Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy

Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Jg. 55; H. 4; S. 633
Hauptverfasser: Kole, Maarten H P, Letzkus, Johannes J, Stuart, Greg J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 16.08.2007
Schlagworte:
ISSN:0896-6273
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.
AbstractList Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.
Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.
Author Kole, Maarten H P
Stuart, Greg J
Letzkus, Johannes J
Author_xml – sequence: 1
  givenname: Maarten H P
  surname: Kole
  fullname: Kole, Maarten H P
  organization: Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
– sequence: 2
  givenname: Johannes J
  surname: Letzkus
  fullname: Letzkus, Johannes J
– sequence: 3
  givenname: Greg J
  surname: Stuart
  fullname: Stuart, Greg J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17698015$$D View this record in MEDLINE/PubMed
BookMark eNo10DtPwzAUBWAPRfQB_wAhT2wJfsR2MlYVL1GJBeZw6zjgKrFD7BTy70lFka50lu-c4S7RzHlnELqiJKWEytt96szQe5cyQlR6PE5naEHyQiaSKT5HyxD2hNBMFPQczamSRU6oWKD39Y932DobLTQ4mI_WuIifDxTrT3DONAFr72LvGwyTnAzoaKdK5-Mkj6VvOJja9y0GV-EwOuii1djUtdWgxwt0VkMTzOUpV-jt_u5185hsXx6eNuttojOexYQCVzLPCiml4AZkJXmVASlACsN4bgjldUG0riolGBSqZrJSitaC7XYZ48BW6OZvt-v912BCLFsbtGkacMYPoZQ5VUzkYoLXJzjsWlOVXW9b6Mfy_yfsFwbMZjk
CitedBy_id crossref_primary_10_1002_cne_23187
crossref_primary_10_1073_pnas_2113675119
crossref_primary_10_1523_JNEUROSCI_1132_15_2016
crossref_primary_10_1016_j_neuroscience_2020_02_025
crossref_primary_10_1371_journal_pcbi_1000850
crossref_primary_10_3389_fgene_2020_00614
crossref_primary_10_1007_s10827_012_0436_2
crossref_primary_10_1523_JNEUROSCI_0716_09_2009
crossref_primary_10_1242_dev_200052
crossref_primary_10_3390_life11010008
crossref_primary_10_1523_JNEUROSCI_1889_24_2025
crossref_primary_10_1126_sciadv_adv1281
crossref_primary_10_1016_j_neuroscience_2020_06_042
crossref_primary_10_1038_s42003_023_05328_6
crossref_primary_10_1113_jphysiol_2010_199653
crossref_primary_10_1177_1073858414535986
crossref_primary_10_1523_JNEUROSCI_1922_17_2018
crossref_primary_10_1038_ncomms10163
crossref_primary_10_1113_JP276720
crossref_primary_10_1038_ncomms12102
crossref_primary_10_1113_jphysiol_2011_209015
crossref_primary_10_1016_j_neuroscience_2010_02_072
crossref_primary_10_1038_s41598_021_94633_3
crossref_primary_10_1002_glia_23665
crossref_primary_10_1016_j_neuron_2014_12_042
crossref_primary_10_1371_journal_pone_0037629
crossref_primary_10_1523_JNEUROSCI_3245_17_2018
crossref_primary_10_3389_fncel_2017_00265
crossref_primary_10_1002_dneu_20843
crossref_primary_10_1016_j_bios_2008_11_028
crossref_primary_10_3390_cells13070573
crossref_primary_10_1016_j_neuroscience_2020_02_017
crossref_primary_10_1113_jphysiol_2012_237685
crossref_primary_10_1113_JP280438
crossref_primary_10_3389_fncel_2016_00278
crossref_primary_10_3390_biophysica2030019
crossref_primary_10_7554_eLife_87078
crossref_primary_10_1073_pnas_2022423118
crossref_primary_10_1371_journal_pone_0013761
crossref_primary_10_1007_s11055_017_0463_6
crossref_primary_10_1371_journal_pcbi_1003560
crossref_primary_10_1152_jn_00165_2010
crossref_primary_10_1038_s42003_025_08431_y
crossref_primary_10_1016_j_neuron_2016_12_039
crossref_primary_10_1016_j_neuroscience_2018_01_036
crossref_primary_10_1038_s41386_020_00907_1
crossref_primary_10_3389_fncel_2017_00157
crossref_primary_10_1016_j_nbd_2021_105535
crossref_primary_10_1162_neco_a_01672
crossref_primary_10_1016_j_jneumeth_2012_04_006
crossref_primary_10_1016_j_pneurobio_2011_04_009
crossref_primary_10_3389_fncel_2019_00413
crossref_primary_10_3389_fnins_2015_00153
crossref_primary_10_1016_j_conb_2019_07_006
crossref_primary_10_1016_j_neuron_2009_12_011
crossref_primary_10_1113_jphysiol_2010_188417
crossref_primary_10_1523_JNEUROSCI_0740_10_2010
crossref_primary_10_1111_ejn_12385
crossref_primary_10_1016_j_nbd_2008_11_019
crossref_primary_10_3389_fnins_2023_1142668
crossref_primary_10_1152_jn_00099_2019
crossref_primary_10_1152_jn_00237_2021
crossref_primary_10_3389_fncel_2019_00543
crossref_primary_10_1093_cercor_bhn206
crossref_primary_10_3389_fncel_2018_00012
crossref_primary_10_1016_j_neulet_2010_08_081
crossref_primary_10_1523_JNEUROSCI_4345_15_2017
crossref_primary_10_1523_JNEUROSCI_1606_20_2020
crossref_primary_10_1038_nrn2852
crossref_primary_10_1007_s00418_009_0668_z
crossref_primary_10_3389_fnmol_2022_806798
crossref_primary_10_1152_physrev_00048_2009
crossref_primary_10_3389_fncel_2017_00045
crossref_primary_10_1364_OPTICA_560101
crossref_primary_10_1038_nn_2718
crossref_primary_10_1016_j_neuroscience_2008_03_021
crossref_primary_10_1038_srep19378
crossref_primary_10_1152_physrev_00020_2009
crossref_primary_10_1007_s12264_023_01038_5
crossref_primary_10_1016_j_neures_2012_12_004
crossref_primary_10_1523_JNEUROSCI_2843_20_2021
crossref_primary_10_3389_fncel_2019_00407
crossref_primary_10_1093_cercor_bhx341
crossref_primary_10_1016_j_neuron_2012_12_018
crossref_primary_10_1152_jn_00956_2010
crossref_primary_10_1113_jphysiol_2012_237305
crossref_primary_10_1073_pnas_1608763114
crossref_primary_10_1002_jbio_202400513
crossref_primary_10_1007_s12576_015_0415_2
crossref_primary_10_1096_fj_202401737RR
crossref_primary_10_1186_s13041_015_0094_1
crossref_primary_10_1038_nn_3132
crossref_primary_10_1523_JNEUROSCI_1467_13_2015
crossref_primary_10_1523_JNEUROSCI_2387_09_2009
crossref_primary_10_1523_JNEUROSCI_2940_08_2008
crossref_primary_10_3390_biom15091262
crossref_primary_10_1007_s00018_012_1059_5
crossref_primary_10_1016_j_ceb_2025_102570
crossref_primary_10_1126_sciadv_adx2106
crossref_primary_10_1371_journal_pone_0048557
crossref_primary_10_1016_j_bbamcr_2014_11_024
crossref_primary_10_1523_ENEURO_0114_15_2015
crossref_primary_10_3389_fncel_2015_00429
crossref_primary_10_1523_JNEUROSCI_5365_11_2012
crossref_primary_10_1242_dmm_003582
crossref_primary_10_1038_ncomms9815
crossref_primary_10_1016_j_neuron_2018_02_016
crossref_primary_10_7554_eLife_72730
crossref_primary_10_1038_s41467_022_35350_x
crossref_primary_10_1016_j_neuroscience_2013_10_045
crossref_primary_10_1016_j_neures_2022_04_008
crossref_primary_10_1113_JP278675
crossref_primary_10_3389_fncel_2024_1354520
crossref_primary_10_1371_journal_pbio_1001944
crossref_primary_10_1113_jphysiol_2007_150151
crossref_primary_10_1002_cne_23715
crossref_primary_10_1016_j_neuron_2018_02_024
crossref_primary_10_1038_s41598_022_12700_9
crossref_primary_10_1073_pnas_2110601118
crossref_primary_10_1371_journal_pbio_1001032
crossref_primary_10_7554_eLife_54566
crossref_primary_10_1159_000368364
crossref_primary_10_1186_1756_6606_4_19
crossref_primary_10_1016_j_eplepsyres_2013_03_004
crossref_primary_10_3389_fncel_2021_727336
crossref_primary_10_1016_j_ejphar_2025_177362
crossref_primary_10_1093_cercor_bhs384
crossref_primary_10_1523_JNEUROSCI_4038_13_2014
crossref_primary_10_1371_journal_pcbi_1002456
crossref_primary_10_1016_j_neuron_2008_03_010
crossref_primary_10_1093_cercor_bhx158
crossref_primary_10_1074_jbc_M111_299305
crossref_primary_10_1109_TBME_2011_2178241
crossref_primary_10_1152_physrev_00002_2008
crossref_primary_10_1016_j_compbiomed_2023_107783
crossref_primary_10_1073_pnas_0909267106
crossref_primary_10_3389_fncel_2018_00053
crossref_primary_10_1016_j_neuron_2008_08_028
crossref_primary_10_1523_JNEUROSCI_3398_08_2008
crossref_primary_10_1038_s41434_023_00427_9
crossref_primary_10_1177_1073858409341973
crossref_primary_10_1016_j_neuroscience_2014_09_022
crossref_primary_10_1038_nprot_2008_147
crossref_primary_10_1016_j_neuron_2015_12_040
crossref_primary_10_1002_aelm_202201006
crossref_primary_10_1152_jn_00857_2011
crossref_primary_10_1523_JNEUROSCI_0972_11_2011
crossref_primary_10_1371_journal_pone_0113124
crossref_primary_10_1523_JNEUROSCI_2752_11_2011
crossref_primary_10_1523_JNEUROSCI_1925_17_2017
crossref_primary_10_7554_eLife_56058
crossref_primary_10_1152_jn_90295_2008
crossref_primary_10_1371_journal_pone_0100968
crossref_primary_10_1111_j_1460_9568_2011_07875_x
crossref_primary_10_7554_eLife_47106
crossref_primary_10_1038_nn_2359
crossref_primary_10_1016_j_bpj_2022_08_027
crossref_primary_10_1038_s41598_020_63583_7
crossref_primary_10_1523_JNEUROSCI_0230_25_2025
crossref_primary_10_1177_1073858418763752
crossref_primary_10_1126_science_1197598
crossref_primary_10_1038_s41598_017_03041_z
crossref_primary_10_1093_brain_awac365
crossref_primary_10_1038_nn_4293
crossref_primary_10_1111_ejn_12526
crossref_primary_10_1152_jn_01028_2015
crossref_primary_10_3389_fncel_2019_00159
crossref_primary_10_3389_fnins_2016_00421
crossref_primary_10_7554_eLife_26517
crossref_primary_10_1016_j_neuron_2010_09_033
crossref_primary_10_1016_j_neuron_2014_09_038
crossref_primary_10_1038_nprot_2012_061
crossref_primary_10_3389_fncel_2014_00145
crossref_primary_10_1523_JNEUROSCI_0701_23_2023
crossref_primary_10_1098_rspb_2025_0687
crossref_primary_10_1523_JNEUROSCI_4833_08_2008
crossref_primary_10_1016_j_conb_2010_04_012
crossref_primary_10_1016_j_tips_2024_09_004
crossref_primary_10_3389_fncel_2019_00160
crossref_primary_10_3892_mmr_2017_7017
crossref_primary_10_1007_s11538_013_9877_7
crossref_primary_10_1038_s41598_017_00388_1
crossref_primary_10_3389_fncel_2019_00269
crossref_primary_10_1016_j_neuron_2008_03_003
crossref_primary_10_1016_j_neuron_2010_09_026
crossref_primary_10_1523_JNEUROSCI_1419_15_2015
crossref_primary_10_1523_JNEUROSCI_1500_19_2019
crossref_primary_10_1152_jn_00494_2020
crossref_primary_10_1016_j_ydbio_2022_05_016
crossref_primary_10_1152_jn_00005_2021
crossref_primary_10_1111_acer_12204
crossref_primary_10_1523_JNEUROSCI_3565_10_2010
crossref_primary_10_1186_1741_7007_9_66
crossref_primary_10_1523_JNEUROSCI_3110_16_2017
crossref_primary_10_1007_s11071_018_4613_3
crossref_primary_10_1080_14728222_2021_1908263
crossref_primary_10_1113_jphysiol_2009_185199
crossref_primary_10_3389_fncel_2020_00040
crossref_primary_10_1016_j_semcdb_2010_09_010
crossref_primary_10_1007_s12975_013_0297_7
crossref_primary_10_1523_JNEUROSCI_4208_13_2014
crossref_primary_10_3390_ijms252212081
crossref_primary_10_1007_s00429_018_1753_7
crossref_primary_10_1371_journal_pbio_3002929
crossref_primary_10_7554_eLife_53432
crossref_primary_10_1016_j_tins_2016_09_006
crossref_primary_10_1073_pnas_1215125110
crossref_primary_10_1111_ejn_12787
crossref_primary_10_1113_jphysiol_2013_251058
crossref_primary_10_1117_1_NPh_10_1_015003
crossref_primary_10_1016_j_brs_2022_05_019
crossref_primary_10_1016_j_neuropharm_2020_108399
crossref_primary_10_7554_eLife_75140
crossref_primary_10_1146_annurev_neuro_062111_150339
crossref_primary_10_3389_fnins_2016_00083
crossref_primary_10_1038_nn_2574
crossref_primary_10_1038_s41398_025_03350_2
crossref_primary_10_1152_physrev_00016_2007
crossref_primary_10_1093_cercor_bhab266
crossref_primary_10_3389_fncel_2018_00530
crossref_primary_10_1007_s11055_019_00719_x
crossref_primary_10_1016_j_biosystems_2021_104403
crossref_primary_10_1177_1073858416648311
crossref_primary_10_7554_eLife_87078_3
crossref_primary_10_1016_j_neuron_2008_12_004
crossref_primary_10_1523_JNEUROSCI_0066_16_2016
crossref_primary_10_1007_s12264_012_1247_1
crossref_primary_10_1371_journal_pcbi_1005237
crossref_primary_10_1371_journal_pcbi_1003615
crossref_primary_10_1523_JNEUROSCI_0305_21_2021
crossref_primary_10_1038_nn_2203
crossref_primary_10_1515_revneuro_2019_0044
crossref_primary_10_1016_j_neuron_2012_01_007
crossref_primary_10_1113_jphysiol_2011_216721
crossref_primary_10_1126_science_1174331
crossref_primary_10_1523_JNEUROSCI_2662_10_2010
crossref_primary_10_1073_pnas_1300520110
crossref_primary_10_7554_eLife_55729
crossref_primary_10_1523_JNEUROSCI_5890_09_2010
crossref_primary_10_1016_j_mcn_2011_05_007
crossref_primary_10_7554_eLife_73783
crossref_primary_10_1083_jcb_200806112
crossref_primary_10_1523_JNEUROSCI_4064_11_2011
crossref_primary_10_1523_JNEUROSCI_4206_13_2014
crossref_primary_10_1186_s13408_019_0071_6
crossref_primary_10_1523_JNEUROSCI_2237_08_2008
crossref_primary_10_1007_s00018_015_2081_1
crossref_primary_10_1007_s11064_016_1936_7
crossref_primary_10_1016_j_toxlet_2011_09_028
crossref_primary_10_1016_j_jneumeth_2021_109400
crossref_primary_10_1038_nrn3361
crossref_primary_10_1371_journal_pone_0118514
crossref_primary_10_1002_ana_25666
crossref_primary_10_1038_aps_2015_107
crossref_primary_10_1007_s12035_024_04120_9
crossref_primary_10_3389_fphar_2019_01644
crossref_primary_10_1523_JNEUROSCI_6335_09_2010
crossref_primary_10_1016_j_nbd_2024_106537
crossref_primary_10_1113_jphysiol_2010_188300
crossref_primary_10_1113_jphysiol_2008_155861
crossref_primary_10_1523_JNEUROSCI_4506_10_2011
crossref_primary_10_1016_j_neuron_2009_03_023
crossref_primary_10_1109_TBME_2019_2906114
crossref_primary_10_1371_journal_pone_0011931
crossref_primary_10_1073_pnas_2015685118
crossref_primary_10_1523_JNEUROSCI_4661_09_2010
crossref_primary_10_1038_s41467_020_20232_x
crossref_primary_10_1152_jn_00226_2016
crossref_primary_10_1152_jn_00691_2017
crossref_primary_10_1152_ajpcell_00422_2024
crossref_primary_10_1523_JNEUROSCI_2765_20_2021
crossref_primary_10_1016_j_neuron_2011_06_024
crossref_primary_10_1016_j_cell_2019_11_039
crossref_primary_10_3389_fncel_2017_00115
crossref_primary_10_1523_JNEUROSCI_4431_07_2008
crossref_primary_10_1038_nn2040
crossref_primary_10_1038_s41598_018_21656_8
crossref_primary_10_1371_journal_pcbi_1004114
crossref_primary_10_1371_journal_pone_0259918
crossref_primary_10_1146_annurev_cellbio_100913_013107
crossref_primary_10_1016_j_neuron_2016_05_035
crossref_primary_10_1016_j_bbrc_2025_151429
crossref_primary_10_1038_nn_2530
crossref_primary_10_7554_eLife_32373
crossref_primary_10_3389_fncel_2025_1627517
crossref_primary_10_1523_JNEUROSCI_2651_10_2010
crossref_primary_10_1038_nature09087
crossref_primary_10_1016_j_tins_2014_02_008
crossref_primary_10_1007_s11055_021_01186_z
crossref_primary_10_3389_fncel_2016_00250
crossref_primary_10_1002_dneu_22565
crossref_primary_10_1523_JNEUROSCI_1613_08_2008
crossref_primary_10_1097_WNP_0000000000000339
crossref_primary_10_1126_science_1215101
crossref_primary_10_1016_j_conb_2008_08_008
crossref_primary_10_1371_journal_pone_0142052
crossref_primary_10_1038_s41467_024_53901_2
crossref_primary_10_1212_NXI_0000000000200096
crossref_primary_10_1007_s11023_017_9442_5
crossref_primary_10_1016_j_conb_2008_08_006
crossref_primary_10_1016_j_conb_2018_02_017
crossref_primary_10_1186_s13578_025_01422_w
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2007.07.031
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
ExternalDocumentID 17698015
Genre Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8FE
8FH
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AHHHB
AHMBA
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M3Z
M41
MVM
N9A
NPM
O-L
O9-
OK1
OZT
P2P
P6G
PQQKQ
PROAC
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
ID FETCH-LOGICAL-c434t-1a37684966653ea6d63d4a09a65e238e013f90ccdd752a97f26d771f52bb423a2
IEDL.DBID 7X8
ISICitedReferencesCount 340
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249159200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0896-6273
IngestDate Tue Oct 21 13:09:09 EDT 2025
Mon Jul 21 05:43:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-1a37684966653ea6d63d4a09a65e238e013f90ccdd752a97f26d771f52bb423a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.neuron.2007.07.031
PMID 17698015
PQID 68172585
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68172585
pubmed_primary_17698015
PublicationCentury 2000
PublicationDate 2007-08-16
PublicationDateYYYYMMDD 2007-08-16
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-16
  day: 16
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2007
SSID ssj0014591
Score 2.4440532
Snippet Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 633
SubjectTerms 4-Aminopyridine - pharmacology
Action Potentials - drug effects
Action Potentials - physiology
Action Potentials - radiation effects
Animals
Axons - drug effects
Axons - physiology
Axons - radiation effects
Cerebral Cortex - cytology
Dose-Response Relationship, Drug
Dose-Response Relationship, Radiation
Elapid Venoms - pharmacology
Electric Stimulation - methods
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - physiology
Excitatory Postsynaptic Potentials - radiation effects
Female
In Vitro Techniques
Lysine - analogs & derivatives
Lysine - metabolism
Male
Models, Neurological
Patch-Clamp Techniques
Potassium Channel Blockers - pharmacology
Pyramidal Cells - cytology
Rats
Rats, Wistar
Shaker Superfamily of Potassium Channels - physiology
Synapses - drug effects
Synapses - physiology
Synapses - radiation effects
Title Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy
URI https://www.ncbi.nlm.nih.gov/pubmed/17698015
https://www.proquest.com/docview/68172585
Volume 55
WOSCitedRecordID wos000249159200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qVfDi-_3ag3gLJt1mk4AgRRRBLB4UequT7EQ8uKm2VvvvnckDL4IHIQQSWAjJZOebmW_mAzjRYYBpmsWeH0rqxlLi8ZVQoAg12iRN47wUm4j6_XgwSO5bcN70wgitstkTy43aFpnkyM9MzK6Wse3F6M0TzSiprdYCGnPQ1gxkxKajwU8NoRtWenlxYjzDXrppnCvZXeW0SFePMOSjFpn7FWKWruZ65X8PuQrLNcRUvcom1qBFbh02eo7D69eZOlUl6bPMpq_DYqVFOduAp95X4dSLcIl48ZieJW2obqeBkt5gxy5U1bR2hV8C31XVEqFGxUQYR3zjE6ckGFihs2o8c8jbUaZIhlRgNtuEx-urh8sbr5Zf8LKu7k68ALVU6TgeMqEmNNZo20U_QRMSO3pi8JgnfpZZG4UdTKK8Y2wUBXnYSVMGadjZgnlXONoBRZRjnEaWciPz7DnG80n7aH3UlqNk2oXj5n0O2bylZoGOio_xsHmju7BdfZLhqJrCMQwik7B7Dff-XLsPS1VGluNlcwDtnH9sOoSFbDp5Gb8flVbD5_793TfIcc5T
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axon+initial+segment+Kv1+channels+control+axonal+action+potential+waveform+and+synaptic+efficacy&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Kole%2C+Maarten+H+P&rft.au=Letzkus%2C+Johannes+J&rft.au=Stuart%2C+Greg+J&rft.date=2007-08-16&rft.issn=0896-6273&rft.volume=55&rft.issue=4&rft.spage=633&rft_id=info:doi/10.1016%2Fj.neuron.2007.07.031&rft_id=info%3Apmid%2F17698015&rft_id=info%3Apmid%2F17698015&rft.externalDocID=17698015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon