Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy
Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action p...
Gespeichert in:
| Veröffentlicht in: | Neuron (Cambridge, Mass.) Jg. 55; H. 4; S. 633 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
16.08.2007
|
| Schlagworte: | |
| ISSN: | 0896-6273 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits. |
|---|---|
| AbstractList | Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits. Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits. |
| Author | Kole, Maarten H P Stuart, Greg J Letzkus, Johannes J |
| Author_xml | – sequence: 1 givenname: Maarten H P surname: Kole fullname: Kole, Maarten H P organization: Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia – sequence: 2 givenname: Johannes J surname: Letzkus fullname: Letzkus, Johannes J – sequence: 3 givenname: Greg J surname: Stuart fullname: Stuart, Greg J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17698015$$D View this record in MEDLINE/PubMed |
| BookMark | eNo10DtPwzAUBWAPRfQB_wAhT2wJfsR2MlYVL1GJBeZw6zjgKrFD7BTy70lFka50lu-c4S7RzHlnELqiJKWEytt96szQe5cyQlR6PE5naEHyQiaSKT5HyxD2hNBMFPQczamSRU6oWKD39Y932DobLTQ4mI_WuIifDxTrT3DONAFr72LvGwyTnAzoaKdK5-Mkj6VvOJja9y0GV-EwOuii1djUtdWgxwt0VkMTzOUpV-jt_u5185hsXx6eNuttojOexYQCVzLPCiml4AZkJXmVASlACsN4bgjldUG0riolGBSqZrJSitaC7XYZ48BW6OZvt-v912BCLFsbtGkacMYPoZQ5VUzkYoLXJzjsWlOVXW9b6Mfy_yfsFwbMZjk |
| CitedBy_id | crossref_primary_10_1002_cne_23187 crossref_primary_10_1073_pnas_2113675119 crossref_primary_10_1523_JNEUROSCI_1132_15_2016 crossref_primary_10_1016_j_neuroscience_2020_02_025 crossref_primary_10_1371_journal_pcbi_1000850 crossref_primary_10_3389_fgene_2020_00614 crossref_primary_10_1007_s10827_012_0436_2 crossref_primary_10_1523_JNEUROSCI_0716_09_2009 crossref_primary_10_1242_dev_200052 crossref_primary_10_3390_life11010008 crossref_primary_10_1523_JNEUROSCI_1889_24_2025 crossref_primary_10_1126_sciadv_adv1281 crossref_primary_10_1016_j_neuroscience_2020_06_042 crossref_primary_10_1038_s42003_023_05328_6 crossref_primary_10_1113_jphysiol_2010_199653 crossref_primary_10_1177_1073858414535986 crossref_primary_10_1523_JNEUROSCI_1922_17_2018 crossref_primary_10_1038_ncomms10163 crossref_primary_10_1113_JP276720 crossref_primary_10_1038_ncomms12102 crossref_primary_10_1113_jphysiol_2011_209015 crossref_primary_10_1016_j_neuroscience_2010_02_072 crossref_primary_10_1038_s41598_021_94633_3 crossref_primary_10_1002_glia_23665 crossref_primary_10_1016_j_neuron_2014_12_042 crossref_primary_10_1371_journal_pone_0037629 crossref_primary_10_1523_JNEUROSCI_3245_17_2018 crossref_primary_10_3389_fncel_2017_00265 crossref_primary_10_1002_dneu_20843 crossref_primary_10_1016_j_bios_2008_11_028 crossref_primary_10_3390_cells13070573 crossref_primary_10_1016_j_neuroscience_2020_02_017 crossref_primary_10_1113_jphysiol_2012_237685 crossref_primary_10_1113_JP280438 crossref_primary_10_3389_fncel_2016_00278 crossref_primary_10_3390_biophysica2030019 crossref_primary_10_7554_eLife_87078 crossref_primary_10_1073_pnas_2022423118 crossref_primary_10_1371_journal_pone_0013761 crossref_primary_10_1007_s11055_017_0463_6 crossref_primary_10_1371_journal_pcbi_1003560 crossref_primary_10_1152_jn_00165_2010 crossref_primary_10_1038_s42003_025_08431_y crossref_primary_10_1016_j_neuron_2016_12_039 crossref_primary_10_1016_j_neuroscience_2018_01_036 crossref_primary_10_1038_s41386_020_00907_1 crossref_primary_10_3389_fncel_2017_00157 crossref_primary_10_1016_j_nbd_2021_105535 crossref_primary_10_1162_neco_a_01672 crossref_primary_10_1016_j_jneumeth_2012_04_006 crossref_primary_10_1016_j_pneurobio_2011_04_009 crossref_primary_10_3389_fncel_2019_00413 crossref_primary_10_3389_fnins_2015_00153 crossref_primary_10_1016_j_conb_2019_07_006 crossref_primary_10_1016_j_neuron_2009_12_011 crossref_primary_10_1113_jphysiol_2010_188417 crossref_primary_10_1523_JNEUROSCI_0740_10_2010 crossref_primary_10_1111_ejn_12385 crossref_primary_10_1016_j_nbd_2008_11_019 crossref_primary_10_3389_fnins_2023_1142668 crossref_primary_10_1152_jn_00099_2019 crossref_primary_10_1152_jn_00237_2021 crossref_primary_10_3389_fncel_2019_00543 crossref_primary_10_1093_cercor_bhn206 crossref_primary_10_3389_fncel_2018_00012 crossref_primary_10_1016_j_neulet_2010_08_081 crossref_primary_10_1523_JNEUROSCI_4345_15_2017 crossref_primary_10_1523_JNEUROSCI_1606_20_2020 crossref_primary_10_1038_nrn2852 crossref_primary_10_1007_s00418_009_0668_z crossref_primary_10_3389_fnmol_2022_806798 crossref_primary_10_1152_physrev_00048_2009 crossref_primary_10_3389_fncel_2017_00045 crossref_primary_10_1364_OPTICA_560101 crossref_primary_10_1038_nn_2718 crossref_primary_10_1016_j_neuroscience_2008_03_021 crossref_primary_10_1038_srep19378 crossref_primary_10_1152_physrev_00020_2009 crossref_primary_10_1007_s12264_023_01038_5 crossref_primary_10_1016_j_neures_2012_12_004 crossref_primary_10_1523_JNEUROSCI_2843_20_2021 crossref_primary_10_3389_fncel_2019_00407 crossref_primary_10_1093_cercor_bhx341 crossref_primary_10_1016_j_neuron_2012_12_018 crossref_primary_10_1152_jn_00956_2010 crossref_primary_10_1113_jphysiol_2012_237305 crossref_primary_10_1073_pnas_1608763114 crossref_primary_10_1002_jbio_202400513 crossref_primary_10_1007_s12576_015_0415_2 crossref_primary_10_1096_fj_202401737RR crossref_primary_10_1186_s13041_015_0094_1 crossref_primary_10_1038_nn_3132 crossref_primary_10_1523_JNEUROSCI_1467_13_2015 crossref_primary_10_1523_JNEUROSCI_2387_09_2009 crossref_primary_10_1523_JNEUROSCI_2940_08_2008 crossref_primary_10_3390_biom15091262 crossref_primary_10_1007_s00018_012_1059_5 crossref_primary_10_1016_j_ceb_2025_102570 crossref_primary_10_1126_sciadv_adx2106 crossref_primary_10_1371_journal_pone_0048557 crossref_primary_10_1016_j_bbamcr_2014_11_024 crossref_primary_10_1523_ENEURO_0114_15_2015 crossref_primary_10_3389_fncel_2015_00429 crossref_primary_10_1523_JNEUROSCI_5365_11_2012 crossref_primary_10_1242_dmm_003582 crossref_primary_10_1038_ncomms9815 crossref_primary_10_1016_j_neuron_2018_02_016 crossref_primary_10_7554_eLife_72730 crossref_primary_10_1038_s41467_022_35350_x crossref_primary_10_1016_j_neuroscience_2013_10_045 crossref_primary_10_1016_j_neures_2022_04_008 crossref_primary_10_1113_JP278675 crossref_primary_10_3389_fncel_2024_1354520 crossref_primary_10_1371_journal_pbio_1001944 crossref_primary_10_1113_jphysiol_2007_150151 crossref_primary_10_1002_cne_23715 crossref_primary_10_1016_j_neuron_2018_02_024 crossref_primary_10_1038_s41598_022_12700_9 crossref_primary_10_1073_pnas_2110601118 crossref_primary_10_1371_journal_pbio_1001032 crossref_primary_10_7554_eLife_54566 crossref_primary_10_1159_000368364 crossref_primary_10_1186_1756_6606_4_19 crossref_primary_10_1016_j_eplepsyres_2013_03_004 crossref_primary_10_3389_fncel_2021_727336 crossref_primary_10_1016_j_ejphar_2025_177362 crossref_primary_10_1093_cercor_bhs384 crossref_primary_10_1523_JNEUROSCI_4038_13_2014 crossref_primary_10_1371_journal_pcbi_1002456 crossref_primary_10_1016_j_neuron_2008_03_010 crossref_primary_10_1093_cercor_bhx158 crossref_primary_10_1074_jbc_M111_299305 crossref_primary_10_1109_TBME_2011_2178241 crossref_primary_10_1152_physrev_00002_2008 crossref_primary_10_1016_j_compbiomed_2023_107783 crossref_primary_10_1073_pnas_0909267106 crossref_primary_10_3389_fncel_2018_00053 crossref_primary_10_1016_j_neuron_2008_08_028 crossref_primary_10_1523_JNEUROSCI_3398_08_2008 crossref_primary_10_1038_s41434_023_00427_9 crossref_primary_10_1177_1073858409341973 crossref_primary_10_1016_j_neuroscience_2014_09_022 crossref_primary_10_1038_nprot_2008_147 crossref_primary_10_1016_j_neuron_2015_12_040 crossref_primary_10_1002_aelm_202201006 crossref_primary_10_1152_jn_00857_2011 crossref_primary_10_1523_JNEUROSCI_0972_11_2011 crossref_primary_10_1371_journal_pone_0113124 crossref_primary_10_1523_JNEUROSCI_2752_11_2011 crossref_primary_10_1523_JNEUROSCI_1925_17_2017 crossref_primary_10_7554_eLife_56058 crossref_primary_10_1152_jn_90295_2008 crossref_primary_10_1371_journal_pone_0100968 crossref_primary_10_1111_j_1460_9568_2011_07875_x crossref_primary_10_7554_eLife_47106 crossref_primary_10_1038_nn_2359 crossref_primary_10_1016_j_bpj_2022_08_027 crossref_primary_10_1038_s41598_020_63583_7 crossref_primary_10_1523_JNEUROSCI_0230_25_2025 crossref_primary_10_1177_1073858418763752 crossref_primary_10_1126_science_1197598 crossref_primary_10_1038_s41598_017_03041_z crossref_primary_10_1093_brain_awac365 crossref_primary_10_1038_nn_4293 crossref_primary_10_1111_ejn_12526 crossref_primary_10_1152_jn_01028_2015 crossref_primary_10_3389_fncel_2019_00159 crossref_primary_10_3389_fnins_2016_00421 crossref_primary_10_7554_eLife_26517 crossref_primary_10_1016_j_neuron_2010_09_033 crossref_primary_10_1016_j_neuron_2014_09_038 crossref_primary_10_1038_nprot_2012_061 crossref_primary_10_3389_fncel_2014_00145 crossref_primary_10_1523_JNEUROSCI_0701_23_2023 crossref_primary_10_1098_rspb_2025_0687 crossref_primary_10_1523_JNEUROSCI_4833_08_2008 crossref_primary_10_1016_j_conb_2010_04_012 crossref_primary_10_1016_j_tips_2024_09_004 crossref_primary_10_3389_fncel_2019_00160 crossref_primary_10_3892_mmr_2017_7017 crossref_primary_10_1007_s11538_013_9877_7 crossref_primary_10_1038_s41598_017_00388_1 crossref_primary_10_3389_fncel_2019_00269 crossref_primary_10_1016_j_neuron_2008_03_003 crossref_primary_10_1016_j_neuron_2010_09_026 crossref_primary_10_1523_JNEUROSCI_1419_15_2015 crossref_primary_10_1523_JNEUROSCI_1500_19_2019 crossref_primary_10_1152_jn_00494_2020 crossref_primary_10_1016_j_ydbio_2022_05_016 crossref_primary_10_1152_jn_00005_2021 crossref_primary_10_1111_acer_12204 crossref_primary_10_1523_JNEUROSCI_3565_10_2010 crossref_primary_10_1186_1741_7007_9_66 crossref_primary_10_1523_JNEUROSCI_3110_16_2017 crossref_primary_10_1007_s11071_018_4613_3 crossref_primary_10_1080_14728222_2021_1908263 crossref_primary_10_1113_jphysiol_2009_185199 crossref_primary_10_3389_fncel_2020_00040 crossref_primary_10_1016_j_semcdb_2010_09_010 crossref_primary_10_1007_s12975_013_0297_7 crossref_primary_10_1523_JNEUROSCI_4208_13_2014 crossref_primary_10_3390_ijms252212081 crossref_primary_10_1007_s00429_018_1753_7 crossref_primary_10_1371_journal_pbio_3002929 crossref_primary_10_7554_eLife_53432 crossref_primary_10_1016_j_tins_2016_09_006 crossref_primary_10_1073_pnas_1215125110 crossref_primary_10_1111_ejn_12787 crossref_primary_10_1113_jphysiol_2013_251058 crossref_primary_10_1117_1_NPh_10_1_015003 crossref_primary_10_1016_j_brs_2022_05_019 crossref_primary_10_1016_j_neuropharm_2020_108399 crossref_primary_10_7554_eLife_75140 crossref_primary_10_1146_annurev_neuro_062111_150339 crossref_primary_10_3389_fnins_2016_00083 crossref_primary_10_1038_nn_2574 crossref_primary_10_1038_s41398_025_03350_2 crossref_primary_10_1152_physrev_00016_2007 crossref_primary_10_1093_cercor_bhab266 crossref_primary_10_3389_fncel_2018_00530 crossref_primary_10_1007_s11055_019_00719_x crossref_primary_10_1016_j_biosystems_2021_104403 crossref_primary_10_1177_1073858416648311 crossref_primary_10_7554_eLife_87078_3 crossref_primary_10_1016_j_neuron_2008_12_004 crossref_primary_10_1523_JNEUROSCI_0066_16_2016 crossref_primary_10_1007_s12264_012_1247_1 crossref_primary_10_1371_journal_pcbi_1005237 crossref_primary_10_1371_journal_pcbi_1003615 crossref_primary_10_1523_JNEUROSCI_0305_21_2021 crossref_primary_10_1038_nn_2203 crossref_primary_10_1515_revneuro_2019_0044 crossref_primary_10_1016_j_neuron_2012_01_007 crossref_primary_10_1113_jphysiol_2011_216721 crossref_primary_10_1126_science_1174331 crossref_primary_10_1523_JNEUROSCI_2662_10_2010 crossref_primary_10_1073_pnas_1300520110 crossref_primary_10_7554_eLife_55729 crossref_primary_10_1523_JNEUROSCI_5890_09_2010 crossref_primary_10_1016_j_mcn_2011_05_007 crossref_primary_10_7554_eLife_73783 crossref_primary_10_1083_jcb_200806112 crossref_primary_10_1523_JNEUROSCI_4064_11_2011 crossref_primary_10_1523_JNEUROSCI_4206_13_2014 crossref_primary_10_1186_s13408_019_0071_6 crossref_primary_10_1523_JNEUROSCI_2237_08_2008 crossref_primary_10_1007_s00018_015_2081_1 crossref_primary_10_1007_s11064_016_1936_7 crossref_primary_10_1016_j_toxlet_2011_09_028 crossref_primary_10_1016_j_jneumeth_2021_109400 crossref_primary_10_1038_nrn3361 crossref_primary_10_1371_journal_pone_0118514 crossref_primary_10_1002_ana_25666 crossref_primary_10_1038_aps_2015_107 crossref_primary_10_1007_s12035_024_04120_9 crossref_primary_10_3389_fphar_2019_01644 crossref_primary_10_1523_JNEUROSCI_6335_09_2010 crossref_primary_10_1016_j_nbd_2024_106537 crossref_primary_10_1113_jphysiol_2010_188300 crossref_primary_10_1113_jphysiol_2008_155861 crossref_primary_10_1523_JNEUROSCI_4506_10_2011 crossref_primary_10_1016_j_neuron_2009_03_023 crossref_primary_10_1109_TBME_2019_2906114 crossref_primary_10_1371_journal_pone_0011931 crossref_primary_10_1073_pnas_2015685118 crossref_primary_10_1523_JNEUROSCI_4661_09_2010 crossref_primary_10_1038_s41467_020_20232_x crossref_primary_10_1152_jn_00226_2016 crossref_primary_10_1152_jn_00691_2017 crossref_primary_10_1152_ajpcell_00422_2024 crossref_primary_10_1523_JNEUROSCI_2765_20_2021 crossref_primary_10_1016_j_neuron_2011_06_024 crossref_primary_10_1016_j_cell_2019_11_039 crossref_primary_10_3389_fncel_2017_00115 crossref_primary_10_1523_JNEUROSCI_4431_07_2008 crossref_primary_10_1038_nn2040 crossref_primary_10_1038_s41598_018_21656_8 crossref_primary_10_1371_journal_pcbi_1004114 crossref_primary_10_1371_journal_pone_0259918 crossref_primary_10_1146_annurev_cellbio_100913_013107 crossref_primary_10_1016_j_neuron_2016_05_035 crossref_primary_10_1016_j_bbrc_2025_151429 crossref_primary_10_1038_nn_2530 crossref_primary_10_7554_eLife_32373 crossref_primary_10_3389_fncel_2025_1627517 crossref_primary_10_1523_JNEUROSCI_2651_10_2010 crossref_primary_10_1038_nature09087 crossref_primary_10_1016_j_tins_2014_02_008 crossref_primary_10_1007_s11055_021_01186_z crossref_primary_10_3389_fncel_2016_00250 crossref_primary_10_1002_dneu_22565 crossref_primary_10_1523_JNEUROSCI_1613_08_2008 crossref_primary_10_1097_WNP_0000000000000339 crossref_primary_10_1126_science_1215101 crossref_primary_10_1016_j_conb_2008_08_008 crossref_primary_10_1371_journal_pone_0142052 crossref_primary_10_1038_s41467_024_53901_2 crossref_primary_10_1212_NXI_0000000000200096 crossref_primary_10_1007_s11023_017_9442_5 crossref_primary_10_1016_j_conb_2008_08_006 crossref_primary_10_1016_j_conb_2018_02_017 crossref_primary_10_1186_s13578_025_01422_w |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2007.07.031 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| ExternalDocumentID | 17698015 |
| Genre | Journal Article |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8FE 8FH AAEDT AAEDW AAFWJ AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACIWK ACNCT ACPRK ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AHHHB AHMBA AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M3Z M41 MVM N9A NPM O-L O9- OK1 OZT P2P P6G PQQKQ PROAC RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 |
| ID | FETCH-LOGICAL-c434t-1a37684966653ea6d63d4a09a65e238e013f90ccdd752a97f26d771f52bb423a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 340 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249159200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0896-6273 |
| IngestDate | Tue Oct 21 13:09:09 EDT 2025 Mon Jul 21 05:43:59 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-1a37684966653ea6d63d4a09a65e238e013f90ccdd752a97f26d771f52bb423a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neuron.2007.07.031 |
| PMID | 17698015 |
| PQID | 68172585 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68172585 pubmed_primary_17698015 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-08-16 |
| PublicationDateYYYYMMDD | 2007-08-16 |
| PublicationDate_xml | – month: 08 year: 2007 text: 2007-08-16 day: 16 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2007 |
| SSID | ssj0014591 |
| Score | 2.4440532 |
| Snippet | Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 633 |
| SubjectTerms | 4-Aminopyridine - pharmacology Action Potentials - drug effects Action Potentials - physiology Action Potentials - radiation effects Animals Axons - drug effects Axons - physiology Axons - radiation effects Cerebral Cortex - cytology Dose-Response Relationship, Drug Dose-Response Relationship, Radiation Elapid Venoms - pharmacology Electric Stimulation - methods Excitatory Postsynaptic Potentials - drug effects Excitatory Postsynaptic Potentials - physiology Excitatory Postsynaptic Potentials - radiation effects Female In Vitro Techniques Lysine - analogs & derivatives Lysine - metabolism Male Models, Neurological Patch-Clamp Techniques Potassium Channel Blockers - pharmacology Pyramidal Cells - cytology Rats Rats, Wistar Shaker Superfamily of Potassium Channels - physiology Synapses - drug effects Synapses - physiology Synapses - radiation effects |
| Title | Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17698015 https://www.proquest.com/docview/68172585 |
| Volume | 55 |
| WOSCitedRecordID | wos000249159200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qVfDi-_3ag3gLJt1mk4AgRRRBLB4UequT7EQ8uKm2VvvvnckDL4IHIQQSWAjJZOebmW_mAzjRYYBpmsWeH0rqxlLi8ZVQoAg12iRN47wUm4j6_XgwSO5bcN70wgitstkTy43aFpnkyM9MzK6Wse3F6M0TzSiprdYCGnPQ1gxkxKajwU8NoRtWenlxYjzDXrppnCvZXeW0SFePMOSjFpn7FWKWruZ65X8PuQrLNcRUvcom1qBFbh02eo7D69eZOlUl6bPMpq_DYqVFOduAp95X4dSLcIl48ZieJW2obqeBkt5gxy5U1bR2hV8C31XVEqFGxUQYR3zjE6ckGFihs2o8c8jbUaZIhlRgNtuEx-urh8sbr5Zf8LKu7k68ALVU6TgeMqEmNNZo20U_QRMSO3pi8JgnfpZZG4UdTKK8Y2wUBXnYSVMGadjZgnlXONoBRZRjnEaWciPz7DnG80n7aH3UlqNk2oXj5n0O2bylZoGOio_xsHmju7BdfZLhqJrCMQwik7B7Dff-XLsPS1VGluNlcwDtnH9sOoSFbDp5Gb8flVbD5_793TfIcc5T |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axon+initial+segment+Kv1+channels+control+axonal+action+potential+waveform+and+synaptic+efficacy&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Kole%2C+Maarten+H+P&rft.au=Letzkus%2C+Johannes+J&rft.au=Stuart%2C+Greg+J&rft.date=2007-08-16&rft.issn=0896-6273&rft.volume=55&rft.issue=4&rft.spage=633&rft_id=info:doi/10.1016%2Fj.neuron.2007.07.031&rft_id=info%3Apmid%2F17698015&rft_id=info%3Apmid%2F17698015&rft.externalDocID=17698015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |