MODELLING FOR THE WAVELET COEFFICIENTS OF ARFIMA PROCESSES
We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long‐range dependent processes, which many authors have explained in semi‐parametrical...
Gespeichert in:
| Veröffentlicht in: | Journal of time series analysis Jg. 35; H. 4; S. 341 - 356 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.07.2014
|
| Schlagworte: | |
| ISSN: | 0143-9782, 1467-9892 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long‐range dependent processes, which many authors have explained in semi‐parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non‐decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale. |
|---|---|
| AbstractList | We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long-range dependent processes, which many authors have explained in semi-parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non-decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale. [PUBLICATION ABSTRACT] We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long‐range dependent processes, which many authors have explained in semi‐parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non‐decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale. We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each scale. Because the utility of the wavelet transform for the long-range dependent processes, which many authors have explained in semi-parametrical literature, is approximating the transformed processes to white noise processes in each scale, there have been few studies in a parametric setting. In this article, we propose the model from the forms of the (generalized) spectral density functions (SDFs) of these coefficients. Since the discrete wavelet transform has the property of downsampling, we cannot directly represent these (generalized) SDFs. To overcome this problem, we define the discrete non‐ ;decimated nonboundary wavelet coefficients and compute their (generalized) SDFs. Using these functions and restricting the wavelet filters to the Daubechies wavelets and least asymmetric filters, we make the (generalized) SDFs of the discrete nonboundary wavelet coefficients of ARFIMA processes in each scale clear. Additionally, we propose a model for the discrete nonboundary scaling coefficients in each scale. Reprinted by permission of Blackwell Publishers |
| Author | Nanamiya, Kei |
| Author_xml | – sequence: 1 givenname: Kei surname: Nanamiya fullname: Nanamiya, Kei email: keinanamiya@gmail.com organization: Institute of Economic Research, Hitotsubashi University, Tokyo, Japan |
| BookMark | eNp90E1PwkAQBuCNwUREL_6CJl6MSXF3p-1uvTV1CzWFGlrluOnHNikCxS5E-fcWUQ8enMtcnncyec9Rb92sFUJXBA9JN3eLrc6GhGKHn6A-sRxmutylPdTHxALTZZyeoXOtFxgTx2Kkj-4n8YOIonA6MoJ4ZqRjYcy9FxGJ1PBjEQShH4ppmhhxYHizIJx4xtMs9kWSiOQCnVbZUqvL7z1Az4FI_bEZxaPQ9yKzsMDiJuNu5uLSgQoTICXOcGkDyS0olSpIkQNnlBdQ0gxKUIBpnjtQ2MR2ecU4VDBAN8e7m7Z52ym9lataF2q5zNaq2WlJbIszxi3mdPT6D100u3bdfdcpcCmlGEOnbo-qaButW1XJTVuvsnYvCZaHGuWhRvlVY4fJEb_XS7X_R8rHNPF-MuYxU-ut-vjNZO2rdBgwW86nI0mJg0cJ-NKFT3NNfbA |
| Cites_doi | 10.1109/34.192463 10.2307/1390751 10.1111/j.1467-9892.1995.tb00221.x 10.1109/18.992817 10.1016/S0165-1889(99)00010-X 10.1109/18.391246 10.1214/07-AOS527 10.1109/18.119751 10.1017/CBO9780511841040 10.1111/j.1467-9892.2009.00627.x 10.1109/18.650984 10.1111/1467-9892.00157 10.2202/1558-3708.1051 10.1023/A:1009953000763 10.1093/biomet/68.1.165 10.1109/TSP.2005.851111 10.1016/j.jeconom.2009.03.005 10.1111/j.1467-9892.1980.tb00297.x 10.1111/j.1467-9892.2006.00502.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 Wiley Publishing Ltd |
| Copyright_xml | – notice: Copyright © 2014 Wiley Publishing Ltd |
| DBID | BSCLL AAYXX CITATION 8BJ FQK JBE JQ2 |
| DOI | 10.1111/jtsa.12068 |
| DatabaseName | Istex CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Computer Science Collection |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1467-9892 |
| EndPage | 356 |
| ExternalDocumentID | 3345423821 10_1111_jtsa_12068 JTSA12068 ark_67375_WNG_2160GS3C_9 |
| Genre | article Feature |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | -~X .3N .GA .L6 .Y3 05W 0R~ 10A 1OB 1OC 1OL 29L 3-9 31~ 33P 3R3 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEHJ ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FSPIC FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ TUS U5U UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 YQT ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X 8BJ FQK JBE JQ2 |
| ID | FETCH-LOGICAL-c4348-789a90d63f0131d0a0d531b43deec1cb38728c3d2a3d3e302bb63c51598f783f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338033600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-9782 |
| IngestDate | Wed Oct 01 13:55:35 EDT 2025 Mon Nov 10 02:55:04 EST 2025 Sat Nov 29 02:10:43 EST 2025 Wed Jan 22 16:20:49 EST 2025 Tue Nov 11 03:32:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4348-789a90d63f0131d0a0d531b43deec1cb38728c3d2a3d3e302bb63c51598f783f3 |
| Notes | istex:903E233986BC1F1F3EF422FCD3F1424130B1F64C ark:/67375/WNG-2160GS3C-9 ArticleID:JTSA12068 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1539222003 |
| PQPubID | 32430 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1548778476 proquest_journals_1539222003 crossref_primary_10_1111_jtsa_12068 wiley_primary_10_1111_jtsa_12068_JTSA12068 istex_primary_ark_67375_WNG_2160GS3C_9 |
| PublicationCentury | 2000 |
| PublicationDate | July 2014 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Journal of time series analysis |
| PublicationTitleAlternate | J. Time Ser. Anal |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Craigmile PF, Guttorp P, Percival DB. 2005. Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes. IEEE Transactions on Signal Processing 53: 3151-3161. Moulines E, Roueff F, Taqqu MS. 2008. A wavelet Whittle estimator of the memory parameter of a non-stationary Gaussian time series. The Annals of Statistics 36: 1925-1956. Jensen MJ. 1999. An approximate wavelet MLE of short- and long-memory parameters. Studies in Nonlinear Dynamics & Econometrics 3: 239-253. Granger CWJ, Joyeux R. 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15-29. Krim H, Pesquet JC. 1995. Multiresolution analysis of a class of nonstationary processes. IEEE Transactions on Information Theory 41: 1010-1020. Jensen MJ. 2000. An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets. Journal of Economic Dynamics and Control 24: 361-387. Anderson TW. 1971. The Statistical Analysis of Time Series. New York: Wiley. Moulines E, Roueff F, Taqqu MS. 2007. On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. Journal of Time Series Analysis 28: 155-187. Faÿ G, Moulines E, Roueff F, Taqqu MS. 2009. Estimators of long-memory: Fourier versus wavelets. Journal of Econometrics 151: 159-177. Flandrin P. 1992. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on Information Theory 38: 910-917. Mallat SG. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 647-693. Roueff F, Taqqu MS. 2009. Asymptotic normality of wavelet estimators of the memory parameter for linear processes. Journal of Time Series Analysis 30: 534-558. Yaglom AM. 1958. Correlation theory of processes with random stationary nth increments. American Mathematical Society Translations 8: 87-141. Hosking JRM. 1981. Fractional differencing. Biometrika 68: 165-176. Bardet JM. 2002. Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Transactions on Information Theory 48: 991-999. Hurvich CM, Ray BK. 1995. Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. Journal of Time Series Analysis 16: 17-41. Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press. Kato T, Masry E. 1999. On the spectral density of the wavelet transform of fractional Brownian motion. Journal of Time Series Analysis 20: 559-563. Abry P, Veitch D. 1998. Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory 44: 2-15. Bardet JM, Lang G, Moulines E, Soulier P. 2000. Wavelet estimator of long-range dependent processes. Statistical Inference for Stochastic Processes 3: 85-99. McCoy EJ, Walden AT. 1996. Wavelet analysis and synthesis of stationary long-memory processes. Journal of Computational and Graphical Statistics 5: 26-56. 2007; 28 1995; 41 2002; 48 1989; 11 2009; 30 1995; 16 2000 2000; 3 2000; 24 1980; 1 2008; 36 1981; 68 2005; 53 1958; 8 1999; 20 1971 2009; 151 1999; 3 1992; 38 1996; 5 1998; 44 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Anderson TW (e_1_2_6_3_1) 1971 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 Yaglom AM (e_1_2_6_22_1) 1958; 8 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
| References_xml | – reference: Anderson TW. 1971. The Statistical Analysis of Time Series. New York: Wiley. – reference: Abry P, Veitch D. 1998. Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory 44: 2-15. – reference: Moulines E, Roueff F, Taqqu MS. 2008. A wavelet Whittle estimator of the memory parameter of a non-stationary Gaussian time series. The Annals of Statistics 36: 1925-1956. – reference: Craigmile PF, Guttorp P, Percival DB. 2005. Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes. IEEE Transactions on Signal Processing 53: 3151-3161. – reference: Bardet JM, Lang G, Moulines E, Soulier P. 2000. Wavelet estimator of long-range dependent processes. Statistical Inference for Stochastic Processes 3: 85-99. – reference: Flandrin P. 1992. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on Information Theory 38: 910-917. – reference: McCoy EJ, Walden AT. 1996. Wavelet analysis and synthesis of stationary long-memory processes. Journal of Computational and Graphical Statistics 5: 26-56. – reference: Mallat SG. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 647-693. – reference: Granger CWJ, Joyeux R. 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15-29. – reference: Hosking JRM. 1981. Fractional differencing. Biometrika 68: 165-176. – reference: Moulines E, Roueff F, Taqqu MS. 2007. On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. Journal of Time Series Analysis 28: 155-187. – reference: Krim H, Pesquet JC. 1995. Multiresolution analysis of a class of nonstationary processes. IEEE Transactions on Information Theory 41: 1010-1020. – reference: Hurvich CM, Ray BK. 1995. Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. Journal of Time Series Analysis 16: 17-41. – reference: Kato T, Masry E. 1999. On the spectral density of the wavelet transform of fractional Brownian motion. Journal of Time Series Analysis 20: 559-563. – reference: Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press. – reference: Roueff F, Taqqu MS. 2009. Asymptotic normality of wavelet estimators of the memory parameter for linear processes. Journal of Time Series Analysis 30: 534-558. – reference: Faÿ G, Moulines E, Roueff F, Taqqu MS. 2009. Estimators of long-memory: Fourier versus wavelets. Journal of Econometrics 151: 159-177. – reference: Jensen MJ. 2000. An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets. Journal of Economic Dynamics and Control 24: 361-387. – reference: Yaglom AM. 1958. Correlation theory of processes with random stationary nth increments. American Mathematical Society Translations 8: 87-141. – reference: Bardet JM. 2002. Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Transactions on Information Theory 48: 991-999. – reference: Jensen MJ. 1999. An approximate wavelet MLE of short- and long-memory parameters. Studies in Nonlinear Dynamics & Econometrics 3: 239-253. – volume: 151 start-page: 159 year: 2009 end-page: 177 article-title: Estimators of long‐memory: Fourier versus wavelets publication-title: Journal of Econometrics – volume: 38 start-page: 910 year: 1992 end-page: 917 article-title: Wavelet analysis and synthesis of fractional Brownian motion publication-title: IEEE Transactions on Information Theory – volume: 3 start-page: 239 year: 1999 end-page: 253 article-title: An approximate wavelet MLE of short‐ and long‐memory parameters publication-title: Studies in Nonlinear Dynamics & Econometrics – volume: 28 start-page: 155 year: 2007 end-page: 187 article-title: On the spectral density of the wavelet coefficients of long memory time series with application to the log‐regression estimation of the memory parameter publication-title: Journal of Time Series Analysis – volume: 20 start-page: 559 year: 1999 end-page: 563 article-title: On the spectral density of the wavelet transform of fractional Brownian motion publication-title: Journal of Time Series Analysis – volume: 8 start-page: 87 year: 1958 end-page: 141 article-title: Correlation theory of processes with random stationary th increments publication-title: American Mathematical Society Translations – volume: 44 start-page: 2 year: 1998 end-page: 15 article-title: Wavelet analysis of long‐range‐dependent traffic publication-title: IEEE Transactions on Information Theory – volume: 36 start-page: 1925 year: 2008 end-page: 1956 article-title: A wavelet Whittle estimator of the memory parameter of a non‐stationary Gaussian time series publication-title: The Annals of Statistics – volume: 68 start-page: 165 year: 1981 end-page: 176 article-title: Fractional differencing publication-title: Biometrika – volume: 3 start-page: 85 year: 2000 end-page: 99 article-title: Wavelet estimator of long‐range dependent processes publication-title: Statistical Inference for Stochastic Processes – volume: 16 start-page: 17 year: 1995 end-page: 41 article-title: Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes publication-title: Journal of Time Series Analysis – volume: 5 start-page: 26 year: 1996 end-page: 56 article-title: Wavelet analysis and synthesis of stationary long‐memory processes publication-title: Journal of Computational and Graphical Statistics – year: 2000 – volume: 11 start-page: 647 year: 1989 end-page: 693 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 48 start-page: 991 year: 2002 end-page: 999 article-title: Statistical study of the wavelet analysis of fractional Brownian motion publication-title: IEEE Transactions on Information Theory – volume: 53 start-page: 3151 year: 2005 end-page: 3161 article-title: Wavelet‐based parameter estimation for polynomial contaminated fractionally differenced processes publication-title: IEEE Transactions on Signal Processing – year: 1971 – volume: 1 start-page: 15 year: 1980 end-page: 29 article-title: An introduction to long‐memory time series models and fractional differencing publication-title: Journal of Time Series Analysis – volume: 24 start-page: 361 year: 2000 end-page: 387 article-title: An alternative maximum likelihood estimator of long‐memory processes using compactly supported wavelets publication-title: Journal of Economic Dynamics and Control – volume: 41 start-page: 1010 year: 1995 end-page: 1020 article-title: Multiresolution analysis of a class of nonstationary processes publication-title: IEEE Transactions on Information Theory – volume: 30 start-page: 534 year: 2009 end-page: 558 article-title: Asymptotic normality of wavelet estimators of the memory parameter for linear processes publication-title: Journal of Time Series Analysis – ident: e_1_2_6_16_1 doi: 10.1109/34.192463 – ident: e_1_2_6_17_1 doi: 10.2307/1390751 – ident: e_1_2_6_11_1 doi: 10.1111/j.1467-9892.1995.tb00221.x – ident: e_1_2_6_4_1 doi: 10.1109/18.992817 – ident: e_1_2_6_13_1 doi: 10.1016/S0165-1889(99)00010-X – ident: e_1_2_6_15_1 doi: 10.1109/18.391246 – ident: e_1_2_6_19_1 doi: 10.1214/07-AOS527 – ident: e_1_2_6_8_1 doi: 10.1109/18.119751 – ident: e_1_2_6_20_1 doi: 10.1017/CBO9780511841040 – ident: e_1_2_6_21_1 doi: 10.1111/j.1467-9892.2009.00627.x – ident: e_1_2_6_2_1 doi: 10.1109/18.650984 – volume: 8 start-page: 87 year: 1958 ident: e_1_2_6_22_1 article-title: Correlation theory of processes with random stationary nth increments publication-title: American Mathematical Society Translations – ident: e_1_2_6_14_1 doi: 10.1111/1467-9892.00157 – volume-title: The Statistical Analysis of Time Series year: 1971 ident: e_1_2_6_3_1 – ident: e_1_2_6_12_1 doi: 10.2202/1558-3708.1051 – ident: e_1_2_6_5_1 doi: 10.1023/A:1009953000763 – ident: e_1_2_6_10_1 doi: 10.1093/biomet/68.1.165 – ident: e_1_2_6_6_1 doi: 10.1109/TSP.2005.851111 – ident: e_1_2_6_7_1 doi: 10.1016/j.jeconom.2009.03.005 – ident: e_1_2_6_9_1 doi: 10.1111/j.1467-9892.1980.tb00297.x – ident: e_1_2_6_18_1 doi: 10.1111/j.1467-9892.2006.00502.x |
| SSID | ssj0016471 |
| Score | 1.9830806 |
| Snippet | We consider a model for the discrete nonboundary wavelet coefficients of autoregressive fractionally integrated moving average (ARFIMA) processes in each... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 341 |
| SubjectTerms | Asymmetry Coefficients discrete wavelet transform long memory process Modelling Regression analysis spectral density function JEL. C22 Studies Time series Utility theory Vector-autoregressive models Wavelet transforms |
| Title | MODELLING FOR THE WAVELET COEFFICIENTS OF ARFIMA PROCESSES |
| URI | https://api.istex.fr/ark:/67375/WNG-2160GS3C-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjtsa.12068 https://www.proquest.com/docview/1539222003 https://www.proquest.com/docview/1548778476 |
| Volume | 35 |
| WOSCitedRecordID | wos000338033600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-9892 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016471 issn: 0143-9782 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6ClgM7wPilhcHkaRMHpExpnMY24hKVpID6A7VhcLMc270gFdSWaX_-npM0gsukabdIcSTrPb_3vs9--QzwnUYMMx61vsZa50fazHyhAtc5pZnhMZYQU4q4DthoxB8fxd0GXK7_han0IZoNNxcZZb52Aa6K5dsgXy3Vj04YxHwT2iEu3KgF7atJdj9oThHiinA5CTsf2VJYy5OWnTzN1-8KUtvZ9vc7tPkWs5ZFJ9v9v-l-hJ0abJKkWh17sGHn-_Bh2Ci1Lvdh26HNSqz5AC6G46sU2f2oT5Ackvw6JQ_Jz3SQ5qQ3RkR743ak8ikZZySZZDfDhNxNxj10YTo9hPsszXvXfn25gq8jGnGfcaFEYGI6c4o7JlCBwXAsImqs1R1dUM5CrqkJFTXU0iAsiphqh374jHE6o0fQmj_P7ScgOqZFV1ErNHI7qwVn7hZ1hcwNabvQ1oNvawvLl0pDQzbcA80iS7N4cFYavxmiFk-u64x15cOoL8NOHPSntCeFBydr78g64JYSE7dAqIM5yoOvzWsMFXf-oeb2-dWNQXbGsBzHHpyXvvrLdORtPk3Kp-N_GfwZthFSRVVD7wm0VotXewpb-he6cvGlXqB_AJIe4Kg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5tLdLggQ0GWkbZjJj2MClTGqexzVtUkpatP1AbBm-WY7svkwpq6bQ_f-ckRPCChPYWKY5k3fnuvs--fAb4QiOGGY9aX2Ot8yNtFr5Qgeuc0szwGEuIKUVcR2wy4Tc34rLuzXH_wlT6EM2Gm4uMMl-7AHcb0o-j_H6tvnfDIOavoR3hOuq1oH0-y65GzTFCXDEup2HnI10Ka33SspWn-fpJRWo74_59Ajcfg9ay6mRv_3O-72C3hpskqdbHHryyy33YGTdaret92HZ4s5Jrfg9n4-l5ivx-MiBID0k-TMl18isdpTnpTxHTXrg9qXxOphlJZtnFOCGXs2kfnZjOD-AqS_P-0K-vV_B1RCPuMy6UCExMF05zxwQqMBiQRUSNtbqrC8pZyDU1oaKGWhqERRFT7fAPXzBOF_QQWsvbpf0ARMe06ClqhUZ2Z7XgzN2jrpC7IXEX2npw-mBieVepaMiGfaBZZGkWD76W1m-GqNVv13fGevJ6MpBhNw4Gc9qXwoPOg3tkHXJrialbINjBLOXBSfMag8WdgKilvd24McjPGBbk2INvpbOemY78kc-T8unjSwZ_hjfDfDyS6KqfR7CNACuq2ns70LpfbewxbOk_6NbVp3q1_gMjCeSY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BF6Fy4FFABFowAnFACsrGWT96i3aTbWFf2k0fN8uxnQvSttptET-fcZJG7aVSxS1SHMma8cx8nz35DPCVJhwzHnWhwVoXJsZWodSR75wy3AqGJcTWIq4TPpuJ83O5aHtz_L8wjT5Et-HmI6PO1z7A3aWtbkf51Vb_6McRE4-hlwwkw7jsjZb5yaQ7RmAN4_IadiHSpbjVJ61bebqv71Sknjfu3ztw8zZoratO_uI_5_sSnrdwk6TN-ngFj9x6D55NO63W7R7serzZyDW_hsPpfJQhv5-NCdJDUhxl5Cw9zSZZQYZzxLTHfk-qWJF5TtJlfjxNyWI5H6ITs9UbOMmzYngUttcrhCahiQi5kFpGltHKa-7YSEcWA7JMqHXO9E1JBY-FoTbW1FJHo7gsGTUe_4iKC1rRt7Czvli7d0AMo-VAUycNsjtnpOD-HnWN3A2JuzQugC83JlaXjYqG6tgHmkXVZgngW239boje_PZ9Z3ygzmZjFfdZNF7RoZIB7N-4R7Uht1WYuiWCHcxSAXzuXmOw-BMQvXYX134M8jOOBZkF8L121j3TUT-LVVo_vX_I4E_wdDHKFXrq1wfYRXyVNN29-7Bztbl2B_DE_EGvbj62i_Uf0vDkEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MODELLING+FOR+THE+WAVELET+COEFFICIENTS+OF+ARFIMA+PROCESSES&rft.jtitle=Journal+of+time+series+analysis&rft.au=Nanamiya%2C+Kei&rft.date=2014-07-01&rft.issn=0143-9782&rft.eissn=1467-9892&rft.volume=35&rft.issue=4&rft.spage=341&rft.epage=356&rft_id=info:doi/10.1111%2Fjtsa.12068&rft.externalDBID=10.1111%252Fjtsa.12068&rft.externalDocID=JTSA12068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-9782&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-9782&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-9782&client=summon |