Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation using polynomials into a finite-dimensional algebraic system. Due to the multi-scale nature of the physics and sensitivity from meshing a complicated geometry, such...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 361; s. 112732 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.04.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!