A comprehensive review of EEG-based brain-computer interface paradigms

Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. pa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of neural engineering Ročník 16; číslo 1; s. 011001
Hlavní autori: Abiri, Reza, Borhani, Soheil, Sellers, Eric W, Jiang, Yang, Zhao, Xiaopeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.02.2019
Predmet:
ISSN:1741-2552, 1741-2552
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.
AbstractList Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.
Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.
Author Borhani, Soheil
Zhao, Xiaopeng
Sellers, Eric W
Abiri, Reza
Jiang, Yang
Author_xml – sequence: 1
  givenname: Reza
  surname: Abiri
  fullname: Abiri, Reza
  organization: Department of Neurology, University of California, San Francisco/Berkeley, CA 94158, United States of America. Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
– sequence: 2
  givenname: Soheil
  surname: Borhani
  fullname: Borhani, Soheil
– sequence: 3
  givenname: Eric W
  surname: Sellers
  fullname: Sellers, Eric W
– sequence: 4
  givenname: Yang
  surname: Jiang
  fullname: Jiang, Yang
– sequence: 5
  givenname: Xiaopeng
  surname: Zhao
  fullname: Zhao, Xiaopeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30523919$$D View this record in MEDLINE/PubMed
BookMark eNpNj8tLAzEYxINU7EPvnmSPXtbmuWmOpbRVKHjR8_Jl80Uj3YdJt-J_3xareJkZhh8DMyaDpm2QkFtGHxidzaZMS5ZzpfgUwDOOF2T0Vw3-5SEZp_RBqWDa0CsyFFRxYZgZkdU8q9q6i_iOTQp7zCLuA35lrc-Wy3VuIaHLbITQ5Ceu32HMQnNUDxVmHURw4a1O1-TSwzbhzdkn5HW1fFk85pvn9dNivskrKeQuZ65AUBac5dyAc8IUvDK-ksUMLHNMaGW0AE39CZOoPVpmnJWKayYLxifk_me3i-1nj2lX1iFVuN1Cg22fSs6UMlIaKo7o3RntbY2u7GKoIX6Xv9_5AaxpXY0
CitedBy_id crossref_primary_10_1155_2022_4003245
crossref_primary_10_3389_fninf_2022_952474
crossref_primary_10_1088_1741_2552_ac0488
crossref_primary_10_3390_automation3040031
crossref_primary_10_1016_j_ijinfomgt_2022_102531
crossref_primary_10_3389_fnhum_2024_1390714
crossref_primary_10_1016_j_compbiomed_2024_108788
crossref_primary_10_1038_s41598_024_55163_w
crossref_primary_10_1109_JBHI_2019_2892379
crossref_primary_10_3389_fnbot_2019_00101
crossref_primary_10_3390_mi12121521
crossref_primary_10_3390_app13020856
crossref_primary_10_3389_fnins_2023_1276067
crossref_primary_10_1109_TNSRE_2025_3565158
crossref_primary_10_1109_TKDE_2025_3527551
crossref_primary_10_3389_fnhum_2024_1305445
crossref_primary_10_1109_ACCESS_2023_3268233
crossref_primary_10_1007_s11042_024_18648_4
crossref_primary_10_1109_ACCESS_2020_2983182
crossref_primary_10_1109_ACCESS_2025_3567908
crossref_primary_10_1016_j_neucom_2021_03_038
crossref_primary_10_1136_neurintsurg_2020_016862
crossref_primary_10_1093_nsr_nwac212
crossref_primary_10_1017_S096318012100013X
crossref_primary_10_1109_TNSRE_2025_3547616
crossref_primary_10_1109_TNSRE_2023_3308779
crossref_primary_10_3758_s13428_025_02710_6
crossref_primary_10_1016_j_eswa_2024_125585
crossref_primary_10_1007_s40846_023_00798_9
crossref_primary_10_1016_j_bspc_2025_108376
crossref_primary_10_3390_s23229049
