sellers, Eric W – sequence: 4 givenname: Yang surname: Jiang fullname: Jiang, Yang – sequence: 5 givenname: Xiaopeng surname: Zhao fullname: Zhao, Xiaopeng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30523919$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tLAzEYxINU7EPvnmSPXtbmuWmOpbRVKHjR8_Jl80Uj3YdJt-J_3xareJkZhh8DMyaDpm2QkFtGHxidzaZMS5ZzpfgUwDOOF2T0Vw3-5SEZp_RBqWDa0CsyFFRxYZgZkdU8q9q6i_iOTQp7zCLuA35lrc-Wy3VuIaHLbITQ5Ceu32HMQnNUDxVmHURw4a1O1-TSwzbhzdkn5HW1fFk85pvn9dNivskrKeQuZ65AUBac5dyAc8IUvDK-ksUMLHNMaGW0AE39CZOoPVpmnJWKayYLxifk_me3i-1nj2lX1iFVuN1Cg22fSs6UMlIaKo7o3RntbY2u7GKoIX6Xv9_5AaxpXY0 |
| CitedBy_id | crossref_primary_10_1155_2022_4003245 crossref_primary_10_3389_fninf_2022_952474 crossref_primary_10_1088_1741_2552_ac0488 crossref_primary_10_3390_automation3040031 crossref_primary_10_1016_j_ijinfomgt_2022_102531 crossref_primary_10_3389_fnhum_2024_1390714 crossref_primary_10_1016_j_compbiomed_2024_108788 crossref_primary_10_1038_s41598_024_55163_w crossref_primary_10_1109_JBHI_2019_2892379 crossref_primary_10_3389_fnbot_2019_00101 crossref_primary_10_3390_mi12121521 crossref_primary_10_3390_app13020856 crossref_primary_10_3389_fnins_2023_1276067 crossref_primary_10_1109_TNSRE_2025_3565158 crossref_primary_10_1109_TKDE_2025_3527551 crossref_primary_10_3389_fnhum_2024_1305445 crossref_primary_10_1109_ACCESS_2023_3268233 crossref_primary_10_1007_s11042_024_18648_4 crossref_primary_10_1109_ACCESS_2020_2983182 crossref_primary_10_1109_ACCESS_2025_3567908 crossref_primary_10_1016_j_neucom_2021_03_038 crossref_primary_10_1136_neurintsurg_2020_016862 crossref_primary_10_1093_nsr_nwac212 crossref_primary_10_1017_S096318012100013X crossref_primary_10_1109_TNSRE_2025_3547616 crossref_primary_10_1109_TNSRE_2023_3308779 crossref_primary_10_3758_s13428_025_02710_6 crossref_primary_10_1016_j_eswa_2024_125585 crossref_primary_10_1007_s40846_023_00798_9 crossref_primary_10_1016_j_bspc_2025_108376 crossref_primary_10_3390_s23229049 crossref_primary_10_3389_fnins_2021_683784 crossref_primary_10_3390_brainsci12020234 crossref_primary_10_3390_brainsci15010028 crossref_primary_10_3390_s21186285 crossref_primary_10_1007_s00521_022_07542_5 crossref_primary_10_3389_fnhum_2022_1007199 crossref_primary_10_4103_NRR_NRR_D_24_01336 crossref_primary_10_1016_j_clinph_2021_04_023 crossref_primary_10_1016_j_knosys_2025_113315 crossref_primary_10_3389_fnhum_2022_931085 crossref_primary_10_1016_j_buildenv_2023_110494 crossref_primary_10_1038_s41597_023_02286_w crossref_primary_10_1109_TNSRE_2023_3300961 crossref_primary_10_1088_1741_2552_abee51 crossref_primary_10_1016_j_nanoen_2024_109748 crossref_primary_10_1109_TSMC_2022_3156861 crossref_primary_10_3390_brainsci13050780 crossref_primary_10_1038_s41551_022_00930_1 crossref_primary_10_1016_j_brs_2025_05_003 crossref_primary_10_3390_brainsci13050766 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_1186_s40708_023_00199_3 crossref_primary_10_3390_app13106283 crossref_primary_10_1088_2057_1976_ab87e6 crossref_primary_10_1109_TIM_2021_3127650 crossref_primary_10_1145_3593226 crossref_primary_10_1038_s41598_025_87414_9 crossref_primary_10_1111_cogs_13454 crossref_primary_10_3389_fninf_2022_997068 crossref_primary_10_1109_TNSRE_2022_3199363 crossref_primary_10_1109_ACCESS_2023_3347336 crossref_primary_10_1109_TNSRE_2024_3382226 crossref_primary_10_1109_TNSRE_2025_3591254 crossref_primary_10_1016_j_bspc_2024_106932 crossref_primary_10_1155_2021_6631835 crossref_primary_10_1088_1741_2552_ac2628 crossref_primary_10_1016_j_bspc_2023_105438 crossref_primary_10_1161_STROKEAHA_123_037719 crossref_primary_10_3390_s24248108 crossref_primary_10_1007_s11517_024_03103_1 crossref_primary_10_1002_adma_202005786 crossref_primary_10_1007_s11760_022_02399_6 crossref_primary_10_1109_RBME_2022_3165062 crossref_primary_10_1109_TIM_2021_3071217 crossref_primary_10_1155_2021_5535810 crossref_primary_10_3389_fnhum_2021_772837 crossref_primary_10_1016_j_cobme_2021_100286 crossref_primary_10_1080_17483107_2020_1754929 crossref_primary_10_1109_COMST_2022_3232576 crossref_primary_10_3390_brainsci14080846 crossref_primary_10_1016_j_rineng_2025_106483 crossref_primary_10_1017_wtc_2024_13 crossref_primary_10_1109_TNSRE_2022_3209155 crossref_primary_10_1109_TNSRE_2020_2981659 crossref_primary_10_3389_fnhum_2024_1486167 crossref_primary_10_1016_j_trpro_2025_03_099 crossref_primary_10_3389_fnbot_2020_00025 crossref_primary_10_3390_s25010231 crossref_primary_10_1016_j_measurement_2022_112304 crossref_primary_10_3389_fnins_2022_997377 crossref_primary_10_1088_1741_2552_ac9a01 crossref_primary_10_1109_JPROC_2024_3429360 crossref_primary_10_1016_j_compbiomed_2022_105521 crossref_primary_10_3389_fnins_2023_1243151 crossref_primary_10_3390_electronics12112381 crossref_primary_10_1109_JSEN_2024_3471699 crossref_primary_10_1109_ACCESS_2024_3376254 crossref_primary_10_1007_s13534_021_00190_z crossref_primary_10_3389_fnins_2021_634147 crossref_primary_10_1109_TNSRE_2024_3499998 crossref_primary_10_3390_s24165253 crossref_primary_10_3389_fnhum_2025_1571386 crossref_primary_10_1186_s42492_024_00179_2 crossref_primary_10_3389_fnagi_2022_780817 crossref_primary_10_1109_JBHI_2023_3344176 crossref_primary_10_3389_fnhum_2023_1117670 crossref_primary_10_1016_j_bspc_2023_105530 crossref_primary_10_1088_2057_1976_ad2f58 crossref_primary_10_1088_1741_2552_ab6a67 crossref_primary_10_1016_j_asoc_2021_108393 crossref_primary_10_1016_j_matpr_2021_01_223 crossref_primary_10_1016_j_eswa_2023_121986 crossref_primary_10_1142_S0219519425400809 crossref_primary_10_3389_fnins_2022_988535 crossref_primary_10_1016_j_neunet_2025_108127 crossref_primary_10_1016_j_biopsycho_2025_109100 crossref_primary_10_1007_s11571_023_10035_3 crossref_primary_10_1088_1741_2552_ad152f crossref_primary_10_1002_cav_2150 crossref_primary_10_3389_fncom_2023_1101726 crossref_primary_10_1080_17483107_2020_1842919 crossref_primary_10_3390_s24165207 crossref_primary_10_1109_JSEN_2023_3287983 crossref_primary_10_3389_fnins_2021_622095 crossref_primary_10_3390_s23135930 crossref_primary_10_1016_j_measurement_2019_07_070 crossref_primary_10_3389_fnhum_2021_647839 crossref_primary_10_3390_app122412722 crossref_primary_10_3390_electronics10050560 crossref_primary_10_3390_s22093331 crossref_primary_10_1016_j_bspc_2020_101845 crossref_primary_10_1016_j_bspc_2024_106063 crossref_primary_10_1016_j_compbiomed_2025_111023 crossref_primary_10_1080_2326263X_2022_2050513 crossref_primary_10_1088_1741_2552_ac77be crossref_primary_10_1016_j_neunet_2021_06_022 crossref_primary_10_1002_smll_202107099 crossref_primary_10_1109_TNSRE_2022_3185262 crossref_primary_10_1051_matecconf_201929201024 crossref_primary_10_1007_s11055_022_01278_4 crossref_primary_10_1016_j_jneumeth_2023_109953 crossref_primary_10_3389_fninf_2022_1025847 crossref_primary_10_3390_s25154623 crossref_primary_10_1109_ACCESS_2024_3524397 crossref_primary_10_1109_TNSRE_2023_3301507 crossref_primary_10_3389_fnhum_2025_1456692 crossref_primary_10_3390_bioengineering11070695 crossref_primary_10_1088_1741_2552_ac1ade crossref_primary_10_1016_j_bspc_2024_106156 crossref_primary_10_4103_1673_5374_390968 crossref_primary_10_14326_abe_12_129 crossref_primary_10_3389_fninf_2021_699840 crossref_primary_10_1016_j_engappai_2023_106990 crossref_primary_10_1016_j_neunet_2024_106351 crossref_primary_10_1016_j_eswa_2025_127312 crossref_primary_10_1088_1741_2552_ac7257 crossref_primary_10_1152_jn_00029_2024 crossref_primary_10_3389_fnins_2023_1086472 crossref_primary_10_1016_j_bspc_2025_107552 crossref_primary_10_3390_s23073714 crossref_primary_10_3390_polym16172507 crossref_primary_10_1109_TASE_2025_3587765 crossref_primary_10_3390_s25154727 crossref_primary_10_1109_TIM_2025_3571139 crossref_primary_10_1055_s_0041_1725137 crossref_primary_10_1007_s11571_024_10134_9 crossref_primary_10_1155_2021_6613105 crossref_primary_10_1038_s41598_025_89405_2 crossref_primary_10_3390_s25103178 crossref_primary_10_1080_10255842_2025_2523322 crossref_primary_10_1109_TNSRE_2025_3560993 crossref_primary_10_1016_j_neunet_2025_107876 crossref_primary_10_1109_ACCESS_2025_3564328 crossref_primary_10_3389_fnhum_2022_908050 crossref_primary_10_1007_s11517_025_03340_y crossref_primary_10_1109_JBHI_2025_3535592 crossref_primary_10_3389_fnhum_2024_1419552 crossref_primary_10_1007_s11571_022_09886_z crossref_primary_10_3390_app122312253 crossref_primary_10_1109_TNSRE_2023_3311750 crossref_primary_10_1007_s00500_023_08837_y crossref_primary_10_3390_brainsci12010057 crossref_primary_10_1016_j_eswa_2025_128783 crossref_primary_10_1016_j_engappai_2022_105347 crossref_primary_10_1038_s41598_024_73755_4 crossref_primary_10_1016_j_eswa_2021_115572 crossref_primary_10_3389_fnagi_2021_625006 crossref_primary_10_3389_fnins_2023_1305850 crossref_primary_10_1088_1741_2552_addf81 crossref_primary_10_3389_fnins_2023_1077479 crossref_primary_10_3390_electronics12051234 crossref_primary_10_31083_j_jin2312218 crossref_primary_10_3390_app11156791 crossref_primary_10_3389_fnins_2022_892794 crossref_primary_10_1155_2020_7459587 crossref_primary_10_1109_TNSRE_2024_3379451 crossref_primary_10_1080_10447318_2023_2248833 crossref_primary_10_1016_j_cnp_2025_09_003 crossref_primary_10_1109_TNSRE_2023_3241629 crossref_primary_10_1038_s41597_025_04995_w crossref_primary_10_3389_fpsyg_2024_1394496 crossref_primary_10_3390_bios12121134 crossref_primary_10_1109_TNSRE_2020_3004924 crossref_primary_10_1016_j_compbiomed_2023_106734 crossref_primary_10_1002_admt_202200342 crossref_primary_10_3390_math11010096 crossref_primary_10_1016_j_measurement_2021_110116 crossref_primary_10_1016_j_ifacsc_2024_100251 crossref_primary_10_1016_j_neuroimage_2021_118851 crossref_primary_10_1088_1741_2552_acb232 crossref_primary_10_3389_fnins_2024_1469903 crossref_primary_10_1145_3648106 crossref_primary_10_1002_advs_202101129 crossref_primary_10_1016_j_inffus_2025_103135 crossref_primary_10_1109_TNSRE_2022_3175483 crossref_primary_10_1111_epi_16969 crossref_primary_10_3390_s23177520 crossref_primary_10_3389_fnins_2021_684547 crossref_primary_10_3389_fnhum_2023_1194751 crossref_primary_10_1063_5_0047237 crossref_primary_10_3389_fnhum_2023_1302647 crossref_primary_10_3390_s21206827 crossref_primary_10_1016_j_neures_2021_10_008 crossref_primary_10_3390_s21206828 crossref_primary_10_1016_j_neubiorev_2022_104652 crossref_primary_10_1088_1741_2552_ad7a24 crossref_primary_10_3389_fnbot_2021_605751 crossref_primary_10_3389_fnins_2023_1093865 crossref_primary_10_1007_s10548_021_00828_2 crossref_primary_10_1007_s00345_025_05683_5 crossref_primary_10_3389_fnins_2023_1345961 crossref_primary_10_1016_j_robot_2024_104899 crossref_primary_10_3390_biom11091316 crossref_primary_10_1007_s00521_025_11201_w crossref_primary_10_1007_s11071_024_10784_8 crossref_primary_10_1080_17483107_2023_2211602 crossref_primary_10_1016_j_chaos_2023_113453 crossref_primary_10_1088_2057_1976_ad12f9 crossref_primary_10_1007_s11055_022_01322_3 crossref_primary_10_1109_THMS_2021_3115094 crossref_primary_10_1109_TNSRE_2020_3039331 crossref_primary_10_1109_ACCESS_2024_3392008 crossref_primary_10_1109_TIM_2025_3527610 crossref_primary_10_1007_s42600_021_00189_6 crossref_primary_10_1016_j_bspc_2021_103459 crossref_primary_10_1038_s41597_025_04826_y crossref_primary_10_1177_09287329241302740 crossref_primary_10_3390_s21248167 crossref_primary_10_1016_j_bspc_2022_103857 crossref_primary_10_3390_s25175291 crossref_primary_10_3389_fnins_2023_1274320 crossref_primary_10_1109_TNSRE_2022_3220884 crossref_primary_10_1016_j_knosys_2023_110383 crossref_primary_10_1109_OJEMB_2021_3059161 crossref_primary_10_32604_cmc_2022_025823 crossref_primary_10_1186_s12984_025_01588_x crossref_primary_10_1088_1741_2552_acfbba crossref_primary_10_1109_JBHI_2024_3452701 crossref_primary_10_1016_j_neuroimage_2022_119754 crossref_primary_10_1038_s41597_022_01398_z crossref_primary_10_1038_s41378_023_00527_x crossref_primary_10_3390_life13041031 crossref_primary_10_3389_fnhum_2024_1448584 crossref_primary_10_1088_1741_2552_ad504a crossref_primary_10_3103_S1060992X21010057 crossref_primary_10_1016_j_compbiomed_2022_106220 crossref_primary_10_3389_fnhum_2025_1569411 crossref_primary_10_1016_j_jneumeth_2021_109318 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_3390_brainsci13030483 crossref_primary_10_1109_TBME_2025_3553204 crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1016_j_heliyon_2023_e18452 crossref_primary_10_1038_s41587_021_01071_7 crossref_primary_10_1088_1741_2552_add772 crossref_primary_10_3390_biomimetics10080488 crossref_primary_10_1109_JBHI_2022_3224506 crossref_primary_10_1109_JBHI_2023_3318419 crossref_primary_10_1109_TIM_2024_3417598 crossref_primary_10_3390_biomimetics10030187 crossref_primary_10_3389_fnhum_2022_898300 crossref_primary_10_1038_s42003_025_08465_2 crossref_primary_10_1002_EXP_20230146 crossref_primary_10_1109_TCYB_2024_3390805 crossref_primary_10_1016_j_bspc_2022_103515 crossref_primary_10_3389_fnhum_2025_1539081 crossref_primary_10_1109_TNSRE_2023_3337525 crossref_primary_10_1097_JS9_0000000000002022 crossref_primary_10_1108_IR_09_2022_0239 crossref_primary_10_1016_j_bspc_2023_105175 crossref_primary_10_1186_s12984_022_01081_9 crossref_primary_10_1016_j_plrev_2025_08_007 crossref_primary_10_3389_fnins_2024_1381572 crossref_primary_10_1109_JPROC_2025_3600389 crossref_primary_10_3390_a16110502 crossref_primary_10_1007_s00521_023_08310_9 crossref_primary_10_1007_s11036_021_01754_0 crossref_primary_10_3390_electronics11193078 crossref_primary_10_1007_s11831_021_09684_6 crossref_primary_10_1111_ina_13106 crossref_primary_10_1016_j_physa_2021_126516 crossref_primary_10_1088_1741_2552_ad01de crossref_primary_10_1038_s41539_024_00277_z crossref_primary_10_1016_j_compeleceng_2024_109680 crossref_primary_10_1016_j_jneumeth_2021_109458 crossref_primary_10_1016_j_cmpb_2020_105808 crossref_primary_10_1088_1741_2552_adeaea crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_1016_j_eswa_2024_125832 crossref_primary_10_3389_fnhum_2021_732946 crossref_primary_10_1007_s13534_023_00309_4 crossref_primary_10_3390_surgeries6030050 crossref_primary_10_3390_s23114993 crossref_primary_10_3389_fncom_2024_1431815 crossref_primary_10_1007_s00521_025_11300_8 crossref_primary_10_3389_fnhum_2024_1416683 crossref_primary_10_1088_1741_2552_ad731e crossref_primary_10_1093_cercor_bhad105 crossref_primary_10_1016_j_neunet_2023_01_009 crossref_primary_10_3389_fncom_2022_1006763 crossref_primary_10_1109_ACCESS_2024_3394696 crossref_primary_10_3390_s23020760 crossref_primary_10_3389_fnins_2023_1204385 crossref_primary_10_1088_1741_2552_ac01a0 crossref_primary_10_2147_JMDH_S509747 crossref_primary_10_1038_s41586_025_09255_w crossref_primary_10_1088_2057_1976_acdbd0 crossref_primary_10_1109_THMS_2021_3086009 crossref_primary_10_1016_j_neunet_2024_106108 crossref_primary_10_3389_fnhum_2021_635351 crossref_primary_10_3389_fnins_2024_1360709 crossref_primary_10_3389_fnhum_2020_599802 crossref_primary_10_1016_j_seizure_2024_02_009 crossref_primary_10_1109_TNSRE_2023_3249831 crossref_primary_10_1177_18724981241292473 crossref_primary_10_1080_10447318_2023_2203006 crossref_primary_10_3389_fnhum_2021_643294 crossref_primary_10_3389_fnhum_2024_1398065 crossref_primary_10_3390_app13169469 crossref_primary_10_1016_j_neuri_2021_100030 crossref_primary_10_1088_2516_1091_ac993d crossref_primary_10_1093_gigascience_giaa098 crossref_primary_10_1109_TNSRE_2024_3410870 crossref_primary_10_1007_s10489_022_04226_4 crossref_primary_10_3390_mti5120081 crossref_primary_10_1016_j_neuri_2021_100029 crossref_primary_10_1109_JSEN_2022_3161743 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1007_s13347_022_00597_1 crossref_primary_10_1109_JSEN_2023_3276481 crossref_primary_10_1088_1741_2552_ac49a6 crossref_primary_10_1088_1741_2552_ad995a crossref_primary_10_3390_electronics12224697 crossref_primary_10_1016_j_compbiomed_2021_104809 crossref_primary_10_3390_s22155802 crossref_primary_10_1186_s12984_023_01169_w crossref_primary_10_3389_fnins_2021_663101 crossref_primary_10_1038_s41578_025_00798_y crossref_primary_10_1109_TNSRE_2023_3315717 crossref_primary_10_1109_JIOT_2023_3278329 crossref_primary_10_3389_fnins_2022_810553 crossref_primary_10_1109_TNSRE_2020_2966826 crossref_primary_10_3390_s23052798 crossref_primary_10_3390_info14070354 crossref_primary_10_1088_1741_2552_ad48bc crossref_primary_10_1002_qute_202300185 crossref_primary_10_3389_fnhum_2025_1521491 crossref_primary_10_3390_s21196570 crossref_primary_10_1088_1741_2552_ac6770 crossref_primary_10_3389_fneur_2022_1041978 crossref_primary_10_1016_j_artmed_2019_101766 crossref_primary_10_1109_TNSRE_2023_3235804 crossref_primary_10_1155_2019_6862031 crossref_primary_10_3390_jpm13010046 crossref_primary_10_3389_fninf_2023_1086634 crossref_primary_10_1016_j_eswa_2022_117574 crossref_primary_10_1088_1741_2552_ad6793 crossref_primary_10_3390_bioengineering10010042 crossref_primary_10_3390_app15010392 crossref_primary_10_1155_2023_8812844 crossref_primary_10_1109_TNSRE_2021_3137340 crossref_primary_10_3390_s24175801 crossref_primary_10_1038_s41598_022_10906_5 crossref_primary_10_3390_act11060161 crossref_primary_10_1109_ACCESS_2023_3326720 crossref_primary_10_1109_JIOT_2024_3520426 crossref_primary_10_1016_j_heliyon_2024_e26521 crossref_primary_10_1016_j_bspc_2021_102993 crossref_primary_10_3389_fnhum_2022_867281 crossref_primary_10_1136_svn_2022_001506 crossref_primary_10_3390_computers11050061 crossref_primary_10_1007_s40745_025_00596_x crossref_primary_10_1371_journal_pone_0282268 crossref_primary_10_1109_TNSRE_2024_3351863 crossref_primary_10_3390_jpm11050437 crossref_primary_10_1007_s11517_019_02065_z crossref_primary_10_1016_j_bbe_2025_03_005 crossref_primary_10_1109_TNSRE_2025_3594341 crossref_primary_10_1109_JSEN_2021_3130626 crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_1109_ACCESS_2023_3297882 crossref_primary_10_3389_fnhum_2024_1490066 crossref_primary_10_1016_j_compbiomed_2024_108727 crossref_primary_10_3390_s21175746 crossref_primary_10_1016_j_neuroimage_2020_116990 crossref_primary_10_1080_09540091_2024_2426812 crossref_primary_10_1186_s12984_023_01272_y crossref_primary_10_3390_s24248048 crossref_primary_10_1016_j_eswa_2024_124673 crossref_primary_10_3390_app13116364 crossref_primary_10_1007_s12559_023_10150_7 crossref_primary_10_3389_fnhum_2021_648275 crossref_primary_10_3390_healthcare13131580 crossref_primary_10_1016_j_neuroimage_2025_121391 crossref_primary_10_3390_app15169184 crossref_primary_10_1016_j_neuroscience_2020_12_001 crossref_primary_10_1016_j_bspc_2024_106837 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_3389_fnhum_2022_975410 crossref_primary_10_1109_ACCESS_2019_2946301 crossref_primary_10_1109_OJCS_2025_3587014 crossref_primary_10_1177_1071181321651299 crossref_primary_10_1007_s42600_022_00215_1 crossref_primary_10_3390_brainsci10030157 crossref_primary_10_3390_math8111898 crossref_primary_10_3389_fncel_2021_653487 crossref_primary_10_1016_j_neunet_2024_106734 crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_1109_THMS_2021_3056274 crossref_primary_10_3389_fnhum_2023_1096814 crossref_primary_10_1007_s11571_022_09923_x crossref_primary_10_3389_fnhum_2022_902183 crossref_primary_10_1109_TNSRE_2021_3102304 crossref_primary_10_1016_j_neuroscience_2024_11_039 crossref_primary_10_3390_brainsci9120352 crossref_primary_10_1038_s41598_024_58031_9 crossref_primary_10_1134_S0362119722010054 crossref_primary_10_3389_fncom_2022_990892 crossref_primary_10_3390_s24227125 crossref_primary_10_1080_13658816_2024_2309188 crossref_primary_10_1109_TNSRE_2023_3275172 crossref_primary_10_1109_ACCESS_2020_3047678 crossref_primary_10_1007_s12559_021_09971_1 crossref_primary_10_3390_s23187908 crossref_primary_10_1038_s41598_025_96611_5 crossref_primary_10_1371_journal_pone_0274847 crossref_primary_10_1016_j_bspc_2020_102100 crossref_primary_10_3390_brainsci9120348 crossref_primary_10_1097_YCO_0000000000000693 crossref_primary_10_1016_j_compbiomed_2025_110937 crossref_primary_10_1016_j_jneumeth_2022_109499 crossref_primary_10_3390_s22052028 crossref_primary_10_3389_fnins_2021_655599 crossref_primary_10_3390_app12062918 crossref_primary_10_1109_TITS_2022_3166631 crossref_primary_10_1088_1741_2552_ab6cb7 crossref_primary_10_3389_fnins_2023_1275908 crossref_primary_10_1109_TNSRE_2023_3242280 crossref_primary_10_1007_s11571_023_10051_3 crossref_primary_10_1016_j_bspc_2021_102621 crossref_primary_10_3390_s23104661 crossref_primary_10_3390_bioengineering9120768 crossref_primary_10_1109_JBHI_2025_3577611 crossref_primary_10_3389_fnins_2023_1269359 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_1109_TNSRE_2024_3408273 crossref_primary_10_1109_JBHI_2023_3303494 crossref_primary_10_1109_TNSRE_2023_3268751 crossref_primary_10_1016_j_trac_2025_118279 crossref_primary_10_3389_fnhum_2023_1129362 crossref_primary_10_3390_s21103345 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/1741-2552/aaf12e |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 30523919 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACARI ACGFS ACHIP AEFHF AENEX AERVB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ARNYC ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CGR CJUJL CRLBU CS3 CUY CVF DU5 EBS ECM EDWGO EIF EJD EMSAF EPQRW EQZZN F5P FEDTE HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c434t-1d6ea5badb229add3962c9fc468ab1d1375973a70fea5b4e7feb19db452714612 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 611 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455843300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1741-2552 |
| IngestDate | Tue Aug 05 09:26:11 EDT 2025 Thu Apr 03 07:08:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-1d6ea5badb229add3962c9fc468ab1d1375973a70fea5b4e7feb19db452714612 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 30523919 |
| PQID | 2155944903 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2155944903 pubmed_primary_30523919 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAlternate | J Neural Eng |
| PublicationYear | 2019 |
| SSID | ssj0031790 |
| Score | 2.682786 |
| SecondaryResourceType | review_article |
| Snippet | Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 011001 |
| SubjectTerms | Brain - physiology Brain-Computer Interfaces - trends Communication Aids for Disabled - trends Electroencephalography - methods Electroencephalography - trends Evoked Potentials, Visual - physiology Humans Neurological Rehabilitation - methods Neurological Rehabilitation - trends |
| Title | A comprehensive review of EEG-based brain-computer interface paradigms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30523919 https://www.proquest.com/docview/2155944903 |
| Volume | 16 |
| WOSCitedRecordID | wos000455843300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAMrBwlaNcMhJis5rYThNPqEItDFB1AKlb5BMYmpSmIPHv8YvTMiEhsXiIEsl6eX5-5_chdMVkpPxv5cQHHxpGchKiEusXxX34zCQ3AWf2IR2NsslEjJuEW9W0VS5tYm2oTakhR96lUD_jXETsZvZOgDUKqqsNhcY6ajHvyoBWp5NVFYEB-lQYiIz9XhLalCn9wequnnWldDG1vzuY9UUz3PnvFnfRduNi4n7QiT20Zot91O4XPryefuFrXDd91tn0Nhr2MTSVz-1raGTHYZQFlw4PBncE7jiDFdBIEN3wP2BAmJg7qS0G3HDz9jKtDtDzcPB0e08aagWiOeMLEpuelYmSRlEqvIljoke1cJr3MqliE7PUBxpMppGD17hNnbfpwiie0BSYwOkh2ijKwh4jrJw2mfSeiI0kzxzPrNKAByEy4yTntIMul9LKvepCPUIWtvyo8h95ddBREHk-CxgbOYN0tYjFyR--PkVb3o0RoZf6DLWcP7j2HG3qz8VbNb-odcKvo_HjN_CqwNI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+of+EEG-based+brain-computer+interface+paradigms&rft.jtitle=Journal+of+neural+engineering&rft.au=Abiri%2C+Reza&rft.au=Borhani%2C+Soheil&rft.au=Sellers%2C+Eric+W&rft.au=Jiang%2C+Yang&rft.date=2019-02-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=16&rft.issue=1&rft.spage=011001&rft_id=info:doi/10.1088%2F1741-2552%2Faaf12e&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon |