Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data

Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation using polynomials into a finite-dimensional algebraic system. Due to the multi-scale nature of the physics and sensitivity from meshing a complicated geometry, such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering Jg. 361; S. 112732
Hauptverfasser: Sun, Luning, Gao, Han, Pan, Shaowu, Wang, Jian-Xun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.04.2020
Elsevier BV
Schlagworte:
ISSN:0045-7825, 1879-2138
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation using polynomials into a finite-dimensional algebraic system. Due to the multi-scale nature of the physics and sensitivity from meshing a complicated geometry, such process can be computational prohibitive for most real-time applications (e.g., clinical diagnosis and surgery planning) and many-query analyses (e.g., optimization design and uncertainty quantification). Therefore, developing a cost-effective surrogate model is of great practical significance. Deep learning (DL) has shown new promises for surrogate modeling due to its capability of handling strong nonlinearity and high dimensionality. However, the off-the-shelf DL architectures, success of which heavily relies on the large amount of training data and interpolatory nature of the problem, fail to operate when the data becomes sparse. Unfortunately, data is often insufficient in most parametric fluid dynamics problems since each data point in the parameter space requires an expensive numerical simulation based on the first principle, e.g., Navier–Stokes equations. In this paper, we provide a physics-constrained DL approach for surrogate modeling of fluid flows without relying on any simulation data. Specifically, a structured deep neural network (DNN) architecture is devised to enforce the initial and boundary conditions, and the governing partial differential equations (i.e., Navier–Stokes equations) are incorporated into the loss of the DNN to drive the training. Numerical experiments are conducted on a number of internal flows relevant to hemodynamics applications, and the forward propagation of uncertainties in fluid properties and domain geometry is studied as well. The results show excellent agreement on the flow field and forward-propagated uncertainties between the DL surrogate approximations and the first-principle numerical simulations. •Proposed a simulation-free, physics-constrained deep learning for surrogate CFD model.•Boundary-encoded neural network outperforms the one with soft boundary constraints.•Demonstrated effectiveness of the label-free learning on a few vascular flows.
AbstractList Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation using polynomials into a finite-dimensional algebraic system. Due to the multi-scale nature of the physics and sensitivity from meshing a complicated geometry, such process can be computational prohibitive for most real-time applications (e.g., clinical diagnosis and surgery planning) and many-query analyses (e.g., optimization design and uncertainty quantification). Therefore, developing a cost-effective surrogate model is of great practical significance. Deep learning (DL) has shown new promises for surrogate modeling due to its capability of handling strong nonlinearity and high dimensionality. However, the off-the-shelf DL architectures, success of which heavily relies on the large amount of training data and interpolatory nature of the problem, fail to operate when the data becomes sparse. Unfortunately, data is often insufficient in most parametric fluid dynamics problems since each data point in the parameter space requires an expensive numerical simulation based on the first principle, e.g., Navier–Stokes equations. In this paper, we provide a physics-constrained DL approach for surrogate modeling of fluid flows without relying on any simulation data. Specifically, a structured deep neural network (DNN) architecture is devised to enforce the initial and boundary conditions, and the governing partial differential equations (i.e., Navier–Stokes equations) are incorporated into the loss of the DNN to drive the training. Numerical experiments are conducted on a number of internal flows relevant to hemodynamics applications, and the forward propagation of uncertainties in fluid properties and domain geometry is studied as well. The results show excellent agreement on the flow field and forward-propagated uncertainties between the DL surrogate approximations and the first-principle numerical simulations. •Proposed a simulation-free, physics-constrained deep learning for surrogate CFD model.•Boundary-encoded neural network outperforms the one with soft boundary constraints.•Demonstrated effectiveness of the label-free learning on a few vascular flows.
Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation using polynomials into a finite-dimensional algebraic system. Due to the multi-scale nature of the physics and sensitivity from meshing a complicated geometry, such process can be computational prohibitive for most real-time applications (e.g., clinical diagnosis and surgery planning) and many-query analyses (e.g., optimization design and uncertainty quantification). Therefore, developing a cost-effective surrogate model is of great practical significance. Deep learning (DL) has shown new promises for surrogate modeling due to its capability of handling strong nonlinearity and high dimensionality. However, the off-the-shelf DL architectures, success of which heavily relies on the large amount of training data and interpolatory nature of the problem, fail to operate when the data becomes sparse. Unfortunately, data is often insufficient in most parametric fluid dynamics problems since each data point in the parameter space requires an expensive numerical simulation based on the first principle, e.g., Navier–Stokes equations. In this paper, we provide a physics-constrained DL approach for surrogate modeling of fluid flows without relying on any simulation data. Specifically, a structured deep neural network (DNN) architecture is devised to enforce the initial and boundary conditions, and the governing partial differential equations (i.e., Navier–Stokes equations) are incorporated into the loss of the DNN to drive the training. Numerical experiments are conducted on a number of internal flows relevant to hemodynamics applications, and the forward propagation of uncertainties in fluid properties and domain geometry is studied as well. The results show excellent agreement on the flow field and forward-propagated uncertainties between the DL surrogate approximations and the first-principle numerical simulations.
ArticleNumber 112732
Author Gao, Han
Pan, Shaowu
Sun, Luning
Wang, Jian-Xun
Author_xml – sequence: 1
  givenname: Luning
  surname: Sun
  fullname: Sun, Luning
  organization: Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States of America
– sequence: 2
  givenname: Han
  surname: Gao
  fullname: Gao, Han
  organization: Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States of America
– sequence: 3
  givenname: Shaowu
  orcidid: 0000-0002-2462-362X
  surname: Pan
  fullname: Pan, Shaowu
  organization: Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, United States of America
– sequence: 4
  givenname: Jian-Xun
  orcidid: 0000-0002-9030-1733
  surname: Wang
  fullname: Wang, Jian-Xun
  email: jwang33@nd.edu
  organization: Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States of America
BookMark eNp9kD1PwzAQhi1UJNrCD2CLxJxgOx9OxIQqviQkBmC2HPvSOkrsYjtU_fe4lImhN_gk6x6f32eBZsYaQOia4IxgUt32mRxFRjFpMkIoy-kZmpOaNSkleT1Dc4yLMmU1LS_Qwvsex6oJnSN4n5yzaxEgGa2CQZt10lmXdMOkVTztziet8KASa5LtZu-19Km0xgcntInXCmCbDCCcOaA7HTZ2ConX4zSIoCOkRBCX6LwTg4erv75En48PH6vn9PXt6WV1_5rKIi9CGj-s2qbqoFNVqQpZU1a3FWVQtk0nWiabssYS06ZShJUyL3Kpalo0rWxbTDqWL9HN8d2ts18T-MB7OzkTV3KaM8KqijRFnCLHKems9w46vnV6FG7PCeYHm7zn0SY_2ORHm5Fh_xipw2_Ag4jhJHl3JCEG_9bguJcajASlHcjAldUn6B8UUZJt
CitedBy_id crossref_primary_10_1016_j_chroma_2025_465831
crossref_primary_10_1017_jfm_2021_135
crossref_primary_10_1139_cgj_2023_0567
crossref_primary_10_1177_14759217231202547
crossref_primary_10_1016_j_cpc_2025_109782
crossref_primary_10_1021_acs_jpca_5c00405
crossref_primary_10_1007_s40436_025_00545_0
crossref_primary_10_1016_j_seppur_2025_132012
crossref_primary_10_1002_fld_5238
crossref_primary_10_1016_j_engappai_2024_108945
crossref_primary_10_1016_j_aei_2022_101661
crossref_primary_10_1103_d4tm_92vb
crossref_primary_10_1016_j_oceaneng_2024_118341
crossref_primary_10_1109_TPEL_2025_3547390
crossref_primary_10_1016_j_tws_2024_112846
crossref_primary_10_1017_dce_2022_2
crossref_primary_10_1007_s10444_023_10065_9
crossref_primary_10_1016_j_enconman_2024_119474
crossref_primary_10_1186_s40323_024_00265_3
crossref_primary_10_1007_s12046_023_02236_7
crossref_primary_10_1016_j_autcon_2024_105790
crossref_primary_10_1016_j_cma_2024_117058
crossref_primary_10_1016_j_coastaleng_2022_104167
crossref_primary_10_1063_5_0228104
crossref_primary_10_1016_j_petrol_2022_110460
crossref_primary_10_3389_fphy_2024_1385381
crossref_primary_10_1016_j_enbuild_2024_114575
crossref_primary_10_1016_j_jocs_2025_102717
crossref_primary_10_1109_LAWP_2024_3355896
crossref_primary_10_1109_ACCESS_2024_3504962
crossref_primary_10_1016_j_engstruct_2022_115484
crossref_primary_10_1016_j_cma_2022_115668
crossref_primary_10_1016_j_combustflame_2023_113094
crossref_primary_10_1177_13694332251369102
crossref_primary_10_1016_j_engappai_2023_106468
crossref_primary_10_1016_j_cma_2022_115100
crossref_primary_10_1016_j_cpc_2025_109762
crossref_primary_10_1016_j_apor_2024_104246
crossref_primary_10_1016_j_neucom_2022_05_015
crossref_primary_10_1029_2020WR029479
crossref_primary_10_1016_j_biosystemseng_2025_01_017
crossref_primary_10_1016_j_media_2025_103564
crossref_primary_10_3390_app122110986
crossref_primary_10_3390_e24081134
crossref_primary_10_1029_2024WR037736
crossref_primary_10_1038_s41598_024_84940_w
crossref_primary_10_1016_j_powtec_2022_117303
crossref_primary_10_1063_5_0274006
crossref_primary_10_3390_pr13041093
crossref_primary_10_1080_19942060_2025_2535015
crossref_primary_10_1016_j_jcp_2020_109914
crossref_primary_10_1016_j_petrol_2021_110069
crossref_primary_10_1038_s41524_025_01635_0
crossref_primary_10_1016_j_applthermaleng_2024_123670
crossref_primary_10_1109_TMAG_2025_3553236
crossref_primary_10_1016_j_jmatprotec_2022_117534
crossref_primary_10_1017_jfm_2020_453
crossref_primary_10_1016_j_camwa_2024_11_009
crossref_primary_10_1016_j_cpc_2025_109582
crossref_primary_10_1016_j_cma_2022_115120
crossref_primary_10_1016_j_flowmeasinst_2023_102418
crossref_primary_10_1038_s41598_023_29822_3
crossref_primary_10_3390_en15217864
crossref_primary_10_1080_10589759_2024_2338187
crossref_primary_10_1016_j_compgeo_2024_106825
crossref_primary_10_1063_5_0056549
crossref_primary_10_1016_j_icheatmasstransfer_2023_106662
crossref_primary_10_3390_a17070279
crossref_primary_10_1016_j_engstruct_2024_119194
crossref_primary_10_1016_j_apacoust_2023_109686
crossref_primary_10_1016_j_jcp_2022_111022
crossref_primary_10_1016_j_jcp_2024_113285
crossref_primary_10_1016_j_net_2024_103353
crossref_primary_10_1007_s00366_023_01871_2
crossref_primary_10_1007_s10409_022_22302_x
crossref_primary_10_1016_j_cma_2024_117130
crossref_primary_10_1016_j_ast_2024_109706
crossref_primary_10_1038_s41467_021_26434_1
crossref_primary_10_1016_j_jocs_2025_102639
crossref_primary_10_1016_j_asoc_2021_108050
crossref_primary_10_3390_s23094492
crossref_primary_10_1016_j_engappai_2023_106340
crossref_primary_10_3390_math12243892
crossref_primary_10_1016_j_ijmecsci_2024_109210
crossref_primary_10_1016_j_copbio_2021_01_002
crossref_primary_10_1016_j_engappai_2023_106425
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1016_j_cma_2025_117764
crossref_primary_10_1016_j_engappai_2022_105176
crossref_primary_10_1109_ACCESS_2025_3585402
crossref_primary_10_1016_j_cma_2024_117004
crossref_primary_10_3389_fmars_2025_1547995
crossref_primary_10_1017_dce_2024_33
crossref_primary_10_1016_j_cpc_2025_109569
crossref_primary_10_1016_j_petrol_2022_110179
crossref_primary_10_1038_s42256_023_00685_7
crossref_primary_10_1016_j_asoc_2024_112632
crossref_primary_10_1007_s11831_024_10152_0
crossref_primary_10_3390_eng6050099
crossref_primary_10_1016_j_jmapro_2022_02_053
crossref_primary_10_1088_1741_4326_ae00db
crossref_primary_10_1016_j_jmps_2023_105472
crossref_primary_10_32604_cmes_2021_016737
crossref_primary_10_1016_j_cma_2024_117116
crossref_primary_10_1016_j_cma_2024_117478
crossref_primary_10_1016_j_jcp_2024_113144
crossref_primary_10_1016_j_compbiomed_2025_110074
crossref_primary_10_1016_j_cma_2023_116401
crossref_primary_10_1016_j_proci_2022_07_144
crossref_primary_10_1007_s10439_022_02967_4
crossref_primary_10_1016_j_cma_2024_117355
crossref_primary_10_1137_20M1323151
crossref_primary_10_1016_j_brainresbull_2025_111318
crossref_primary_10_1186_s42774_021_00094_7
crossref_primary_10_1016_j_neucom_2025_129917
crossref_primary_10_1109_ACCESS_2022_3199652
crossref_primary_10_1155_2022_1781388
crossref_primary_10_1007_s40684_025_00751_y
crossref_primary_10_1016_j_compchemeng_2024_108723
crossref_primary_10_1088_2632_2153_acfd09
crossref_primary_10_1016_j_jcp_2025_113798
crossref_primary_10_3390_fluids9120296
crossref_primary_10_1016_j_camwa_2022_10_003
crossref_primary_10_1016_j_jhydrol_2023_130048
crossref_primary_10_3390_make7030086
crossref_primary_10_1016_j_artmed_2024_102995
crossref_primary_10_3390_batteries9060301
crossref_primary_10_1016_j_cma_2022_114871
crossref_primary_10_1016_j_cma_2025_118279
crossref_primary_10_1088_2631_7990_adea23
crossref_primary_10_1016_j_ast_2024_109518
crossref_primary_10_1016_j_cma_2022_115839
crossref_primary_10_1016_j_cpc_2024_109428
crossref_primary_10_1016_j_engappai_2025_111554
crossref_primary_10_1016_j_cnsns_2024_108242
crossref_primary_10_1080_20550340_2025_2547335
crossref_primary_10_1109_JSEN_2022_3199154
crossref_primary_10_1016_j_cma_2022_115831
crossref_primary_10_1016_j_cpc_2024_109422
crossref_primary_10_1016_j_jii_2025_100899
crossref_primary_10_1016_j_engappai_2025_110347
crossref_primary_10_1016_j_engstruct_2025_120018
crossref_primary_10_1038_s41524_022_00712_y
crossref_primary_10_1016_j_eswa_2024_125079
crossref_primary_10_1007_s00521_024_09883_9
crossref_primary_10_1145_3604283
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1016_j_engappai_2021_104232
crossref_primary_10_1109_TBME_2022_3163428
crossref_primary_10_1017_jfm_2025_10448
crossref_primary_10_1016_j_cma_2025_118284
crossref_primary_10_1016_j_cma_2025_118280
crossref_primary_10_1016_j_enbuild_2024_115023
crossref_primary_10_1016_j_jcp_2023_111919
crossref_primary_10_1016_j_jcp_2023_111912
crossref_primary_10_1016_j_compfluid_2024_106421
crossref_primary_10_1016_j_engappai_2023_106660
crossref_primary_10_1016_j_enbuild_2024_114295
crossref_primary_10_1016_j_cpc_2023_109010
crossref_primary_10_1016_j_jcp_2022_111731
crossref_primary_10_1016_j_eswa_2021_115409
crossref_primary_10_1080_10618562_2022_2154758
crossref_primary_10_1016_j_cma_2021_114211
crossref_primary_10_1016_j_cma_2025_118015
crossref_primary_10_1016_j_commatsci_2024_113502
crossref_primary_10_1016_j_procs_2025_03_106
crossref_primary_10_1016_j_compfluid_2024_106302
crossref_primary_10_1016_j_oceaneng_2024_120239
crossref_primary_10_1016_j_cnsns_2024_108229
crossref_primary_10_1177_30494826251336314
crossref_primary_10_1016_j_advwatres_2024_104870
crossref_primary_10_1016_j_oceaneng_2021_109406
crossref_primary_10_1063_5_0216609
crossref_primary_10_1016_j_cma_2024_116907
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1016_j_tws_2024_111693
crossref_primary_10_1007_s00521_022_07294_2
crossref_primary_10_1016_j_compgeo_2023_105511
crossref_primary_10_1016_j_engappai_2025_111458
crossref_primary_10_1016_j_jcp_2020_110079
crossref_primary_10_1016_j_mfglet_2023_08_074
crossref_primary_10_1080_17455030_2022_2083264
crossref_primary_10_1016_j_ast_2024_109648
crossref_primary_10_1016_j_compstruct_2022_116354
crossref_primary_10_1016_j_biosystemseng_2023_04_012
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1016_j_jcp_2021_110364
crossref_primary_10_1016_j_neucom_2023_126890
crossref_primary_10_1109_ACCESS_2022_3208103
crossref_primary_10_1016_j_cma_2023_115902
crossref_primary_10_1016_j_compbiomed_2025_110265
crossref_primary_10_1016_j_engappai_2023_106724
crossref_primary_10_1016_j_cma_2022_114790
crossref_primary_10_1186_s40645_024_00654_7
crossref_primary_10_1615_IntJMultCompEng_2025059444
crossref_primary_10_1109_ACCESS_2024_3481671
crossref_primary_10_1016_j_neucom_2020_09_006
crossref_primary_10_3390_app14020859
crossref_primary_10_1186_s42774_024_00197_x
crossref_primary_10_1016_j_jmsy_2022_04_004
crossref_primary_10_1016_j_taml_2020_01_039
crossref_primary_10_1061_JGGEFK_GTENG_13267
crossref_primary_10_1016_j_compgeo_2025_107110
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1016_j_jcp_2021_110296
crossref_primary_10_1029_2021WR030595
crossref_primary_10_1016_j_pnucene_2022_104339
crossref_primary_10_1016_j_cma_2022_115757
crossref_primary_10_1002_tal_70002
crossref_primary_10_1016_j_cageo_2023_105360
crossref_primary_10_3390_math12213430
crossref_primary_10_1016_j_jcp_2021_110192
crossref_primary_10_1016_j_cma_2022_114784
crossref_primary_10_1016_j_jobe_2024_109231
crossref_primary_10_1007_s00158_024_03935_3
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1016_j_jcp_2022_111419
crossref_primary_10_1061_JCCEE5_CPENG_6151
crossref_primary_10_1016_j_geoen_2023_212516
crossref_primary_10_1016_j_ress_2022_108900
crossref_primary_10_1038_s41467_024_46246_3
crossref_primary_10_1016_j_jmps_2024_105714
crossref_primary_10_1016_j_advwatres_2022_104243
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_1016_j_cma_2021_114037
crossref_primary_10_1016_j_anucene_2023_110181
crossref_primary_10_1016_j_compfluid_2023_106164
crossref_primary_10_1016_j_jcp_2025_114027
crossref_primary_10_1016_j_earscirev_2025_105276
crossref_primary_10_1038_s41598_023_44541_5
crossref_primary_10_1016_j_cageo_2023_105477
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125480
crossref_primary_10_1049_itr2_12551
crossref_primary_10_2118_203997_PA
crossref_primary_10_1016_j_egyai_2025_100485
crossref_primary_10_1016_j_jcp_2025_114370
crossref_primary_10_3390_mca28020062
crossref_primary_10_1016_j_engappai_2022_105686
crossref_primary_10_1016_j_cma_2022_115771
crossref_primary_10_1016_j_icheatmasstransfer_2024_107897
crossref_primary_10_1016_j_cma_2024_117075
crossref_primary_10_3390_sym17081334
crossref_primary_10_1016_j_cma_2024_117071
crossref_primary_10_1016_j_ast_2024_109207
crossref_primary_10_3390_app13074539
crossref_primary_10_1061_JENMDT_EMENG_6643
crossref_primary_10_1016_j_taml_2025_100585
crossref_primary_10_3390_pr13061834
crossref_primary_10_2118_208602_PA
crossref_primary_10_1016_j_compstruc_2022_106863
crossref_primary_10_3847_1538_4357_ade43e
crossref_primary_10_1063_5_0281538
crossref_primary_10_1016_j_petrol_2021_109046
crossref_primary_10_3390_mca28020052
crossref_primary_10_3390_rs15205075
crossref_primary_10_1016_j_asoc_2025_113394
crossref_primary_10_1063_5_0132433
crossref_primary_10_1007_s10483_023_2993_9
crossref_primary_10_1016_j_anucene_2023_109840
crossref_primary_10_1016_j_eswa_2021_115146
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_1016_j_camwa_2024_08_035
crossref_primary_10_1177_14759217221117238
crossref_primary_10_3390_en16124558
crossref_primary_10_1016_j_cma_2021_114507
crossref_primary_10_1016_j_euromechflu_2025_204352
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1016_j_advwatres_2021_104051
crossref_primary_10_1016_j_ress_2022_108835
crossref_primary_10_1007_s10915_022_01980_y
crossref_primary_10_1080_24725579_2021_1879322
crossref_primary_10_1109_TCAD_2024_3506867
crossref_primary_10_1007_s00707_023_03691_3
crossref_primary_10_1016_j_cma_2022_114909
crossref_primary_10_1002_er_7879
crossref_primary_10_1063_5_0291125
crossref_primary_10_1016_j_tafmec_2023_103925
crossref_primary_10_1016_j_cma_2021_114502
crossref_primary_10_1016_j_jcp_2023_112278
crossref_primary_10_1038_s44172_024_00303_3
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1002_nme_7228
crossref_primary_10_3390_biomimetics9020072
crossref_primary_10_1016_j_cma_2020_113492
crossref_primary_10_1016_j_jcp_2023_112291
crossref_primary_10_32604_cmes_2023_031093
crossref_primary_10_3390_en18112888
crossref_primary_10_1016_j_jhydrol_2024_131263
crossref_primary_10_1016_j_buildenv_2024_111175
crossref_primary_10_1016_j_ifacol_2022_09_070
crossref_primary_10_1007_s00466_020_01952_9
crossref_primary_10_1016_j_ifacol_2022_07_481
crossref_primary_10_1016_j_cma_2023_116139
crossref_primary_10_1016_j_seppur_2023_124631
crossref_primary_10_1016_j_jclepro_2023_139039
crossref_primary_10_1016_j_jcp_2021_110666
crossref_primary_10_1007_s00466_022_02252_0
crossref_primary_10_1109_TGRS_2022_3144636
crossref_primary_10_1016_j_camwa_2024_01_021
crossref_primary_10_1016_j_jpse_2025_100257
crossref_primary_10_1016_j_oceaneng_2023_114597
crossref_primary_10_1016_j_eswa_2024_123758
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124593
crossref_primary_10_1016_j_ymssp_2022_109039
crossref_primary_10_3390_w16071041
crossref_primary_10_1016_j_geoen_2024_212788
crossref_primary_10_1007_s10462_025_11322_7
crossref_primary_10_1016_j_jcp_2021_110754
crossref_primary_10_1016_j_cma_2024_116983
crossref_primary_10_1016_j_compositesa_2025_108857
crossref_primary_10_1016_j_jmsy_2024_07_002
crossref_primary_10_1002_zamm_202300712
crossref_primary_10_1109_ACCESS_2024_3354058
crossref_primary_10_3390_math9161939
crossref_primary_10_3390_s23020663
crossref_primary_10_1016_j_advwatres_2023_104609
crossref_primary_10_1088_2632_2153_acffa4
crossref_primary_10_1016_j_ymssp_2022_109277
crossref_primary_10_1016_j_anucene_2022_109234
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1016_j_cma_2020_113226
crossref_primary_10_1016_j_jcp_2021_110768
crossref_primary_10_1137_20M1318043
crossref_primary_10_1002_nme_7135
crossref_primary_10_1016_j_cma_2024_117709
crossref_primary_10_1016_j_petrol_2021_109880
crossref_primary_10_2118_214288_PA
crossref_primary_10_1016_j_jcp_2021_110521
crossref_primary_10_1109_MIC_2022_3212085
crossref_primary_10_1061_JENMDT_EMENG_7463
crossref_primary_10_1140_epjp_s13360_025_06220_4
crossref_primary_10_1016_j_engappai_2022_105516
crossref_primary_10_1016_j_cpc_2023_108775
crossref_primary_10_1016_j_cma_2021_114424
crossref_primary_10_1016_j_matdes_2020_109180
crossref_primary_10_1016_j_cma_2024_116965
crossref_primary_10_1007_s12551_020_00776_4
crossref_primary_10_1016_j_cma_2024_116847
crossref_primary_10_1016_j_renene_2022_10_013
crossref_primary_10_1038_s41524_025_01718_y
crossref_primary_10_1016_j_ynexs_2024_100016
crossref_primary_10_1162_neco_a_01647
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_cej_2021_131220
crossref_primary_10_1109_ACCESS_2022_3162827
crossref_primary_10_1016_j_oceaneng_2023_115393
crossref_primary_10_1016_j_oceaneng_2025_121026
crossref_primary_10_1063_5_0284621
crossref_primary_10_3390_atmos14040759
crossref_primary_10_1016_j_cma_2020_113047
crossref_primary_10_1016_j_taml_2025_100609
crossref_primary_10_1016_j_apenergy_2023_120855
crossref_primary_10_1109_TCAD_2023_3269385
crossref_primary_10_1016_j_geoen_2023_212474
crossref_primary_10_1109_LGRS_2022_3176867
crossref_primary_10_1016_j_cpc_2022_108382
crossref_primary_10_3390_axioms14050385
crossref_primary_10_1145_3549076
crossref_primary_10_1088_1572_9494_ada3ce
crossref_primary_10_1137_22M1518189
crossref_primary_10_1063_5_0272317
crossref_primary_10_1016_j_compfluid_2025_106700
crossref_primary_10_1190_geo2022_0479_1
crossref_primary_10_1007_s10596_023_10232_3
crossref_primary_10_3390_w13040423
crossref_primary_10_1017_dsj_2023_25
crossref_primary_10_1002_fld_4888
crossref_primary_10_1103_PhysRevLett_126_098302
crossref_primary_10_1016_j_cnsns_2024_108544
crossref_primary_10_1016_j_jfoodeng_2022_111137
crossref_primary_10_1007_s10915_023_02328_w
crossref_primary_10_1038_s41598_023_41039_y
crossref_primary_10_3390_en16093820
crossref_primary_10_1002_eer2_70005
crossref_primary_10_1007_s10483_023_3050_9
crossref_primary_10_1145_3648506
crossref_primary_10_1038_s41524_024_01307_5
crossref_primary_10_1088_2632_2153_ac3712
crossref_primary_10_1016_j_jcp_2021_110551
crossref_primary_10_1016_j_petrol_2021_109694
crossref_primary_10_1016_j_cma_2021_114524
crossref_primary_10_5194_hess_26_4469_2022
crossref_primary_10_1139_cgj_2025_0118
crossref_primary_10_1016_j_energy_2024_131676
crossref_primary_10_1016_j_strusafe_2022_102256
crossref_primary_10_1016_j_aiig_2025_100148
crossref_primary_10_1016_j_scs_2024_105750
crossref_primary_10_1007_s00521_022_07092_w
crossref_primary_10_3390_s23052792
crossref_primary_10_3390_s22103697
crossref_primary_10_1088_1361_6560_ae02dd
crossref_primary_10_1016_j_jcp_2024_113012
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_jcp_2024_113494
crossref_primary_10_1016_j_cma_2024_117102
crossref_primary_10_1007_s00521_022_07257_7
crossref_primary_10_1016_j_ijheatfluidflow_2025_110011
crossref_primary_10_1016_j_ress_2024_110083
crossref_primary_10_1177_03611981241266837
crossref_primary_10_1016_j_compbiomed_2024_108706
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1029_2022WR033168
crossref_primary_10_1016_j_cma_2021_113938
crossref_primary_10_1016_j_icheatmasstransfer_2024_108362
crossref_primary_10_1155_2022_9873112
crossref_primary_10_1016_j_jcp_2023_112435
crossref_primary_10_1016_j_cma_2024_117458
crossref_primary_10_1016_j_cma_2024_117211
crossref_primary_10_1016_j_triboint_2023_108871
crossref_primary_10_1103_PhysRevFluids_8_064603
crossref_primary_10_1108_HFF_09_2023_0568
crossref_primary_10_1007_s12273_025_1263_5
crossref_primary_10_3390_ai5030074
crossref_primary_10_3390_app132413312
crossref_primary_10_1016_j_jwpe_2025_108749
crossref_primary_10_1016_j_cma_2024_117691
crossref_primary_10_1016_j_apor_2025_104699
crossref_primary_10_1002_cnm_3905
crossref_primary_10_1063_5_0207372
crossref_primary_10_1109_TGRS_2025_3594153
crossref_primary_10_1063_5_0284425
crossref_primary_10_3390_app12105232
crossref_primary_10_1038_s41524_023_01165_7
crossref_primary_10_1038_s41598_024_65664_3
crossref_primary_10_3389_fphy_2022_1004417
crossref_primary_10_3390_e26080649
crossref_primary_10_1016_j_matdes_2023_112034
crossref_primary_10_1016_j_jcp_2023_112462
crossref_primary_10_1016_j_cma_2023_116671
crossref_primary_10_1016_j_jcp_2023_112342
crossref_primary_10_1016_j_jcp_2023_112584
crossref_primary_10_1016_j_jcp_2024_113112
crossref_primary_10_1016_j_cma_2024_117441
crossref_primary_10_1007_s11440_023_01874_9
crossref_primary_10_1016_j_advengsoft_2021_103021
crossref_primary_10_1016_j_mtphys_2021_100429
crossref_primary_10_1007_s12551_022_01040_7
crossref_primary_10_1016_j_cma_2024_117681
crossref_primary_10_1016_j_cej_2024_158684
crossref_primary_10_3390_catal11111304
crossref_primary_10_3390_fluids7030094
crossref_primary_10_1016_j_apenergy_2024_124703
crossref_primary_10_1016_j_dt_2023_02_006
crossref_primary_10_1016_j_cma_2023_116546
crossref_primary_10_1016_j_cma_2020_113636
crossref_primary_10_3390_fluids10090226
crossref_primary_10_1016_j_cma_2023_116563
crossref_primary_10_1016_j_cma_2024_117314
crossref_primary_10_1016_j_neunet_2023_03_014
crossref_primary_10_1016_j_compind_2025_104304
crossref_primary_10_1007_s10825_024_02270_6
crossref_primary_10_1088_2632_2153_ad3a32
crossref_primary_10_1016_j_compfluid_2023_105960
crossref_primary_10_1007_s00366_022_01640_7
crossref_primary_10_1016_j_jcp_2021_110928
crossref_primary_10_1080_10618562_2023_2295286
crossref_primary_10_1016_j_engappai_2022_104953
crossref_primary_10_1109_TGRS_2023_3327781
crossref_primary_10_1016_j_compgeo_2025_107604
crossref_primary_10_1016_j_fusengdes_2025_115182
crossref_primary_10_3390_math13172746
crossref_primary_10_1016_j_cad_2022_103339
crossref_primary_10_1016_j_oceaneng_2025_122054
crossref_primary_10_1016_j_cma_2021_113927
crossref_primary_10_1016_j_cma_2023_116678
crossref_primary_10_1142_S1758825125500358
crossref_primary_10_1007_s00466_022_02251_1
crossref_primary_10_1016_j_cej_2024_149826
crossref_primary_10_1016_j_mtcomm_2021_102719
crossref_primary_10_1016_j_jcp_2023_112243
crossref_primary_10_1038_s41598_024_62117_9
crossref_primary_10_1016_j_engappai_2023_106049
crossref_primary_10_1016_j_cma_2023_116214
crossref_primary_10_3390_math13101664
crossref_primary_10_1103_PhysRevApplied_19_064049
crossref_primary_10_1016_j_engappai_2025_111084
crossref_primary_10_1007_s00158_021_02851_0
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_3390_w17071075
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120417
crossref_primary_10_1371_journal_pone_0285506
crossref_primary_10_1109_ACCESS_2024_3498437
crossref_primary_10_1186_s40323_022_00221_z
crossref_primary_10_5194_gmd_18_3707_2025
crossref_primary_10_1016_j_ymssp_2024_111458
crossref_primary_10_1109_TGRS_2022_3222507
crossref_primary_10_1016_j_jcp_2025_113726
crossref_primary_10_3390_fluids8020043
crossref_primary_10_1080_01431161_2023_2187723
crossref_primary_10_3390_fluids7020056
crossref_primary_10_1016_j_cep_2023_109540
crossref_primary_10_1016_j_compag_2024_109606
crossref_primary_10_1016_j_compfluid_2023_105864
crossref_primary_10_1016_j_cma_2024_117410
crossref_primary_10_1063_5_0287981
crossref_primary_10_1007_s00348_021_03180_0
crossref_primary_10_1109_TAI_2022_3192362
crossref_primary_10_2118_209420_PA
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127040
crossref_primary_10_1016_j_applthermaleng_2025_127955
crossref_primary_10_1016_j_mineng_2025_109424
crossref_primary_10_1016_j_energy_2022_124139
crossref_primary_10_1016_j_compstruc_2025_107839
crossref_primary_10_1080_01495739_2024_2321205
crossref_primary_10_1038_s41598_021_99037_x
crossref_primary_10_1016_j_neucom_2025_130764
crossref_primary_10_1038_s42003_023_04914_y
crossref_primary_10_1007_s11071_023_09173_4
crossref_primary_10_1016_j_cma_2025_117826
crossref_primary_10_1016_j_jcp_2023_112003
crossref_primary_10_1016_j_jcp_2025_113950
crossref_primary_10_3390_mca28050102
crossref_primary_10_1016_j_jcp_2023_112265
crossref_primary_10_1016_j_engappai_2024_108764
crossref_primary_10_12677_app_2025_155039
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124671
crossref_primary_10_1061__ASCE_EM_1943_7889_0001947
crossref_primary_10_1002_fld_5217
crossref_primary_10_1016_j_ces_2023_119285
crossref_primary_10_3389_fsufs_2024_1363744
crossref_primary_10_1016_j_trc_2024_104928
crossref_primary_10_1007_s00366_024_01967_3
crossref_primary_10_1016_j_net_2025_103703
crossref_primary_10_1186_s40323_024_00272_4
crossref_primary_10_1016_j_est_2024_113103
crossref_primary_10_1016_j_est_2024_113104
crossref_primary_10_1080_00295639_2021_2014752
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1016_j_cma_2021_113959
crossref_primary_10_1016_j_est_2023_106654
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1109_TGRS_2021_3116618
crossref_primary_10_1016_j_strusafe_2023_102399
crossref_primary_10_1137_22M154209X
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124546
crossref_primary_10_1002_acs_3758
crossref_primary_10_1007_s00466_023_02328_5
crossref_primary_10_1038_s41598_022_11058_2
crossref_primary_10_1016_j_cma_2021_113722
crossref_primary_10_1016_j_physd_2025_134689
crossref_primary_10_1080_10618562_2023_2285330
crossref_primary_10_1016_j_jcp_2025_113837
crossref_primary_10_1016_j_neucom_2024_128254
crossref_primary_10_1016_j_heliyon_2024_e38799
crossref_primary_10_3390_s23146371
Cites_doi 10.1016/0021-9991(90)90007-N
10.2514/6.2018-4675
10.1016/j.jcp.2018.08.029
10.3174/ajnr.A2274
10.1007/s40304-017-0117-6
10.1109/72.712178
10.1073/pnas.1718942115
10.2514/6.2019-1884
10.1016/0020-0190(87)90114-1
10.1103/PhysRevD.97.094506
10.1109/72.870037
10.1017/jfm.2018.872
10.1137/090766498
10.1016/S0893-6080(97)00097-X
10.1109/ICCV.2015.123
10.1146/annurev.fluid.32.1.347
10.1016/j.jcp.2018.04.018
10.1016/j.jcp.2018.08.036
10.1287/ijoc.1060.0182
10.1161/STROKEAHA.113.002390
10.1016/j.engstruct.2010.04.019
10.1016/j.jcp.2018.10.045
10.1146/annurev.fluid.010908.165248
10.1615/Int.J.UncertaintyQuantification.2019027864
10.1038/nature14539
10.1609/aaai.v31i1.10934
10.1126/science.aag2302
10.1029/2018WR024638
10.1093/biomet/87.1.1
10.1016/j.neucom.2018.06.056
10.1103/PhysRevFluids.2.034603
10.1016/j.jcp.2018.12.037
10.1137/S1064827501387826
10.1016/j.jcp.2016.05.003
10.1137/130932715
10.1056/NEJMra052760
10.1007/s40304-018-0127-z
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Apr 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2019.112732
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2019_112732
S004578251930622X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AGCQF
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c434t-187db96fefd65d4c8278b627e5b9fab7c9580c0296d175c343cd8249bcbb01f73
ISICitedReferencesCount 715
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508937500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Sep 07 03:48:28 EDT 2025
Sat Nov 29 07:25:42 EST 2025
Tue Nov 18 21:50:52 EST 2025
Fri Feb 23 02:49:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Physics-informed machine learning
Uncertainty quantification
Navier-Stokes
Cardiovascular flows
Label-free
Neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-187db96fefd65d4c8278b627e5b9fab7c9580c0296d175c343cd8249bcbb01f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2462-362X
0000-0002-9030-1733
OpenAccessLink https://doi.org/10.1016/j.cma.2019.112732
PQID 2371766194
PQPubID 2045269
ParticipantIDs proquest_journals_2371766194
crossref_primary_10_1016_j_cma_2019_112732
crossref_citationtrail_10_1016_j_cma_2019_112732
elsevier_sciencedirect_doi_10_1016_j_cma_2019_112732
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References R. King, O. Hennigh, A. Mohan, M. Chertkov, From deep to physics-informed learning of turbulence: Diagnostics, arXiv preprint
R. Sharma, A.B. Farimani, J. Gomes, P. Eastman, V. Pande, Weakly-supervised deep learning of heat transport via physics informed loss, arXiv preprint
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, Theano: new features and speed improvements. deep learning and unsupervised feature learning, in: Neural Information Processing Systems Workshop (NIPS), 2012, pp. 1–10.
Brisman, Song, Newell (b72) 2006; 355
Hamerly, Bernstein, Sludds, Soljačić, Englund (b78) 2019; 9
Raissi, Wang, Triantafyllou, Karniadakis (b39) 2019; 861
J.R. Holland, J.D. Baeder, K. Duraisamy, Towards integrated field inversion and machine learning with embedded neural networks for rans modeling, in: AIAA Scitech 2019 Forum, 2019, p. 1884.
Xiu, Karniadakis (b13) 2002; 24
Zhu, Zabaras (b18) 2018; 366
C. Beck, S. Becker, P. Grohs, N. Jaafari, A. Jentzen, Solving stochastic differential equations and Kolmogorov equations by means of deep learning, arXiv preprint
P. Grohs, F. Hornung, A. Jentzen, P. Von Wurstemberger, A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of black-scholes partial differential equations, arXiv preprint
K. Xu, E. Darve, The neural network approach to inverse problems in differential equations, arXiv preprint
Brunton, Kutz (b31) 2019
Wang, Wu, Xiao (b27) 2017; 2
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
P. Márquez-Neila, M. Salzmann, P. Fua, Imposing hard constraints on deep networks: Promises and limitations, arXiv preprint
Lassila, Manzoni, Quarteroni, Rozza (b4) 2014
Blumer, Ehrenfeucht, Haussler, Warmuth (b69) 1987; 24
Lee, Kang (b35) 1990; 91
Glorot, Bengio (b67) 2010
R. Stewart, S. Ermon, Label-free supervision of neural networks with physics and domain knowledge, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp. 2576–2582.
Cebral, Mut, Weir, Putman (b73) 2011; 32
Sirignano, Spiliopoulos (b49) 2018; 375
Carleo, Troyer (b26) 2017; 355
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283.
Weinan, Yu (b54) 2018; 6
.
B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling, arXiv preprint
Ling, Jones, Templeton (b28) 2016; 318
A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al. Deep speech: Scaling up end-to-end speech recognition, arXiv preprint
Berger, Jou (b71) 2000; 32
Tripathy, Bilionis (b19) 2018; 375
Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, arXiv preprint
Mo, Zabaras, Shi, Wu (b20) 2019; 55
Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data, arXiv preprint
B. Peherstorfer, Z. Drmač, S. Gugercin, Stabilizing discrete empirical interpolation via randomized and deterministic oversampling, arXiv preprint
S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks, arXiv preprint
Lee, Baker (b25) 2018
Han, Jentzen, Weinan (b55) 2018; 115
M. Hutzenthaler, A. Jentzen, T. Kruse, T.A. Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations, arXiv preprint
Lagaris, Likas, Fotiadis (b36) 1998; 9
A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch, in: NIPS Autodiff Workshop, 2017.
Kennedy, O’Hagan (b11) 2000; 87
C. Huang, K. Duraisamy, C. Merkle, Challenges in reduced order modeling of reacting flows, in: 2018 Joint Propulsion Conference, 2018, p. 4675.
R. Kleinberg, Y. Li, Y. Yuan, An alternative view: When does SGD escape local minima? arXiv preprint
Beck, Weinan, Jentzen (b52) 2017
LeCun, Bengio, Hinton (b32) 2015; 521
M. Hutzenthaler, A. Jentzen, T. Kruse, T.A. Nguyen, P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, arXiv preprint
M.A. Nabian, H. Meidani, A deep neural network surrogate for high-dimensional random partial differential equations, arXiv preprint
Jasak, Jemcov, Kingdom (b70) 2007
Anderson, Wendt (b1) 1995
Yang, Wan, Lin, Huan (b15) 2017; 9
Benner, Cohen, Ohlberger, Willcox (b3) 2017
P. Ramachandran, B. Zoph, Q.V. Le, Searching for activation functions, arXiv preprint
Ren, Chen (b9) 2010; 32
Baydin, Pearlmutter, Radul, Siskind (b59) 2018; 18
Wang, Roy, Xiao (b17) 2018; 4
Raissi, Perdikaris, Karniadakis (b33) 2019; 378
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
X. Meng, G.E. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse pde problems, arXiv preprint
Weinan, Han, Jentzen (b51) 2017; 5
P. Ramachandran, B. Zoph, Q.V. Le, Swish: a self-gated activation function, arXiv preprint
Atkinson, Zabaras (b12) 2019; 383
M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: A navier-stokes informed deep learning framework for assimilating flow visualization data, arXiv preprint
A.D. Jagtap, G.E. Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, arXiv preprint
Scarselli, Tsoi (b21) 1998; 11
Lagaris, Likas, Papageorgiou (b37) 2000; 11
Chalouhi, Hoh, Hasan (b74) 2013; 44
Najm (b14) 2009; 41
Le Maître, Knio (b16) 2010
A.M. Tartakovsky, C.O. Marrero, D. Tartakovsky, D. Barajas-Solano, Learning parameters and constitutive relationships with physics informed deep neural networks, arXiv preprint
A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of the 30th Annual International Conference on Machine Learning, Vol. 30, 2013, p. 3.
Benner, Gugercin, Willcox (b2) 2015; 57
Regis, Shoemaker (b10) 2007; 19
Shanahan, Trewartha, Detmold (b29) 2018; 97
Berg, Nyström (b50) 2018; 317
D. Zhang, L. Lu, L. Guo, G.E. Karniadakis, Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems, arXiv preprint
M.A. Nabian, H. Meidani, Physics-informed regularization of deep neural networks, arXiv preprint
Chaturantabut, Sorensen (b6) 2010; 32
10.1016/j.cma.2019.112732_b34
10.1016/j.cma.2019.112732_b77
10.1016/j.cma.2019.112732_b38
Atkinson (10.1016/j.cma.2019.112732_b12) 2019; 383
Yang (10.1016/j.cma.2019.112732_b15) 2017; 9
Baydin (10.1016/j.cma.2019.112732_b59) 2018; 18
Anderson (10.1016/j.cma.2019.112732_b1) 1995
Tripathy (10.1016/j.cma.2019.112732_b19) 2018; 375
10.1016/j.cma.2019.112732_b76
Raissi (10.1016/j.cma.2019.112732_b33) 2019; 378
10.1016/j.cma.2019.112732_b75
10.1016/j.cma.2019.112732_b30
Scarselli (10.1016/j.cma.2019.112732_b21) 1998; 11
Hamerly (10.1016/j.cma.2019.112732_b78) 2019; 9
Ling (10.1016/j.cma.2019.112732_b28) 2016; 318
Ren (10.1016/j.cma.2019.112732_b9) 2010; 32
Zhu (10.1016/j.cma.2019.112732_b18) 2018; 366
Regis (10.1016/j.cma.2019.112732_b10) 2007; 19
Mo (10.1016/j.cma.2019.112732_b20) 2019; 55
Lassila (10.1016/j.cma.2019.112732_b4) 2014
Wang (10.1016/j.cma.2019.112732_b27) 2017; 2
10.1016/j.cma.2019.112732_b24
10.1016/j.cma.2019.112732_b68
10.1016/j.cma.2019.112732_b23
Le Maître (10.1016/j.cma.2019.112732_b16) 2010
10.1016/j.cma.2019.112732_b22
10.1016/j.cma.2019.112732_b66
Lagaris (10.1016/j.cma.2019.112732_b37) 2000; 11
Glorot (10.1016/j.cma.2019.112732_b67) 2010
10.1016/j.cma.2019.112732_b61
10.1016/j.cma.2019.112732_b60
10.1016/j.cma.2019.112732_b65
LeCun (10.1016/j.cma.2019.112732_b32) 2015; 521
Lagaris (10.1016/j.cma.2019.112732_b36) 1998; 9
10.1016/j.cma.2019.112732_b64
Shanahan (10.1016/j.cma.2019.112732_b29) 2018; 97
10.1016/j.cma.2019.112732_b63
Lee (10.1016/j.cma.2019.112732_b35) 1990; 91
10.1016/j.cma.2019.112732_b62
Weinan (10.1016/j.cma.2019.112732_b51) 2017; 5
Benner (10.1016/j.cma.2019.112732_b2) 2015; 57
Jasak (10.1016/j.cma.2019.112732_b70) 2007
10.1016/j.cma.2019.112732_b58
10.1016/j.cma.2019.112732_b57
Kennedy (10.1016/j.cma.2019.112732_b11) 2000; 87
10.1016/j.cma.2019.112732_b56
10.1016/j.cma.2019.112732_b7
10.1016/j.cma.2019.112732_b53
Chalouhi (10.1016/j.cma.2019.112732_b74) 2013; 44
10.1016/j.cma.2019.112732_b5
Carleo (10.1016/j.cma.2019.112732_b26) 2017; 355
Berg (10.1016/j.cma.2019.112732_b50) 2018; 317
Weinan (10.1016/j.cma.2019.112732_b54) 2018; 6
Brisman (10.1016/j.cma.2019.112732_b72) 2006; 355
Beck (10.1016/j.cma.2019.112732_b52) 2017
Wang (10.1016/j.cma.2019.112732_b17) 2018; 4
Brunton (10.1016/j.cma.2019.112732_b31) 2019
10.1016/j.cma.2019.112732_b47
10.1016/j.cma.2019.112732_b46
10.1016/j.cma.2019.112732_b45
10.1016/j.cma.2019.112732_b44
Blumer (10.1016/j.cma.2019.112732_b69) 1987; 24
10.1016/j.cma.2019.112732_b48
Sirignano (10.1016/j.cma.2019.112732_b49) 2018; 375
Han (10.1016/j.cma.2019.112732_b55) 2018; 115
Lee (10.1016/j.cma.2019.112732_b25) 2018
10.1016/j.cma.2019.112732_b43
Xiu (10.1016/j.cma.2019.112732_b13) 2002; 24
10.1016/j.cma.2019.112732_b42
Benner (10.1016/j.cma.2019.112732_b3) 2017
10.1016/j.cma.2019.112732_b41
Raissi (10.1016/j.cma.2019.112732_b39) 2019; 861
10.1016/j.cma.2019.112732_b40
Cebral (10.1016/j.cma.2019.112732_b73) 2011; 32
10.1016/j.cma.2019.112732_b8
Najm (10.1016/j.cma.2019.112732_b14) 2009; 41
Berger (10.1016/j.cma.2019.112732_b71) 2000; 32
Chaturantabut (10.1016/j.cma.2019.112732_b6) 2010; 32
References_xml – year: 2018
  ident: b25
  article-title: Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence
– reference: M. Hutzenthaler, A. Jentzen, T. Kruse, T.A. Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations, arXiv preprint
– reference: A.M. Tartakovsky, C.O. Marrero, D. Tartakovsky, D. Barajas-Solano, Learning parameters and constitutive relationships with physics informed deep neural networks, arXiv preprint
– volume: 5
  start-page: 349
  year: 2017
  end-page: 380
  ident: b51
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
– reference: P. Grohs, F. Hornung, A. Jentzen, P. Von Wurstemberger, A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of black-scholes partial differential equations, arXiv preprint
– volume: 24
  start-page: 377
  year: 1987
  end-page: 380
  ident: b69
  article-title: Occam’s razor
  publication-title: Inform. Process. Lett.
– reference: P. Ramachandran, B. Zoph, Q.V. Le, Swish: a self-gated activation function, arXiv preprint
– volume: 19
  start-page: 497
  year: 2007
  end-page: 509
  ident: b10
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
– reference: X. Meng, G.E. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse pde problems, arXiv preprint
– reference: A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch, in: NIPS Autodiff Workshop, 2017.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16, 2016, pp. 265–283.
– reference: C. Huang, K. Duraisamy, C. Merkle, Challenges in reduced order modeling of reacting flows, in: 2018 Joint Propulsion Conference, 2018, p. 4675.
– reference: S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks, arXiv preprint
– volume: 355
  start-page: 928
  year: 2006
  end-page: 939
  ident: b72
  article-title: Cerebral aneurysms
  publication-title: New Engl. J. Med.
– volume: 32
  start-page: 2455
  year: 2010
  end-page: 2465
  ident: b9
  article-title: Finite element model updating in structural dynamics by using the response surface method
  publication-title: Eng. Struct.
– volume: 4
  year: 2018
  ident: b17
  article-title: Propagation of input uncertainty in presence of model-form uncertainty: a multifidelity approach for computational fluid dynamics applications
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B: Mech. Eng.
– volume: 318
  start-page: 22
  year: 2016
  end-page: 35
  ident: b28
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b59
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 347
  year: 2000
  end-page: 382
  ident: b71
  article-title: Flows in stenotic vessels
  publication-title: Annu. Rev. Fluid Mech.
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b36
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 44
  start-page: 3613
  year: 2013
  end-page: 3622
  ident: b74
  article-title: Review of cerebral aneurysm formation, growth, and rupture
  publication-title: Stroke
– volume: 32
  start-page: 264
  year: 2011
  end-page: 270
  ident: b73
  article-title: Association of hemodynamic characteristics and cerebral aneurysm rupture
  publication-title: Am. J. Neuroradiol.
– reference: B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling, arXiv preprint
– reference: Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data, arXiv preprint
– reference: M.A. Nabian, H. Meidani, A deep neural network surrogate for high-dimensional random partial differential equations, arXiv preprint
– volume: 2
  year: 2017
  ident: b27
  article-title: Physics-informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on dns data
  publication-title: Phys. Rev. Fluids
– reference: R. King, O. Hennigh, A. Mohan, M. Chertkov, From deep to physics-informed learning of turbulence: Diagnostics, arXiv preprint
– reference: A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al. Deep speech: Scaling up end-to-end speech recognition, arXiv preprint
– volume: 11
  start-page: 1041
  year: 2000
  end-page: 1049
  ident: b37
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
– reference: M. Hutzenthaler, A. Jentzen, T. Kruse, T.A. Nguyen, P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, arXiv preprint
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: b54
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– reference: R. Kleinberg, Y. Li, Y. Yuan, An alternative view: When does SGD escape local minima? arXiv preprint
– volume: 91
  start-page: 110
  year: 1990
  end-page: 131
  ident: b35
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
– volume: 861
  start-page: 119
  year: 2019
  end-page: 137
  ident: b39
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
– reference: F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, Theano: new features and speed improvements. deep learning and unsupervised feature learning, in: Neural Information Processing Systems Workshop (NIPS), 2012, pp. 1–10.
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  ident: b49
  article-title: Dgm: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
– year: 2010
  ident: b16
  article-title: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
– reference: J.R. Holland, J.D. Baeder, K. Duraisamy, Towards integrated field inversion and machine learning with embedded neural networks for rans modeling, in: AIAA Scitech 2019 Forum, 2019, p. 1884.
– volume: 375
  start-page: 565
  year: 2018
  end-page: 588
  ident: b19
  article-title: Deep uq: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 55
  start-page: 3856
  year: 2019
  end-page: 3881
  ident: b20
  article-title: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification
  publication-title: Water Resour. Res.
– reference: K. Xu, E. Darve, The neural network approach to inverse problems in differential equations, arXiv preprint
– volume: 383
  start-page: 166
  year: 2019
  end-page: 195
  ident: b12
  article-title: Structured bayesian gaussian process latent variable model: Applications to data-driven dimensionality reduction and high-dimensional inversion
  publication-title: J. Comput. Phys.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b33
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
– volume: 355
  start-page: 602
  year: 2017
  end-page: 606
  ident: b26
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
– year: 2019
  ident: b31
  article-title: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
– reference: A.D. Jagtap, G.E. Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, arXiv preprint
– volume: 11
  start-page: 15
  year: 1998
  end-page: 37
  ident: b21
  article-title: Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
  publication-title: Neural Netw.
– volume: 41
  start-page: 35
  year: 2009
  end-page: 52
  ident: b14
  article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 57
  start-page: 483
  year: 2015
  end-page: 531
  ident: b2
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
– year: 2017
  ident: b3
  article-title: Model Reduction and Approximation: Theory and Algorithms, Vol. 15
– start-page: 235
  year: 2014
  end-page: 273
  ident: b4
  article-title: Model order reduction in fluid dynamics: challenges and perspectives
  publication-title: Reduced Order Methods for Modeling and Computational Reduction
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: b13
  article-title: The Wiener–Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 9
  start-page: 221
  year: 2017
  end-page: 243
  ident: b15
  article-title: A general framework for enhancing sparsity of generalized polynomial chaos expansions
  publication-title: Int. J. Uncertain. Quantif.
– reference: M.A. Nabian, H. Meidani, Physics-informed regularization of deep neural networks, arXiv preprint
– volume: 87
  start-page: 1
  year: 2000
  end-page: 13
  ident: b11
  article-title: Predicting the output from a complex computer code when fast approximations are available
  publication-title: Biometrika
– volume: 97
  year: 2018
  ident: b29
  article-title: Machine learning action parameters in lattice quantum chromodynamics
  publication-title: Phys. Rev. D
– reference: D. Zhang, L. Lu, L. Guo, G.E. Karniadakis, Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems, arXiv preprint
– reference: M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: A navier-stokes informed deep learning framework for assimilating flow visualization data, arXiv preprint
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b50
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– year: 2010
  ident: b67
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics
– reference: R. Sharma, A.B. Farimani, J. Gomes, P. Eastman, V. Pande, Weakly-supervised deep learning of heat transport via physics informed loss, arXiv preprint
– year: 1995
  ident: b1
  article-title: Computational Fluid Dynamics, Vol. 206
– reference: P. Ramachandran, B. Zoph, Q.V. Le, Searching for activation functions, arXiv preprint
– reference: Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, arXiv preprint
– volume: 521
  start-page: 436
  year: 2015
  ident: b32
  article-title: Deep learning
  publication-title: Nature
– volume: 32
  start-page: 2737
  year: 2010
  end-page: 2764
  ident: b6
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
– reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of the 30th Annual International Conference on Machine Learning, Vol. 30, 2013, p. 3.
– reference: R. Stewart, S. Ermon, Label-free supervision of neural networks with physics and domain knowledge, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp. 2576–2582.
– start-page: 1
  year: 2007
  end-page: 20
  ident: b70
  article-title: Openfoam: A c++ library for complex physics simulations
  publication-title: International Workshop on Coupled Methods in Numerical Dynamics
– reference: .
– reference: C. Beck, S. Becker, P. Grohs, N. Jaafari, A. Jentzen, Solving stochastic differential equations and Kolmogorov equations by means of deep learning, arXiv preprint
– volume: 9
  year: 2019
  ident: b78
  article-title: Large-scale optical neural networks based on photoelectric multiplication
  publication-title: Phys. Rev. X
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: b18
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2017
  end-page: 57
  ident: b52
  article-title: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
  publication-title: J. Nonlinear Sci.
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b55
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
– reference: P. Márquez-Neila, M. Salzmann, P. Fua, Imposing hard constraints on deep networks: Promises and limitations, arXiv preprint
– reference: B. Peherstorfer, Z. Drmač, S. Gugercin, Stabilizing discrete empirical interpolation via randomized and deterministic oversampling, arXiv preprint
– volume: 91
  start-page: 110
  issue: 1
  year: 1990
  ident: 10.1016/j.cma.2019.112732_b35
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90007-N
– ident: 10.1016/j.cma.2019.112732_b60
– ident: 10.1016/j.cma.2019.112732_b5
  doi: 10.2514/6.2018-4675
– year: 1995
  ident: 10.1016/j.cma.2019.112732_b1
– volume: 375
  start-page: 1339
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b49
  article-title: Dgm: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– ident: 10.1016/j.cma.2019.112732_b58
– year: 2017
  ident: 10.1016/j.cma.2019.112732_b3
– volume: 32
  start-page: 264
  issue: 2
  year: 2011
  ident: 10.1016/j.cma.2019.112732_b73
  article-title: Association of hemodynamic characteristics and cerebral aneurysm rupture
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2274
– volume: 5
  start-page: 349
  issue: 4
  year: 2017
  ident: 10.1016/j.cma.2019.112732_b51
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0117-6
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.cma.2019.112732_b36
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– ident: 10.1016/j.cma.2019.112732_b41
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b55
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1718942115
– ident: 10.1016/j.cma.2019.112732_b77
– volume: 9
  issue: 2
  year: 2019
  ident: 10.1016/j.cma.2019.112732_b78
  article-title: Large-scale optical neural networks based on photoelectric multiplication
  publication-title: Phys. Rev. X
– ident: 10.1016/j.cma.2019.112732_b47
  doi: 10.2514/6.2019-1884
– ident: 10.1016/j.cma.2019.112732_b44
– volume: 24
  start-page: 377
  issue: 6
  year: 1987
  ident: 10.1016/j.cma.2019.112732_b69
  article-title: Occam’s razor
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(87)90114-1
– volume: 97
  issue: 9
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b29
  article-title: Machine learning action parameters in lattice quantum chromodynamics
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.094506
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  ident: 10.1016/j.cma.2019.112732_b37
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870037
– volume: 861
  start-page: 119
  year: 2019
  ident: 10.1016/j.cma.2019.112732_b39
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.872
– start-page: 1
  year: 2007
  ident: 10.1016/j.cma.2019.112732_b70
  article-title: Openfoam: A c++ library for complex physics simulations
– ident: 10.1016/j.cma.2019.112732_b57
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  ident: 10.1016/j.cma.2019.112732_b6
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090766498
– ident: 10.1016/j.cma.2019.112732_b40
– ident: 10.1016/j.cma.2019.112732_b61
– ident: 10.1016/j.cma.2019.112732_b53
– volume: 11
  start-page: 15
  issue: 1
  year: 1998
  ident: 10.1016/j.cma.2019.112732_b21
  article-title: Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(97)00097-X
– ident: 10.1016/j.cma.2019.112732_b68
  doi: 10.1109/ICCV.2015.123
– volume: 32
  start-page: 347
  issue: 1
  year: 2000
  ident: 10.1016/j.cma.2019.112732_b71
  article-title: Flows in stenotic vessels
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.32.1.347
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b18
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
– ident: 10.1016/j.cma.2019.112732_b22
– start-page: 235
  year: 2014
  ident: 10.1016/j.cma.2019.112732_b4
  article-title: Model order reduction in fluid dynamics: challenges and perspectives
– ident: 10.1016/j.cma.2019.112732_b43
– ident: 10.1016/j.cma.2019.112732_b64
– volume: 375
  start-page: 565
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b19
  article-title: Deep uq: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.036
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  ident: 10.1016/j.cma.2019.112732_b10
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– ident: 10.1016/j.cma.2019.112732_b56
– ident: 10.1016/j.cma.2019.112732_b62
– year: 2010
  ident: 10.1016/j.cma.2019.112732_b16
– volume: 44
  start-page: 3613
  issue: 12
  year: 2013
  ident: 10.1016/j.cma.2019.112732_b74
  article-title: Review of cerebral aneurysm formation, growth, and rupture
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.002390
– volume: 32
  start-page: 2455
  issue: 8
  year: 2010
  ident: 10.1016/j.cma.2019.112732_b9
  article-title: Finite element model updating in structural dynamics by using the response surface method
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.04.019
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2019.112732_b33
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 41
  start-page: 35
  year: 2009
  ident: 10.1016/j.cma.2019.112732_b14
  article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165248
– volume: 9
  start-page: 221
  issue: 3
  year: 2017
  ident: 10.1016/j.cma.2019.112732_b15
  article-title: A general framework for enhancing sparsity of generalized polynomial chaos expansions
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.2019027864
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cma.2019.112732_b32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.cma.2019.112732_b75
– ident: 10.1016/j.cma.2019.112732_b48
  doi: 10.1609/aaai.v31i1.10934
– ident: 10.1016/j.cma.2019.112732_b23
– ident: 10.1016/j.cma.2019.112732_b46
– volume: 355
  start-page: 602
  issue: 6325
  year: 2017
  ident: 10.1016/j.cma.2019.112732_b26
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 55
  start-page: 3856
  issue: 5
  year: 2019
  ident: 10.1016/j.cma.2019.112732_b20
  article-title: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024638
– year: 2019
  ident: 10.1016/j.cma.2019.112732_b31
– ident: 10.1016/j.cma.2019.112732_b42
– ident: 10.1016/j.cma.2019.112732_b65
– ident: 10.1016/j.cma.2019.112732_b30
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b59
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 87
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.cma.2019.112732_b11
  article-title: Predicting the output from a complex computer code when fast approximations are available
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.1
– start-page: 1
  year: 2017
  ident: 10.1016/j.cma.2019.112732_b52
  article-title: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
  publication-title: J. Nonlinear Sci.
– ident: 10.1016/j.cma.2019.112732_b8
– year: 2018
  ident: 10.1016/j.cma.2019.112732_b25
– year: 2010
  ident: 10.1016/j.cma.2019.112732_b67
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b50
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– ident: 10.1016/j.cma.2019.112732_b38
– ident: 10.1016/j.cma.2019.112732_b63
– volume: 2
  issue: 3
  year: 2017
  ident: 10.1016/j.cma.2019.112732_b27
  article-title: Physics-informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on dns data
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.034603
– volume: 383
  start-page: 166
  year: 2019
  ident: 10.1016/j.cma.2019.112732_b12
  article-title: Structured bayesian gaussian process latent variable model: Applications to data-driven dimensionality reduction and high-dimensional inversion
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.12.037
– ident: 10.1016/j.cma.2019.112732_b34
– ident: 10.1016/j.cma.2019.112732_b76
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.cma.2019.112732_b13
  article-title: The Wiener–Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 318
  start-page: 22
  year: 2016
  ident: 10.1016/j.cma.2019.112732_b28
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.003
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2019.112732_b2
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
  doi: 10.1137/130932715
– volume: 355
  start-page: 928
  issue: 9
  year: 2006
  ident: 10.1016/j.cma.2019.112732_b72
  article-title: Cerebral aneurysms
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMra052760
– volume: 4
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b17
  article-title: Propagation of input uncertainty in presence of model-form uncertainty: a multifidelity approach for computational fluid dynamics applications
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B: Mech. Eng.
– ident: 10.1016/j.cma.2019.112732_b45
– ident: 10.1016/j.cma.2019.112732_b24
– ident: 10.1016/j.cma.2019.112732_b7
– ident: 10.1016/j.cma.2019.112732_b66
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2019.112732_b54
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
SSID ssj0000812
Score 2.7281373
Snippet Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation using polynomials into...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112732
SubjectTerms Artificial neural networks
Boundary conditions
Cardiovascular flows
Computational fluid dynamics
Computer simulation
Data points
Deep learning
Design optimization
First principles
Fluid dynamics
Fluid flow
Hemodynamics
Internal flow
Label-free
Machine learning
Mathematical models
Meshing
Navier-Stokes
Navier-Stokes equations
Neural networks
Partial differential equations
Physics
Physics-informed machine learning
Polynomials
Simulation
Training
Uncertainty
Uncertainty quantification
Title Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
URI https://dx.doi.org/10.1016/j.cma.2019.112732
https://www.proquest.com/docview/2371766194
Volume 361
WOSCitedRecordID wos000508937500031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQqCgX5wInKVR5OHB8rVCgcqkoUaW9R_IjYapusNpu2P4QfzDi212GhFT1wsSLLsbw7X8bj8cw3CL2PakaF0JToPK-IoXQjokoUyWrFdF6pRIpoKDbBTk-L6ZSfTSY_fS7M1Zw1TXFzwxf_VdTQB8I2qbP3EPd6UuiAZxA6tCB2aP9J8N_65bI1zjFb5cZHStbzfqagba-7A7N1KXNNYP0aHZHGSjTFIqBbab3wxSSsn9aELnezS1fo68ClswWCA1cYwlWjHgJsK2fcXmqTWeyZoHUgPwyXUTb3oW9GnZ-rwYF7EpB75vy0P6r2ug-XAC6cGCBOpn0z9mAk0SjwxWllmhGwVLKxVk4tR7vTq2AVMusH_UPlW-_DxaEcaKRifhjG_k6vvbHtrYMRfZzbRQlTlGaK0k7xAG0nLOOgK7ePvhxPv4YdvogtC71bt78tH-IGN9Zxm72zsfMP5sz5M_TEnUPwkcXPczTRzQ566s4k2Gn8bgc9HhFWvkB6DS7swYUBXHgAFx7AhQdw4bbBfwEXNuDCHlzYgQsHcGEDrpfo-6fj848nxBXqIJKmdEXiginB81rXKs8UlUXCCpEnTGeC15VgkmdFJKOE5wqsVZnSVKoCzv1CChHFNUt30VbTNvoVwipLYWSsTcY4lVHKVV3FwtRkoLpOVbKHIv93ltKx2JufMC9vFeMe-rB-ZWEpXO4aTL2MSmeDWtuyBLzd9dq-l2fpdEFXJikz9Ksxp6_vs4Q36FH4SvbR1mrZ67foobxazbrlO4fFXxvYtQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+modeling+for+fluid+flows+based+on+physics-constrained+deep+learning+without+simulation+data&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sun%2C+Luning&rft.au=Gao%2C+Han&rft.au=Pan%2C+Shaowu&rft.au=Wang%2C+Jian-Xun&rft.date=2020-04-01&rft.issn=0045-7825&rft.volume=361&rft.spage=112732&rft_id=info:doi/10.1016%2Fj.cma.2019.112732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2019_112732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon