MODELLING FOR THE WAVELET COEFFICIENTS OF ARFIMA PROCESSES

We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long‐range dependent processes, which many authors have explained in semi‐parametrical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of time series analysis Ročník 35; číslo 4; s. 341 - 356
Hlavní autor: Nanamiya, Kei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.07.2014
Témata:
ISSN:0143-9782, 1467-9892
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long‐range dependent processes, which many authors have explained in semi‐parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non‐decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale.
AbstractList We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long-range dependent processes, which many authors have explained in semi-parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non-decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale. [PUBLICATION ABSTRACT]
We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long‐range dependent processes, which many authors have explained in semi‐parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non‐decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale.
We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long-range dependent processes, which many authors have explained in semi-parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non‐ ;decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale. Reprinted by permission of Blackwell Publishers
Author Nanamiya, Kei
Author_xml – sequence: 1
  givenname: Kei
  surname: Nanamiya
  fullname: Nanamiya, Kei
  email: keinanamiya@gmail.com
  organization: Institute of Economic Research, Hitotsubashi University, Tokyo, Japan
BookMark eNp90E1PwkAQBuCNwUREL_6CJl6MSXF3p-1uvTV1CzWFGlrluOnHNikCxS5E-fcWUQ8enMtcnncyec9Rb92sFUJXBA9JN3eLrc6GhGKHn6A-sRxmutylPdTHxALTZZyeoXOtFxgTx2Kkj-4n8YOIonA6MoJ4ZqRjYcy9FxGJ1PBjEQShH4ppmhhxYHizIJx4xtMs9kWSiOQCnVbZUqvL7z1Az4FI_bEZxaPQ9yKzsMDiJuNu5uLSgQoTICXOcGkDyS0olSpIkQNnlBdQ0gxKUIBpnjtQ2MR2ecU4VDBAN8e7m7Z52ym9lataF2q5zNaq2WlJbIszxi3mdPT6D100u3bdfdcpcCmlGEOnbo-qaButW1XJTVuvsnYvCZaHGuWhRvlVY4fJEb_XS7X_R8rHNPF-MuYxU-ut-vjNZO2rdBgwW86nI0mJg0cJ-NKFT3NNfbA
Cites_doi 10.1109/34.192463
10.2307/1390751
10.1111/j.1467-9892.1995.tb00221.x
10.1109/18.992817
10.1016/S0165-1889(99)00010-X
10.1109/18.391246
10.1214/07-AOS527
10.1109/18.119751
10.1017/CBO9780511841040
10.1111/j.1467-9892.2009.00627.x
10.1109/18.650984
10.1111/1467-9892.00157
10.2202/1558-3708.1051
10.1023/A:1009953000763
10.1093/biomet/68.1.165
10.1109/TSP.2005.851111
10.1016/j.jeconom.2009.03.005
10.1111/j.1467-9892.1980.tb00297.x
10.1111/j.1467-9892.2006.00502.x
ContentType Journal Article
Copyright Copyright © 2014 Wiley Publishing Ltd
Copyright_xml – notice: Copyright © 2014 Wiley Publishing Ltd
DBID BSCLL
AAYXX
CITATION
8BJ
FQK
JBE
JQ2
DOI 10.1111/jtsa.12068
DatabaseName Istex
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
CrossRef

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9892
EndPage 356
ExternalDocumentID 3345423821
10_1111_jtsa_12068
JTSA12068
ark_67375_WNG_2160GS3C_9
Genre article
Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -~X
.3N
.GA
.L6
.Y3
05W
0R~
10A
1OB
1OC
1OL
29L
3-9
31~
33P
3R3
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEHJ
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FSPIC
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
TUS
U5U
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
YQT
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
8BJ
FQK
JBE
JQ2
ID FETCH-LOGICAL-c4348-789a90d63f0131d0a0d531b43deec1cb38728c3d2a3d3e302bb63c51598f783f3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338033600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-9782
IngestDate Wed Oct 01 13:55:35 EDT 2025
Mon Nov 10 02:55:04 EST 2025
Sat Nov 29 02:10:43 EST 2025
Wed Jan 22 16:20:49 EST 2025
Tue Nov 11 03:32:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4348-789a90d63f0131d0a0d531b43deec1cb38728c3d2a3d3e302bb63c51598f783f3
Notes istex:903E233986BC1F1F3EF422FCD3F1424130B1F64C
ark:/67375/WNG-2160GS3C-9
ArticleID:JTSA12068
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1539222003
PQPubID 32430
PageCount 16
ParticipantIDs proquest_miscellaneous_1548778476
proquest_journals_1539222003
crossref_primary_10_1111_jtsa_12068
wiley_primary_10_1111_jtsa_12068_JTSA12068
istex_primary_ark_67375_WNG_2160GS3C_9
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of time series analysis
PublicationTitleAlternate J. Time Ser. Anal
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Craigmile PF, Guttorp P, Percival DB. 2005. Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes. IEEE Transactions on Signal Processing 53: 3151-3161.
Moulines E, Roueff F, Taqqu MS. 2008. A wavelet Whittle estimator of the memory parameter of a non-stationary Gaussian time series. The Annals of Statistics 36: 1925-1956.
Jensen MJ. 1999. An approximate wavelet MLE of short- and long-memory parameters. Studies in Nonlinear Dynamics & Econometrics 3: 239-253.
Granger CWJ, Joyeux R. 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15-29.
Krim H, Pesquet JC. 1995. Multiresolution analysis of a class of nonstationary processes. IEEE Transactions on Information Theory 41: 1010-1020.
Jensen MJ. 2000. An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets. Journal of Economic Dynamics and Control 24: 361-387.
Anderson TW. 1971. The Statistical Analysis of Time Series. New York: Wiley.
Moulines E, Roueff F, Taqqu MS. 2007. On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. Journal of Time Series Analysis 28: 155-187.
Faÿ G, Moulines E, Roueff F, Taqqu MS. 2009. Estimators of long-memory: Fourier versus wavelets. Journal of Econometrics 151: 159-177.
Flandrin P. 1992. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on Information Theory 38: 910-917.
Mallat SG. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 647-693.
Roueff F, Taqqu MS. 2009. Asymptotic normality of wavelet estimators of the memory parameter for linear processes. Journal of Time Series Analysis 30: 534-558.
Yaglom AM. 1958. Correlation theory of processes with random stationary nth increments. American Mathematical Society Translations 8: 87-141.
Hosking JRM. 1981. Fractional differencing. Biometrika 68: 165-176.
Bardet JM. 2002. Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Transactions on Information Theory 48: 991-999.
Hurvich CM, Ray BK. 1995. Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. Journal of Time Series Analysis 16: 17-41.
Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press.
Kato T, Masry E. 1999. On the spectral density of the wavelet transform of fractional Brownian motion. Journal of Time Series Analysis 20: 559-563.
Abry P, Veitch D. 1998. Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory 44: 2-15.
Bardet JM, Lang G, Moulines E, Soulier P. 2000. Wavelet estimator of long-range dependent processes. Statistical Inference for Stochastic Processes 3: 85-99.
McCoy EJ, Walden AT. 1996. Wavelet analysis and synthesis of stationary long-memory processes. Journal of Computational and Graphical Statistics 5: 26-56.
2007; 28
1995; 41
2002; 48
1989; 11
2009; 30
1995; 16
2000
2000; 3
2000; 24
1980; 1
2008; 36
1981; 68
2005; 53
1958; 8
1999; 20
1971
2009; 151
1999; 3
1992; 38
1996; 5
1998; 44
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Anderson TW (e_1_2_6_3_1) 1971
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
Yaglom AM (e_1_2_6_22_1) 1958; 8
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – reference: Anderson TW. 1971. The Statistical Analysis of Time Series. New York: Wiley.
– reference: Abry P, Veitch D. 1998. Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory 44: 2-15.
– reference: Moulines E, Roueff F, Taqqu MS. 2008. A wavelet Whittle estimator of the memory parameter of a non-stationary Gaussian time series. The Annals of Statistics 36: 1925-1956.
– reference: Craigmile PF, Guttorp P, Percival DB. 2005. Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes. IEEE Transactions on Signal Processing 53: 3151-3161.
– reference: Bardet JM, Lang G, Moulines E, Soulier P. 2000. Wavelet estimator of long-range dependent processes. Statistical Inference for Stochastic Processes 3: 85-99.
– reference: Flandrin P. 1992. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on Information Theory 38: 910-917.
– reference: McCoy EJ, Walden AT. 1996. Wavelet analysis and synthesis of stationary long-memory processes. Journal of Computational and Graphical Statistics 5: 26-56.
– reference: Mallat SG. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 647-693.
– reference: Granger CWJ, Joyeux R. 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15-29.
– reference: Hosking JRM. 1981. Fractional differencing. Biometrika 68: 165-176.
– reference: Moulines E, Roueff F, Taqqu MS. 2007. On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. Journal of Time Series Analysis 28: 155-187.
– reference: Krim H, Pesquet JC. 1995. Multiresolution analysis of a class of nonstationary processes. IEEE Transactions on Information Theory 41: 1010-1020.
– reference: Hurvich CM, Ray BK. 1995. Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. Journal of Time Series Analysis 16: 17-41.
– reference: Kato T, Masry E. 1999. On the spectral density of the wavelet transform of fractional Brownian motion. Journal of Time Series Analysis 20: 559-563.
– reference: Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press.
– reference: Roueff F, Taqqu MS. 2009. Asymptotic normality of wavelet estimators of the memory parameter for linear processes. Journal of Time Series Analysis 30: 534-558.
– reference: Faÿ G, Moulines E, Roueff F, Taqqu MS. 2009. Estimators of long-memory: Fourier versus wavelets. Journal of Econometrics 151: 159-177.
– reference: Jensen MJ. 2000. An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets. Journal of Economic Dynamics and Control 24: 361-387.
– reference: Yaglom AM. 1958. Correlation theory of processes with random stationary nth increments. American Mathematical Society Translations 8: 87-141.
– reference: Bardet JM. 2002. Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Transactions on Information Theory 48: 991-999.
– reference: Jensen MJ. 1999. An approximate wavelet MLE of short- and long-memory parameters. Studies in Nonlinear Dynamics & Econometrics 3: 239-253.
– volume: 151
  start-page: 159
  year: 2009
  end-page: 177
  article-title: Estimators of long‐memory: Fourier versus wavelets
  publication-title: Journal of Econometrics
– volume: 38
  start-page: 910
  year: 1992
  end-page: 917
  article-title: Wavelet analysis and synthesis of fractional Brownian motion
  publication-title: IEEE Transactions on Information Theory
– volume: 3
  start-page: 239
  year: 1999
  end-page: 253
  article-title: An approximate wavelet MLE of short‐ and long‐memory parameters
  publication-title: Studies in Nonlinear Dynamics & Econometrics
– volume: 28
  start-page: 155
  year: 2007
  end-page: 187
  article-title: On the spectral density of the wavelet coefficients of long memory time series with application to the log‐regression estimation of the memory parameter
  publication-title: Journal of Time Series Analysis
– volume: 20
  start-page: 559
  year: 1999
  end-page: 563
  article-title: On the spectral density of the wavelet transform of fractional Brownian motion
  publication-title: Journal of Time Series Analysis
– volume: 8
  start-page: 87
  year: 1958
  end-page: 141
  article-title: Correlation theory of processes with random stationary th increments
  publication-title: American Mathematical Society Translations
– volume: 44
  start-page: 2
  year: 1998
  end-page: 15
  article-title: Wavelet analysis of long‐range‐dependent traffic
  publication-title: IEEE Transactions on Information Theory
– volume: 36
  start-page: 1925
  year: 2008
  end-page: 1956
  article-title: A wavelet Whittle estimator of the memory parameter of a non‐stationary Gaussian time series
  publication-title: The Annals of Statistics
– volume: 68
  start-page: 165
  year: 1981
  end-page: 176
  article-title: Fractional differencing
  publication-title: Biometrika
– volume: 3
  start-page: 85
  year: 2000
  end-page: 99
  article-title: Wavelet estimator of long‐range dependent processes
  publication-title: Statistical Inference for Stochastic Processes
– volume: 16
  start-page: 17
  year: 1995
  end-page: 41
  article-title: Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes
  publication-title: Journal of Time Series Analysis
– volume: 5
  start-page: 26
  year: 1996
  end-page: 56
  article-title: Wavelet analysis and synthesis of stationary long‐memory processes
  publication-title: Journal of Computational and Graphical Statistics
– year: 2000
– volume: 11
  start-page: 647
  year: 1989
  end-page: 693
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 48
  start-page: 991
  year: 2002
  end-page: 999
  article-title: Statistical study of the wavelet analysis of fractional Brownian motion
  publication-title: IEEE Transactions on Information Theory
– volume: 53
  start-page: 3151
  year: 2005
  end-page: 3161
  article-title: Wavelet‐based parameter estimation for polynomial contaminated fractionally differenced processes
  publication-title: IEEE Transactions on Signal Processing
– year: 1971
– volume: 1
  start-page: 15
  year: 1980
  end-page: 29
  article-title: An introduction to long‐memory time series models and fractional differencing
  publication-title: Journal of Time Series Analysis
– volume: 24
  start-page: 361
  year: 2000
  end-page: 387
  article-title: An alternative maximum likelihood estimator of long‐memory processes using compactly supported wavelets
  publication-title: Journal of Economic Dynamics and Control
– volume: 41
  start-page: 1010
  year: 1995
  end-page: 1020
  article-title: Multiresolution analysis of a class of nonstationary processes
  publication-title: IEEE Transactions on Information Theory
– volume: 30
  start-page: 534
  year: 2009
  end-page: 558
  article-title: Asymptotic normality of wavelet estimators of the memory parameter for linear processes
  publication-title: Journal of Time Series Analysis
– ident: e_1_2_6_16_1
  doi: 10.1109/34.192463
– ident: e_1_2_6_17_1
  doi: 10.2307/1390751
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1467-9892.1995.tb00221.x
– ident: e_1_2_6_4_1
  doi: 10.1109/18.992817
– ident: e_1_2_6_13_1
  doi: 10.1016/S0165-1889(99)00010-X
– ident: e_1_2_6_15_1
  doi: 10.1109/18.391246
– ident: e_1_2_6_19_1
  doi: 10.1214/07-AOS527
– ident: e_1_2_6_8_1
  doi: 10.1109/18.119751
– ident: e_1_2_6_20_1
  doi: 10.1017/CBO9780511841040
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1467-9892.2009.00627.x
– ident: e_1_2_6_2_1
  doi: 10.1109/18.650984
– volume: 8
  start-page: 87
  year: 1958
  ident: e_1_2_6_22_1
  article-title: Correlation theory of processes with random stationary nth increments
  publication-title: American Mathematical Society Translations
– ident: e_1_2_6_14_1
  doi: 10.1111/1467-9892.00157
– volume-title: The Statistical Analysis of Time Series
  year: 1971
  ident: e_1_2_6_3_1
– ident: e_1_2_6_12_1
  doi: 10.2202/1558-3708.1051
– ident: e_1_2_6_5_1
  doi: 10.1023/A:1009953000763
– ident: e_1_2_6_10_1
  doi: 10.1093/biomet/68.1.165
– ident: e_1_2_6_6_1
  doi: 10.1109/TSP.2005.851111
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jeconom.2009.03.005
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1467-9892.1980.tb00297.x
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1467-9892.2006.00502.x
SSID ssj0016471
Score 1.9829737
Snippet We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 341
SubjectTerms Asymmetry
Coefficients
discrete wavelet transform
long memory process
Modelling
Regression analysis
spectral density function JEL. C22
Studies
Time series
Utility theory
Vector-autoregressive models
Wavelet transforms
Title MODELLING FOR THE WAVELET COEFFICIENTS OF ARFIMA PROCESSES
URI https://api.istex.fr/ark:/67375/WNG-2160GS3C-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjtsa.12068
https://www.proquest.com/docview/1539222003
https://www.proquest.com/docview/1548778476
Volume 35
WOSCitedRecordID wos000338033600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9892
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016471
  issn: 0143-9782
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6xdg_sAQYbWhlMnkB7mJQpsU1iI16ikhQQbVEbRt8sx3FekApqAfHzd07SCF6Q0N4i5SKd7nzn786XzwCHmtvAcm09n5ZHHhfWeCIPmMelMJHA7KhlfdlENBqJ2UxercHJ6l-Ymh-ibbi5yKjytQtwnS9fBvnDUv8JqB-KD9CluHB5B7qnk_T6sj1FCOuCy1HYeVgt0YaetJrkab9-tSF1nW2fX6HNl5i12nTSzf9T9zNsNGCTxPXq2II1O9-GT8OWqXW5DesObdZkzV_geDg-TbC6Hw0IFockO0vITfw3uUwy0h8joj13HalsSsYpiSfp-TAmV5NxH12YTL_CdZpk_TOvuVzBM5xx4UVCaukXISsd407ha7_AcMw5K6w1gcmZiKgwrKCaFcwyn-Z5yIxDP6KMBCvZDnTmd3P7DYiUedVNtdoy7pdGoAR1BMhlERW5CXtwsLKwuq85NFRbe6BZVGWWHvyqjN-K6MWtmzqLjtTNaKBoEPqDKesr2YO9lXdUE3BLhYlbItTBHNWDn-1rDBV3_qHn9u7RyWB1FuF2jBr9rnz1hjrqIpvG1dPue4S_wzpCKl4P9O5B52HxaPfho3lCVy5-NAv0H1Vv4X4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61u0iFAy0vsQVaI6oekIKS2JvY3KIl2aXdB9oNj5vlOM4FaUG7gPj5HSchggsS6i1SJpI1L38znnwG-KWY8QxTxnH9ouswbrTDM486THAdcsyOSlSXTYTjMb-5ERf1bI79F6bih2gabjYyynxtA9w2pF9H-cNSnXi-G_DP0GboR90WtM-myeWwOUYIqorLctg5WC75NT9pOcrTfP1mR2pb5T6_gZuvQWu56yRf_3O932C9hpskqvxjAz6Z-SasjRqu1uUmrFq8WdE1b8HpaHIWY30_7hMsD0k6iMl1dBUP45T0Johpz21PKp2RSUKiaXI-isjFdNJDI8azbbhM4rQ3cOrrFRzNKONOyIUSbh7QwnLu5K5ycwzIjNHcGO3pjPLQ55rmvqI5NdT1syyg2uIfXoScFnQHWvO7udkFIkRW9lONMpS5heYo4VsK5CIP80wHHTh6UbG8r1g0ZFN9oFpkqZYO_C6134ioxa2dOwu78nrcl74XuP0Z7UnRgf0X88g65JYSU7dAsINZqgOHzWsMFnsCoubm7tHKYH0W4oaMKzoujfXOcuSfdBaVT98_IvwTvgzS0VCiqf7uwSoCLFaN9-5D62HxaA5gRT-hWRc_am_9B_Ej5W4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7abCnJIW3TlmxeVWnpoeBiW1pbys3s2pvXPth1HjchS_KlsAm7SenPz8h2THIJhNwMHoOY0Tf6Rhp_AvipmA0sU9bzw7LnMW61x4uAekxwHXPMjkrUl03E4zG_uhLTpjfH_QtT60O0G24OGVW-dgC3N6Z8jPLblfoThH7E30KH9USEuOwMZtn5WXuMENUVl9Ow87BcCht90qqVp_36yYrUcc79_4RuPiat1aqTfXjleD_CZkM3SVLPj0_wxi62YGPUarWutmDd8c1arvkzHI4mgxTr-_GQYHlI8qOUXCYX6Vmak_4EOe2x25PK52SSkWSWHY8SMp1N-hjEdP4FzrM07x95zfUKnmaUcS_mQgnfRLR0mjvGV75BQBaMGmt1oAvK45BrakJFDbXUD4siotrxH17GnJb0K6wtrhd2G4gQRbWfapWlzC81R4vQSSCXJjaFjrrw48HF8qZW0ZBt9YFukZVbuvCr8n5ropZ_Xd9Z3JOX46EMg8gfzmlfii7sPYRHNpBbSUzdAskOZqkufG9fI1jcCYha2Os7Z4P1WYwLMo7odxWsZ4YjT_J5Uj3tvMT4G7yfDjKJkTrdhXXkV6zu7t2Dtdvlnd2Hd_ofRnV50EzWe6BD5Ok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MODELLING+FOR+THE+WAVELET+COEFFICIENTS+OF+ARFIMA+PROCESSES&rft.jtitle=Journal+of+time+series+analysis&rft.au=Nanamiya%2C+Kei&rft.date=2014-07-01&rft.issn=0143-9782&rft.eissn=1467-9892&rft.volume=35&rft.issue=4&rft.spage=341&rft.epage=356&rft_id=info:doi/10.1111%2Fjtsa.12068&rft.externalDBID=10.1111%252Fjtsa.12068&rft.externalDocID=JTSA12068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-9782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-9782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-9782&client=summon