crossref_primary_10_3389_fnins_2021_683784
crossref_primary_10_3390_brainsci12020234
crossref_primary_10_3390_brainsci15010028
crossref_primary_10_3390_s21186285
crossref_primary_10_1007_s00521_022_07542_5
crossref_primary_10_3389_fnhum_2022_1007199
crossref_primary_10_4103_NRR_NRR_D_24_01336
crossref_primary_10_1016_j_clinph_2021_04_023
crossref_primary_10_1016_j_knosys_2025_113315
crossref_primary_10_3389_fnhum_2022_931085
crossref_primary_10_1016_j_buildenv_2023_110494
crossref_primary_10_1038_s41597_023_02286_w
crossref_primary_10_1109_TNSRE_2023_3300961
crossref_primary_10_1088_1741_2552_abee51
crossref_primary_10_1016_j_nanoen_2024_109748
crossref_primary_10_1109_TSMC_2022_3156861
crossref_primary_10_3390_brainsci13050780
crossref_primary_10_1038_s41551_022_00930_1
crossref_primary_10_1016_j_brs_2025_05_003
crossref_primary_10_3390_brainsci13050766
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_1186_s40708_023_00199_3
crossref_primary_10_3390_app13106283
crossref_primary_10_1088_2057_1976_ab87e6
crossref_primary_10_1109_TIM_2021_3127650
crossref_primary_10_1145_3593226
crossref_primary_10_1038_s41598_025_87414_9
crossref_primary_10_1111_cogs_13454
crossref_primary_10_3389_fninf_2022_997068
crossref_primary_10_1109_TNSRE_2022_3199363
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1109_TNSRE_2024_3382226
crossref_primary_10_1109_TNSRE_2025_3591254
crossref_primary_10_1016_j_bspc_2024_106932
crossref_primary_10_1155_2021_6631835
crossref_primary_10_1088_1741_2552_ac2628
crossref_primary_10_1016_j_bspc_2023_105438
crossref_primary_10_1161_STROKEAHA_123_037719
crossref_primary_10_3390_s24248108
crossref_primary_10_1007_s11517_024_03103_1
crossref_primary_10_1002_adma_202005786
crossref_primary_10_1007_s11760_022_02399_6
crossref_primary_10_1109_RBME_2022_3165062
crossref_primary_10_1109_TIM_2021_3071217
crossref_primary_10_1155_2021_5535810
crossref_primary_10_3389_fnhum_2021_772837
crossref_primary_10_1016_j_cobme_2021_100286
crossref_primary_10_1080_17483107_2020_1754929
crossref_primary_10_1109_COMST_2022_3232576
crossref_primary_10_3390_brainsci14080846
crossref_primary_10_1016_j_rineng_2025_106483
crossref_primary_10_1017_wtc_2024_13
crossref_primary_10_1109_TNSRE_2022_3209155
crossref_primary_10_1109_TNSRE_2020_2981659
crossref_primary_10_3389_fnhum_2024_1486167
crossref_primary_10_1016_j_trpro_2025_03_099
crossref_primary_10_3389_fnbot_2020_00025
crossref_primary_10_3390_s25010231
crossref_primary_10_1016_j_measurement_2022_112304
crossref_primary_10_3389_fnins_2022_997377
crossref_primary_10_1088_1741_2552_ac9a01
crossref_primary_10_1109_JPROC_2024_3429360
crossref_primary_10_1016_j_compbiomed_2022_105521
crossref_primary_10_3389_fnins_2023_1243151
crossref_primary_10_3390_electronics12112381
crossref_primary_10_1109_JSEN_2024_3471699
crossref_primary_10_1109_ACCESS_2024_3376254
crossref_primary_10_1007_s13534_021_00190_z
crossref_primary_10_3389_fnins_2021_634147
crossref_primary_10_1109_TNSRE_2024_3499998
crossref_primary_10_3390_s24165253
crossref_primary_10_3389_fnhum_2025_1571386
crossref_primary_10_1186_s42492_024_00179_2
crossref_primary_10_3389_fnagi_2022_780817
crossref_primary_10_1109_JBHI_2023_3344176
crossref_primary_10_3389_fnhum_2023_1117670
crossref_primary_10_1016_j_bspc_2023_105530
crossref_primary_10_1088_2057_1976_ad2f58
crossref_primary_10_1088_1741_2552_ab6a67
crossref_primary_10_1016_j_asoc_2021_108393
crossref_primary_10_1016_j_matpr_2021_01_223
crossref_primary_10_1016_j_eswa_2023_121986
crossref_primary_10_1142_S0219519425400809
crossref_primary_10_3389_fnins_2022_988535
crossref_primary_10_1016_j_neunet_2025_108127
crossref_primary_10_1016_j_biopsycho_2025_109100
crossref_primary_10_1007_s11571_023_10035_3
crossref_primary_10_1088_1741_2552_ad152f
crossref_primary_10_1002_cav_2150
crossref_primary_10_3389_fncom_2023_1101726
crossref_primary_10_1080_17483107_2020_1842919
crossref_primary_10_3390_s24165207
crossref_primary_10_1109_JSEN_2023_3287983
crossref_primary_10_3389_fnins_2021_622095
crossref_primary_10_3390_s23135930
crossref_primary_10_1016_j_measurement_2019_07_070
crossref_primary_10_3389_fnhum_2021_647839
crossref_primary_10_3390_app122412722
crossref_primary_10_3390_electronics10050560
crossref_primary_10_3390_s22093331
crossref_primary_10_1016_j_bspc_2020_101845
crossref_primary_10_1016_j_bspc_2024_106063
crossref_primary_10_1016_j_compbiomed_2025_111023
crossref_primary_10_1080_2326263X_2022_2050513
crossref_primary_10_1088_1741_2552_ac77be
crossref_primary_10_1016_j_neunet_2021_06_022
crossref_primary_10_1002_smll_202107099
crossref_primary_10_1109_TNSRE_2022_3185262
crossref_primary_10_1051_matecconf_201929201024
crossref_primary_10_1007_s11055_022_01278_4
crossref_primary_10_1016_j_jneumeth_2023_109953
crossref_primary_10_3389_fninf_2022_1025847
crossref_primary_10_3390_s25154623
crossref_primary_10_1109_ACCESS_2024_3524397
crossref_primary_10_1109_TNSRE_2023_3301507
crossref_primary_10_3389_fnhum_2025_1456692
crossref_primary_10_3390_bioengineering11070695
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_1016_j_bspc_2024_106156
crossref_primary_10_4103_1673_5374_390968
crossref_primary_10_14326_abe_12_129
crossref_primary_10_3389_fninf_2021_699840
crossref_primary_10_1016_j_engappai_2023_106990
crossref_primary_10_1016_j_neunet_2024_106351
crossref_primary_10_1016_j_eswa_2025_127312
crossref_primary_10_1088_1741_2552_ac7257
crossref_primary_10_1152_jn_00029_2024
crossref_primary_10_3389_fnins_2023_1086472
crossref_primary_10_1016_j_bspc_2025_107552
crossref_primary_10_3390_s23073714
crossref_primary_10_3390_polym16172507
crossref_primary_10_1109_TASE_2025_3587765
crossref_primary_10_3390_s25154727
crossref_primary_10_1109_TIM_2025_3571139
crossref_primary_10_1055_s_0041_1725137
crossref_primary_10_1007_s11571_024_10134_9
crossref_primary_10_1155_2021_6613105
crossref_primary_10_1038_s41598_025_89405_2
crossref_primary_10_3390_s25103178
crossref_primary_10_1080_10255842_2025_2523322
crossref_primary_10_1109_TNSRE_2025_3560993
crossref_primary_10_1016_j_neunet_2025_107876
crossref_primary_10_1109_ACCESS_2025_3564328
crossref_primary_10_3389_fnhum_2022_908050
crossref_primary_10_1007_s11517_025_03340_y
crossref_primary_10_1109_JBHI_2025_3535592
crossref_primary_10_3389_fnhum_2024_1419552
crossref_primary_10_1007_s11571_022_09886_z
crossref_primary_10_3390_app122312253
crossref_primary_10_1109_TNSRE_2023_3311750
crossref_primary_10_1007_s00500_023_08837_y
crossref_primary_10_3390_brainsci12010057
crossref_primary_10_1016_j_eswa_2025_128783
crossref_primary_10_1016_j_engappai_2022_105347
crossref_primary_10_1038_s41598_024_73755_4
crossref_primary_10_1016_j_eswa_2021_115572
crossref_primary_10_3389_fnagi_2021_625006
crossref_primary_10_3389_fnins_2023_1305850
crossref_primary_10_1088_1741_2552_addf81
crossref_primary_10_3389_fnins_2023_1077479
crossref_primary_10_3390_electronics12051234
crossref_primary_10_31083_j_jin2312218
crossref_primary_10_3390_app11156791
crossref_primary_10_3389_fnins_2022_892794
crossref_primary_10_1155_2020_7459587
crossref_primary_10_1109_TNSRE_2024_3379451
crossref_primary_10_1080_10447318_2023_2248833
crossref_primary_10_1016_j_cnp_2025_09_003
crossref_primary_10_1109_TNSRE_2023_3241629
crossref_primary_10_1038_s41597_025_04995_w
crossref_primary_10_3389_fpsyg_2024_1394496
crossref_primary_10_3390_bios12121134
crossref_primary_10_1109_TNSRE_2020_3004924
crossref_primary_10_1016_j_compbiomed_2023_106734
crossref_primary_10_1002_admt_202200342
crossref_primary_10_3390_math11010096
crossref_primary_10_1016_j_measurement_2021_110116
crossref_primary_10_1016_j_ifacsc_2024_100251
crossref_primary_10_1016_j_neuroimage_2021_118851
crossref_primary_10_1088_1741_2552_acb232
crossref_primary_10_3389_fnins_2024_1469903
crossref_primary_10_1145_3648106
crossref_primary_10_1002_advs_202101129
crossref_primary_10_1016_j_inffus_2025_103135
crossref_primary_10_1109_TNSRE_2022_3175483
crossref_primary_10_1111_epi_16969
crossref_primary_10_3390_s23177520
crossref_primary_10_3389_fnins_2021_684547
crossref_primary_10_3389_fnhum_2023_1194751
crossref_primary_10_1063_5_0047237
crossref_primary_10_3389_fnhum_2023_1302647
crossref_primary_10_3390_s21206827
crossref_primary_10_1016_j_neures_2021_10_008
crossref_primary_10_3390_s21206828
crossref_primary_10_1016_j_neubiorev_2022_104652
crossref_primary_10_1088_1741_2552_ad7a24
crossref_primary_10_3389_fnbot_2021_605751
crossref_primary_10_3389_fnins_2023_1093865
crossref_primary_10_1007_s10548_021_00828_2
crossref_primary_10_1007_s00345_025_05683_5
crossref_primary_10_3389_fnins_2023_1345961
crossref_primary_10_1016_j_robot_2024_104899
crossref_primary_10_3390_biom11091316
crossref_primary_10_1007_s00521_025_11201_w
crossref_primary_10_1007_s11071_024_10784_8
crossref_primary_10_1080_17483107_2023_2211602
crossref_primary_10_1016_j_chaos_2023_113453
crossref_primary_10_1088_2057_1976_ad12f9
crossref_primary_10_1007_s11055_022_01322_3
crossref_primary_10_1109_THMS_2021_3115094
crossref_primary_10_1109_TNSRE_2020_3039331
crossref_primary_10_1109_ACCESS_2024_3392008
crossref_primary_10_1109_TIM_2025_3527610
crossref_primary_10_1007_s42600_021_00189_6
crossref_primary_10_1016_j_bspc_2021_103459
crossref_primary_10_1038_s41597_025_04826_y
crossref_primary_10_1177_09287329241302740
crossref_primary_10_3390_s21248167
crossref_primary_10_1016_j_bspc_2022_103857
crossref_primary_10_3390_s25175291
crossref_primary_10_3389_fnins_2023_1274320
crossref_primary_10_1109_TNSRE_2022_3220884
crossref_primary_10_1016_j_knosys_2023_110383
crossref_primary_10_1109_OJEMB_2021_3059161
crossref_primary_10_32604_cmc_2022_025823
crossref_primary_10_1186_s12984_025_01588_x
crossref_primary_10_1088_1741_2552_acfbba
crossref_primary_10_1109_JBHI_2024_3452701
crossref_primary_10_1016_j_neuroimage_2022_119754
crossref_primary_10_1038_s41597_022_01398_z
crossref_primary_10_1038_s41378_023_00527_x
crossref_primary_10_3390_life13041031
crossref_primary_10_3389_fnhum_2024_1448584
crossref_primary_10_1088_1741_2552_ad504a
crossref_primary_10_3103_S1060992X21010057
crossref_primary_10_1016_j_compbiomed_2022_106220
crossref_primary_10_3389_fnhum_2025_1569411
crossref_primary_10_1016_j_jneumeth_2021_109318
crossref_primary_10_1016_j_tics_2021_04_003
crossref_primary_10_3390_brainsci13030483
crossref_primary_10_1109_TBME_2025_3553204
crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1016_j_heliyon_2023_e18452
crossref_primary_10_1038_s41587_021_01071_7
crossref_primary_10_1088_1741_2552_add772
crossref_primary_10_3390_biomimetics10080488
crossref_primary_10_1109_JBHI_2022_3224506
crossref_primary_10_1109_JBHI_2023_3318419
crossref_primary_10_1109_TIM_2024_3417598
crossref_primary_10_3390_biomimetics10030187
crossref_primary_10_3389_fnhum_2022_898300
crossref_primary_10_1038_s42003_025_08465_2
crossref_primary_10_1002_EXP_20230146
crossref_primary_10_1109_TCYB_2024_3390805
crossref_primary_10_1016_j_bspc_2022_103515
crossref_primary_10_3389_fnhum_2025_1539081
crossref_primary_10_1109_TNSRE_2023_3337525
crossref_primary_10_1097_JS9_0000000000002022
crossref_primary_10_1108_IR_09_2022_0239
crossref_primary_10_1016_j_bspc_2023_105175
crossref_primary_10_1186_s12984_022_01081_9
crossref_primary_10_1016_j_plrev_2025_08_007
crossref_primary_10_3389_fnins_2024_1381572
crossref_primary_10_1109_JPROC_2025_3600389
crossref_primary_10_3390_a16110502
crossref_primary_10_1007_s00521_023_08310_9
crossref_primary_10_1007_s11036_021_01754_0
crossref_primary_10_3390_electronics11193078
crossref_primary_10_1007_s11831_021_09684_6
crossref_primary_10_1111_ina_13106
crossref_primary_10_1016_j_physa_2021_126516
crossref_primary_10_1088_1741_2552_ad01de
crossref_primary_10_1038_s41539_024_00277_z
crossref_primary_10_1016_j_compeleceng_2024_109680
crossref_primary_10_1016_j_jneumeth_2021_109458
crossref_primary_10_1016_j_cmpb_2020_105808
crossref_primary_10_1088_1741_2552_adeaea
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_1016_j_eswa_2024_125832
crossref_primary_10_3389_fnhum_2021_732946
crossref_primary_10_1007_s13534_023_00309_4
crossref_primary_10_3390_surgeries6030050
crossref_primary_10_3390_s23114993
crossref_primary_10_3389_fncom_2024_1431815
crossref_primary_10_1007_s00521_025_11300_8
crossref_primary_10_3389_fnhum_2024_1416683
crossref_primary_10_1088_1741_2552_ad731e
crossref_primary_10_1093_cercor_bhad105
crossref_primary_10_1016_j_neunet_2023_01_009
crossref_primary_10_3389_fncom_2022_1006763
crossref_primary_10_1109_ACCESS_2024_3394696
crossref_primary_10_3390_s23020760
crossref_primary_10_3389_fnins_2023_1204385
crossref_primary_10_1088_1741_2552_ac01a0
crossref_primary_10_2147_JMDH_S509747
crossref_primary_10_1038_s41586_025_09255_w
crossref_primary_10_1088_2057_1976_acdbd0
crossref_primary_10_1109_THMS_2021_3086009
crossref_primary_10_1016_j_neunet_2024_106108
crossref_primary_10_3389_fnhum_2021_635351
crossref_primary_10_3389_fnins_2024_1360709
crossref_primary_10_3389_fnhum_2020_599802
crossref_primary_10_1016_j_seizure_2024_02_009
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_1177_18724981241292473
crossref_primary_10_1080_10447318_2023_2203006
crossref_primary_10_3389_fnhum_2021_643294
crossref_primary_10_3389_fnhum_2024_1398065
crossref_primary_10_3390_app13169469
crossref_primary_10_1016_j_neuri_2021_100030
crossref_primary_10_1088_2516_1091_ac993d
crossref_primary_10_1093_gigascience_giaa098
crossref_primary_10_1109_TNSRE_2024_3410870
crossref_primary_10_1007_s10489_022_04226_4
crossref_primary_10_3390_mti5120081
crossref_primary_10_1016_j_neuri_2021_100029
crossref_primary_10_1109_JSEN_2022_3161743
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1007_s13347_022_00597_1
crossref_primary_10_1109_JSEN_2023_3276481
crossref_primary_10_1088_1741_2552_ac49a6
crossref_primary_10_1088_1741_2552_ad995a
crossref_primary_10_3390_electronics12224697
crossref_primary_10_1016_j_compbiomed_2021_104809
crossref_primary_10_3390_s22155802
crossref_primary_10_1186_s12984_023_01169_w
crossref_primary_10_3389_fnins_2021_663101
crossref_primary_10_1038_s41578_025_00798_y
crossref_primary_10_1109_TNSRE_2023_3315717
crossref_primary_10_1109_JIOT_2023_3278329
crossref_primary_10_3389_fnins_2022_810553
crossref_primary_10_1109_TNSRE_2020_2966826
crossref_primary_10_3390_s23052798
crossref_primary_10_3390_info14070354
crossref_primary_10_1088_1741_2552_ad48bc
crossref_primary_10_1002_qute_202300185
crossref_primary_10_3389_fnhum_2025_1521491
crossref_primary_10_3390_s21196570
crossref_primary_10_1088_1741_2552_ac6770
crossref_primary_10_3389_fneur_2022_1041978
crossref_primary_10_1016_j_artmed_2019_101766
crossref_primary_10_1109_TNSRE_2023_3235804
crossref_primary_10_1155_2019_6862031
crossref_primary_10_3390_jpm13010046
crossref_primary_10_3389_fninf_2023_1086634
crossref_primary_10_1016_j_eswa_2022_117574
crossref_primary_10_1088_1741_2552_ad6793
crossref_primary_10_3390_bioengineering10010042
crossref_primary_10_3390_app15010392
crossref_primary_10_1155_2023_8812844
crossref_primary_10_1109_TNSRE_2021_3137340
crossref_primary_10_3390_s24175801
crossref_primary_10_1038_s41598_022_10906_5
crossref_primary_10_3390_act11060161
crossref_primary_10_1109_ACCESS_2023_3326720
crossref_primary_10_1109_JIOT_2024_3520426
crossref_primary_10_1016_j_heliyon_2024_e26521
crossref_primary_10_1016_j_bspc_2021_102993
crossref_primary_10_3389_fnhum_2022_867281
crossref_primary_10_1136_svn_2022_001506
crossref_primary_10_3390_computers11050061
crossref_primary_10_1007_s40745_025_00596_x
crossref_primary_10_1371_journal_pone_0282268
crossref_primary_10_1109_TNSRE_2024_3351863
crossref_primary_10_3390_jpm11050437
crossref_primary_10_1007_s11517_019_02065_z
crossref_primary_10_1016_j_bbe_2025_03_005
crossref_primary_10_1109_TNSRE_2025_3594341
crossref_primary_10_1109_JSEN_2021_3130626
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1109_ACCESS_2023_3297882
crossref_primary_10_3389_fnhum_2024_1490066
crossref_primary_10_1016_j_compbiomed_2024_108727
crossref_primary_10_3390_s21175746
crossref_primary_10_1016_j_neuroimage_2020_116990
crossref_primary_10_1080_09540091_2024_2426812
crossref_primary_10_1186_s12984_023_01272_y
crossref_primary_10_3390_s24248048
crossref_primary_10_1016_j_eswa_2024_124673
crossref_primary_10_3390_app13116364
crossref_primary_10_1007_s12559_023_10150_7
crossref_primary_10_3389_fnhum_2021_648275
crossref_primary_10_3390_healthcare13131580
crossref_primary_10_1016_j_neuroimage_2025_121391
crossref_primary_10_3390_app15169184
crossref_primary_10_1016_j_neuroscience_2020_12_001
crossref_primary_10_1016_j_bspc_2024_106837
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_3389_fnhum_2022_975410
crossref_primary_10_1109_ACCESS_2019_2946301
crossref_primary_10_1109_OJCS_2025_3587014
crossref_primary_10_1177_1071181321651299
crossref_primary_10_1007_s42600_022_00215_1
crossref_primary_10_3390_brainsci10030157
crossref_primary_10_3390_math8111898
crossref_primary_10_3389_fncel_2021_653487
crossref_primary_10_1016_j_neunet_2024_106734
crossref_primary_10_1016_j_neunet_2023_04_045
crossref_primary_10_1109_THMS_2021_3056274
crossref_primary_10_3389_fnhum_2023_1096814
crossref_primary_10_1007_s11571_022_09923_x
crossref_primary_10_3389_fnhum_2022_902183
crossref_primary_10_1109_TNSRE_2021_3102304
crossref_primary_10_1016_j_neuroscience_2024_11_039
crossref_primary_10_3390_brainsci9120352
crossref_primary_10_1038_s41598_024_58031_9
crossref_primary_10_1134_S0362119722010054
crossref_primary_10_3389_fncom_2022_990892
crossref_primary_10_3390_s24227125
crossref_primary_10_1080_13658816_2024_2309188
crossref_primary_10_1109_TNSRE_2023_3275172
crossref_primary_10_1109_ACCESS_2020_3047678
crossref_primary_10_1007_s12559_021_09971_1
crossref_primary_10_3390_s23187908
crossref_primary_10_1038_s41598_025_96611_5
crossref_primary_10_1371_journal_pone_0274847
crossref_primary_10_1016_j_bspc_2020_102100
crossref_primary_10_3390_brainsci9120348
crossref_primary_10_1097_YCO_0000000000000693
crossref_primary_10_1016_j_compbiomed_2025_110937
crossref_primary_10_1016_j_jneumeth_2022_109499
crossref_primary_10_3390_s22052028
crossref_primary_10_3389_fnins_2021_655599
crossref_primary_10_3390_app12062918
crossref_primary_10_1109_TITS_2022_3166631
crossref_primary_10_1088_1741_2552_ab6cb7
crossref_primary_10_3389_fnins_2023_1275908
crossref_primary_10_1109_TNSRE_2023_3242280
crossref_primary_10_1007_s11571_023_10051_3
crossref_primary_10_1016_j_bspc_2021_102621
crossref_primary_10_3390_s23104661
crossref_primary_10_3390_bioengineering9120768
crossref_primary_10_1109_JBHI_2025_3577611
crossref_primary_10_3389_fnins_2023_1269359
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_1109_TNSRE_2024_3408273
crossref_primary_10_1109_JBHI_2023_3303494
crossref_primary_10_1109_TNSRE_2023_3268751
crossref_primary_10_1016_j_trac_2025_118279
crossref_primary_10_3389_fnhum_2023_1129362
crossref_primary_10_3390_s21103345
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/aaf12e
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 30523919
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACARI
ACGFS
ACHIP
AEFHF
AENEX
AERVB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CGR
CJUJL
CRLBU
CS3
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
XPP
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c434t-1d6ea5badb229add3962c9fc468ab1d1375973a70fea5b4e7feb19db452714612
IEDL.DBID 7X8
ISICitedReferencesCount 611
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455843300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1741-2552
IngestDate Tue Aug 05 09:26:11 EDT 2025
Thu Apr 03 07:08:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-1d6ea5badb229add3962c9fc468ab1d1375973a70fea5b4e7feb19db452714612
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 30523919
PQID 2155944903
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2155944903
pubmed_primary_30523919
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2019
SSID ssj0031790
Score 2.682786
SecondaryResourceType review_article
Snippet Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 011001
SubjectTerms Brain - physiology
Brain-Computer Interfaces - trends
Communication Aids for Disabled - trends
Electroencephalography - methods
Electroencephalography - trends
Evoked Potentials, Visual - physiology
Humans
Neurological Rehabilitation - methods
Neurological Rehabilitation - trends
Title A comprehensive review of EEG-based brain-computer interface paradigms
URI https://www.ncbi.nlm.nih.gov/pubmed/30523919
https://www.proquest.com/docview/2155944903
Volume 16
WOSCitedRecordID wos000455843300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAMrBwlaNcMhJis5rYThNPqEItDFB1AKlb5BMYmpSmIPHv8YvTMiEhsXiIEsl6eX5-5_chdMVkpPxv5cQHHxpGchKiEusXxX34zCQ3AWf2IR2NsslEjJuEW9W0VS5tYm2oTakhR96lUD_jXETsZvZOgDUKqqsNhcY6ajHvyoBWp5NVFYEB-lQYiIz9XhLalCn9wequnnWldDG1vzuY9UUz3PnvFnfRduNi4n7QiT20Zot91O4XPryefuFrXDd91tn0Nhr2MTSVz-1raGTHYZQFlw4PBncE7jiDFdBIEN3wP2BAmJg7qS0G3HDz9jKtDtDzcPB0e08aagWiOeMLEpuelYmSRlEqvIljoke1cJr3MqliE7PUBxpMppGD17hNnbfpwiie0BSYwOkh2ijKwh4jrJw2mfSeiI0kzxzPrNKAByEy4yTntIMul9LKvepCPUIWtvyo8h95ddBREHk-CxgbOYN0tYjFyR--PkVb3o0RoZf6DLWcP7j2HG3qz8VbNb-odcKvo_HjN_CqwNI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+of+EEG-based+brain-computer+interface+paradigms&rft.jtitle=Journal+of+neural+engineering&rft.au=Abiri%2C+Reza&rft.au=Borhani%2C+Soheil&rft.au=Sellers%2C+Eric+W&rft.au=Jiang%2C+Yang&rft.date=2019-02-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=16&rft.issue=1&rft.spage=011001&rft_id=info:doi/10.1088%2F1741-2552%2Faaf12e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon