Networks of Names: Visual Exploration and Semi-Automatic Tagging of Social Networks from Newspaper Articles
Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social net...
Saved in:
| Published in: | Computer graphics forum Vol. 33; no. 3; pp. 211 - 220 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.06.2014
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract “interesting” neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same “globally interesting” neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results.
We propose a user‐driven pattern‐based classifier for discovery and tagging of non‐taxonomic semantic relations. Our approach does not require any a‐priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico‐syntactic patterns as well as various domain‐specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback.
We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text‐based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too or overly specific relationship labels. |
|---|---|
| AbstractList | Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract "interesting" neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same "globally interesting" neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user-driven pattern-based classifier for discovery and tagging of non-taxonomic semantic relations. Our approach does not require any a-priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico-syntactic patterns as well as various domain-specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text-based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too abstract or overly specific relationship labels. Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract “interesting” neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same “globally interesting” neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user‐driven pattern‐based classifier for discovery and tagging of non‐taxonomic semantic relations. Our approach does not require any a‐priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico‐syntactic patterns as well as various domain‐specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text‐based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too or overly specific relationship labels. Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract “interesting” neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same “globally interesting” neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user‐driven pattern‐based classifier for discovery and tagging of non‐taxonomic semantic relations. Our approach does not require any a‐priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico‐syntactic patterns as well as various domain‐specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text‐based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too abstract or overly specific relationship labels. Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract "interesting" neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same "globally interesting" neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user-driven pattern-based classifier for discovery and tagging of non-taxonomic semantic relations. Our approach does not require any a-priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico-syntactic patterns as well as various domain-specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text-based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too abstract or overly specific relationship labels. [PUBLICATION ABSTRACT] |
| Author | Kochtchi, A. Biemann, C. Landesberger, T. von |
| Author_xml | – sequence: 1 givenname: A. surname: Kochtchi fullname: Kochtchi, A. organization: TU Darmstadt, Language Technology Group, Germany – sequence: 2 givenname: T. von surname: Landesberger fullname: Landesberger, T. von organization: TU Darmstadt, Interactive Graphics Systems Group, Germany – sequence: 3 givenname: C. surname: Biemann fullname: Biemann, C. organization: TU Darmstadt, Language Technology Group, Germany |
| BookMark | eNp1kE9LwzAYh4MoOP8c_AYFL3qoJiZpGm9jzCmMiTj1GLL07Yhrm5q0TL-90akH0VySNzzPj5ffHtpuXAMIHRF8RuI5N8vyjFxQIbbQgLBMpHnG5TYaYBLfAnO-i_ZCeMYYM5HxAVrNoFs7vwqJK5OZriFcJo829LpKxq9t5bzurGsS3RTJPdQ2Hfadq-OfSeZ6ubTN8sO7d8ZG4Seq9K6O0zq0ugWfDH3kKwgHaKfUVYDDr3sfPVyN56PrdHo7uRkNp6lhlIlUipyVOQcgkklaZJqbBeZYMiAlcJPLwpS4yLOCLgQzQEROhGEiF0JziWFB99HJJrf17qWH0KnaBgNVpRtwfVCEcxmrIEJG9PgX-ux638TtIsV4bC2uFKnzDWW8C8FDqYztPovpvLaVIlh9lK9i-eqz_Gic_jJab2vt3_5kv9LXtoK3_0E1mlx9G-nGsKGD1x9D-5XKBBVcPc0mKrubU8YpVlP6DtGdpCk |
| CitedBy_id | crossref_primary_10_1111_cgf_12873 crossref_primary_10_1016_j_wpi_2018_10_002 crossref_primary_10_1109_TVCG_2015_2467555 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_1111_cgf_13408 crossref_primary_10_1109_TMM_2016_2614224 crossref_primary_10_1109_TVCG_2018_2834341 crossref_primary_10_1007_s11042_020_09872_9 crossref_primary_10_1515_libri_2019_0135 crossref_primary_10_1007_s11280_020_00790_2 |
| Cites_doi | 10.1137/070710111 10.1016/0377-2217(91)90073-5 10.1561/1900000003 10.1109/INFVIS.2004.1 10.1109/TVCG.2009.165 10.4304/jsw.5.2.195-205 10.1016/S0020-0190(01)00323-4 10.2200/S00489ED1V01Y201303HLT019 10.3115/1219840.1219885 10.1109/TVCG.2009.108 10.1016/j.datak.2007.10.001 10.1017/CBO9780511809071 10.1145/1978942.1978967 10.1145/22339.22342 10.1109/VAST.2011.6102443 10.3115/992133.992154 |
| ContentType | Journal Article |
| Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12377 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 220 |
| ExternalDocumentID | 3372545661 10_1111_cgf_12377 CGF12377 ark_67375_WNG_6QT34530_L |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c4347-9784f85ee19493d6a5cb05094e1fe5c89dcf0d86d3b74ce17817c47877a590eb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340597400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Wed Oct 01 13:47:51 EDT 2025 Sun Nov 09 08:19:09 EST 2025 Sat Nov 29 08:02:50 EST 2025 Tue Nov 18 22:24:36 EST 2025 Wed Jan 22 16:24:44 EST 2025 Tue Nov 11 03:31:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4347-9784f85ee19493d6a5cb05094e1fe5c89dcf0d86d3b74ce17817c47877a590eb3 |
| Notes | istex:34C6168FEF145E7FAC56D12CFFA6170EE568C532 ArticleID:CGF12377 ark:/67375/WNG-6QT34530-L SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1545016434 |
| PQPubID | 30877 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1559705179 proquest_journals_1545016434 crossref_citationtrail_10_1111_cgf_12377 crossref_primary_10_1111_cgf_12377 wiley_primary_10_1111_cgf_12377_CGF12377 istex_primary_ark_67375_WNG_6QT34530_L |
| PublicationCentury | 2000 |
| PublicationDate | June 2014 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Manning C.D., Raghavan P., Schütze H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge, 2008. 6, 7 Sánchez D., Moreno A.: Learning Non-taxonomic Relationships from Web Documents for Domain Ontology Construction. Data & Knowledge Engineering 64, 3 (2008), 600-623. 2 Ohshima H., Tanaka K.: High-speed Detection of Ontological Knowledge and Bi-directional Lexico-Syntactic Patterns from the Web. JSW 5, 2 (2010), 195-205. 9 Clauset A., Shalizi C.R., Newman M.E.: Power-law Distributions in Empirical Data. SIAM Review 51, 4 (2009), 661-703. 4 van Dongen S. M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, 2000. 6 Smith R.: Mark Lombardi, 48, an Artist Who Was Inspired by Scandals. The New York Times, 2000. http://www.nytimes.com/2000/03/25/arts/mark-lombardi-48-an-artist-who-was-inspired-by-scandals.html, accessed on September 23rd 2013. 1 Nastase V., Nakov P., Séaghdha D. Ó., Szpakowicz S.: Semantic relations between nominals. Synthesis Lectures on Human Language Technologies 6, 1 (2013), 1-119. 2 van Ham F., Wattenberg M., Viégas F. B.: Mapping Text with Phrase Nets. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1169-1176. 2 Malpani N., Chen J.: A Note on Practical Construction of Maximum Bandwidth Paths. Information Processing Letters 83, 3 (2002), 175-180. 6 Biemann C.: Ontology Learning from Text: A Survey of Methods. LDV Forum 20, 2 (2005), 75-93. 2 Sarawagi S.: Information Extraction. Foundations and Trends in Databases 1, 3 (2008), 261-377. 2, 3, 7, 9 Grobelnik M., Mladenić D.: Visualization of News Articles. Informatica 28, 4 (2004). 2 Punnen A.P.: A Linear Time Algorithm for the Maximum Capacity Path Problem. European Journal of Operational Research 53, 3 (1991), 402-404. 6 van Ham F., Perer A.: "Search, Show Context, Expand on Demand": Supporting Large Graph Exploration with Degree-of-Interest. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 953-960. 2, 5, 9 2009; 51 2011 2000 2010 2002; 83 2004; 28 1991; 53 2009 1986 2008 2007 2005; 20 2006 2005 2004 1992 2013 2002 2008; 64 2008; 1 2010; 5 2013; 6 2009; 15 e_1_2_7_5_2 van Dongen S. M. (e_1_2_7_30_2) 2000 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 Biemann C. (e_1_2_7_4_2) 2005; 20 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 Smith R. (e_1_2_7_29_2) 2000 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 Grobelnik M. (e_1_2_7_14_2) 2004; 28 e_1_2_7_28_2 Kavalec M. (e_1_2_7_18_2) 2005 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_20_2 Snow R. (e_1_2_7_27_2) 2005 |
| References_xml | – reference: Biemann C.: Ontology Learning from Text: A Survey of Methods. LDV Forum 20, 2 (2005), 75-93. 2 – reference: Malpani N., Chen J.: A Note on Practical Construction of Maximum Bandwidth Paths. Information Processing Letters 83, 3 (2002), 175-180. 6 – reference: Nastase V., Nakov P., Séaghdha D. Ó., Szpakowicz S.: Semantic relations between nominals. Synthesis Lectures on Human Language Technologies 6, 1 (2013), 1-119. 2 – reference: Punnen A.P.: A Linear Time Algorithm for the Maximum Capacity Path Problem. European Journal of Operational Research 53, 3 (1991), 402-404. 6 – reference: Grobelnik M., Mladenić D.: Visualization of News Articles. Informatica 28, 4 (2004). 2 – reference: Clauset A., Shalizi C.R., Newman M.E.: Power-law Distributions in Empirical Data. SIAM Review 51, 4 (2009), 661-703. 4 – reference: Smith R.: Mark Lombardi, 48, an Artist Who Was Inspired by Scandals. The New York Times, 2000. http://www.nytimes.com/2000/03/25/arts/mark-lombardi-48-an-artist-who-was-inspired-by-scandals.html, accessed on September 23rd 2013. 1 – reference: van Ham F., Perer A.: "Search, Show Context, Expand on Demand": Supporting Large Graph Exploration with Degree-of-Interest. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 953-960. 2, 5, 9 – reference: Sarawagi S.: Information Extraction. Foundations and Trends in Databases 1, 3 (2008), 261-377. 2, 3, 7, 9 – reference: Manning C.D., Raghavan P., Schütze H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge, 2008. 6, 7 – reference: van Ham F., Wattenberg M., Viégas F. B.: Mapping Text with Phrase Nets. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1169-1176. 2 – reference: Sánchez D., Moreno A.: Learning Non-taxonomic Relationships from Web Documents for Domain Ontology Construction. Data & Knowledge Engineering 64, 3 (2008), 600-623. 2 – reference: van Dongen S. M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, 2000. 6 – reference: Ohshima H., Tanaka K.: High-speed Detection of Ontological Knowledge and Bi-directional Lexico-Syntactic Patterns from the Web. JSW 5, 2 (2010), 195-205. 9 – start-page: 2670 year: 2007 end-page: 2676 – year: 2011 – start-page: 539 year: 1992 end-page: 545 – start-page: 360 year: 2002 end-page: 364 – start-page: 44 year: 2005 end-page: 58 – volume: 83 start-page: 175 issue: 3 year: 2002 end-page: 180 article-title: A Note on Practical Construction of Maximum Bandwidth Paths publication-title: Information Processing Letters – volume: 15 start-page: 953 issue: 6 year: 2009 end-page: 960 article-title: “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree‐of‐Interest publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 15 start-page: 1169 issue: 6 year: 2009 end-page: 1176 article-title: Mapping Text with Phrase Nets publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 31 year: 2009 end-page: 40 – volume: 64 start-page: 600 issue: 3 year: 2008 end-page: 623 article-title: Learning Non‐taxonomic Relationships from Web Documents for Domain Ontology Construction publication-title: Data & Knowledge Engineering – year: 2000 – start-page: 17 year: 2004 end-page: 24 – volume: 20 start-page: 75 issue: 2 year: 2005 end-page: 93 article-title: Ontology Learning from Text: A Survey of Methods publication-title: LDV Forum – year: 2010 – volume: 5 start-page: 195 issue: 2 year: 2010 end-page: 205 article-title: High‐speed Detection of Ontological Knowledge and Bi‐directional Lexico‐Syntactic Patterns from the Web publication-title: JSW – volume: 53 start-page: 402 issue: 3 year: 1991 end-page: 404 article-title: A Linear Time Algorithm for the Maximum Capacity Path Problem publication-title: European Journal of Operational Research – volume: 1 start-page: 261 issue: 3 year: 2008 end-page: 377 article-title: Information Extraction publication-title: Foundations and Trends in Databases – start-page: 167 year: 2011 end-page: 176 – volume: 6 start-page: 1 issue: 1 year: 2013 end-page: 119 article-title: Semantic relations between nominals publication-title: Synthesis Lectures on Human Language Technologies – year: 2008 – start-page: 1799 year: 2006 end-page: 1802 – volume: 28 issue: 4 year: 2004 article-title: Visualization of News Articles publication-title: Informatica – start-page: 9 year: 2006 end-page: 16 – start-page: 1297 year: 2005 end-page: 1304 – start-page: 363 year: 2005 end-page: 370 – start-page: 16 year: 1986 end-page: 23 – start-page: 71 year: 2011 end-page: 79 – year: 2013 – volume: 51 start-page: 661 issue: 4 year: 2009 end-page: 703 article-title: Power‐law Distributions in Empirical Data publication-title: SIAM Review – ident: e_1_2_7_5_2 – ident: e_1_2_7_8_2 doi: 10.1137/070710111 – ident: e_1_2_7_24_2 doi: 10.1016/0377-2217(91)90073-5 – ident: e_1_2_7_2_2 – ident: e_1_2_7_16_2 – ident: e_1_2_7_26_2 doi: 10.1561/1900000003 – volume: 20 start-page: 75 issue: 2 year: 2005 ident: e_1_2_7_4_2 article-title: Ontology Learning from Text: A Survey of Methods publication-title: LDV Forum – ident: e_1_2_7_10_2 – ident: e_1_2_7_12_2 doi: 10.1109/INFVIS.2004.1 – ident: e_1_2_7_32_2 doi: 10.1109/TVCG.2009.165 – ident: e_1_2_7_13_2 – ident: e_1_2_7_22_2 doi: 10.4304/jsw.5.2.195-205 – start-page: 44 volume-title: Frontiers in Artificial Intelligence and Applications year: 2005 ident: e_1_2_7_18_2 – ident: e_1_2_7_19_2 doi: 10.1016/S0020-0190(01)00323-4 – volume-title: Graph Clustering by Flow Simulation year: 2000 ident: e_1_2_7_30_2 – ident: e_1_2_7_6_2 – start-page: 1297 volume-title: Advances in Neural Information Processing Systems year: 2005 ident: e_1_2_7_27_2 – ident: e_1_2_7_21_2 doi: 10.2200/S00489ED1V01Y201303HLT019 – ident: e_1_2_7_9_2 doi: 10.3115/1219840.1219885 – ident: e_1_2_7_31_2 doi: 10.1109/TVCG.2009.108 – volume: 28 issue: 4 year: 2004 ident: e_1_2_7_14_2 article-title: Visualization of News Articles publication-title: Informatica – ident: e_1_2_7_28_2 doi: 10.1016/j.datak.2007.10.001 – ident: e_1_2_7_20_2 doi: 10.1017/CBO9780511809071 – ident: e_1_2_7_3_2 – ident: e_1_2_7_7_2 doi: 10.1145/1978942.1978967 – ident: e_1_2_7_25_2 – volume-title: Mark Lombardi, 48, an Artist Who Was Inspired by Scandals year: 2000 ident: e_1_2_7_29_2 – ident: e_1_2_7_17_2 – ident: e_1_2_7_11_2 doi: 10.1145/22339.22342 – ident: e_1_2_7_23_2 doi: 10.1109/VAST.2011.6102443 – ident: e_1_2_7_15_2 doi: 10.3115/992133.992154 |
| SSID | ssj0004765 |
| Score | 2.1860318 |
| Snippet | Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data.... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 211 |
| SubjectTerms | (D.2.2, H.1.2, I.3.6)—Interaction styles (e. g., commands, menus, forms, direct manipulation) Analysis Categories and Subject Descriptors (according to ACM CCS) Classifiers commands D.2.2 direct manipulation Exploration forms H.1.2 H.5.2 [Information Interfaces and Presentation]: User Interfaces I.3.6 [Computer Graphics]: Methodology and Techniques-Graphics data structures and data types I.3.6)-Interaction styles (e. g Information science Interactive Marking menus Networks Social networks Studies Visual Visualization Web analytics |
| Title | Networks of Names: Visual Exploration and Semi-Automatic Tagging of Social Networks from Newspaper Articles |
| URI | https://api.istex.fr/ark:/67375/WNG-6QT34530-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12377 https://www.proquest.com/docview/1545016434 https://www.proquest.com/docview/1559705179 |
| Volume | 33 |
| WOSCitedRecordID | wos000340597400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXQ5w4F2xUJBBCHEJStZ2nMCpKt1yWEU8ttCb5fhRraDZ1WYXceQn9Df2l-BxHt1KICFxi5SZaOR5eMaZ-QzwIlHCpNzqKHeGRSzjaaRorCJDVcbtOC25CiCuU1EU2clJ_mEH3nazMA0-RH_ghp4R4jU6uCrrLSfXp-61D7tCXIPh2NstG8Dw3afJ8fRyLFKkvIP2RtCYFlgIG3l65ivb0RBX9ueVXHM7Yw1bzuT2fwl7B261mSbZb0zjLuzY6h7c3MIfvA9nRdMEXpOFIwX2y74hX-b1xrM1vXlBbURVhny2Z_OLX-f7m_UigLySmcKz6lPkbEZ8Sf8xHFkhGD2XamlXnQT1AzieHM4O3kft_QuRZpSJyBeYzHmN2SRnOTWp4rpEuBhmE2e5znKjXWyy1NBSMG0TkSVCI9iPUDyPfZW-C4NqUdmHQBjX48T4ZFBTrOBUGSvnlGElTQwzzo3gVacGqVtwcrwj47vsihS_gjKs4Aie96TLBpHjT0Qvgy57CrX6hi1sgsuvxZFMP84o4zSW0xHsdcqWrffWEtNKhB6jbATP-tfe7_BniqrsYoM0vhQLAGde9qD6v0sjD44m4eHRv5M-hhs-N2NNV9oeDNarjX0C1_WP9bxePW1N_TehbQI0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tLRJw4I0oLGAQQlyCkrUdJ4jLaqG7iBLx6C57sxw_VhVsWjUt4shP4DfyS_A4D7oSSEjcImUmGs147JnJzGeAx4kSJuVWR7kzLGIZTyNFYxUZqjJud9KSqwDiOhFFkR0f5--24EU3C9PgQ_QFN_SMsF-jg2NBesPL9Yl75vddIc7BkPllxAcwfPlhfDj5PRcpUt5heyNqTIsshJ08PfOZ82iIqv12JtjcDFnDmTO-8n_SXoXLbaxJdpvFcQ22bHUdLm0gEN6A06JpA6_J3JECO2afk6NZvfZsTXdeMBxRlSEf7ens5_cfu-vVPMC8kqnCavUJcjZDvqT_GA6tENw_F2phl50E9U04HL-a7h1E7Q0MkWaUicinmMx5m9kkZzk1qeK6RMAYZhNnuc5yo11sstTQUjBtE5ElQiPcj1A8j32efgsG1byyt4EwrncS48NBTTGHU2WsnFOGlTQxzDg3gqedHaRu4cnxlowvsktTvAZl0OAIHvWkiwaT409ET4Ixewq1_IxNbILLT8W-TN9PKeM0lpMRbHfWlq3_1hIDSwQfo2wED_vX3vPwd4qq7HyNND4ZCxBnXvZg-79LI_f2x-Hhzr-TPoALB9O3Ezl5Xby5Cxd9pMaaHrVtGKyWa3sPzuuvq1m9vN-u-18QhgYk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qT0Qf_JaeVl1FxJdI0t3NJuJLab0qHqHq1fZt2exHOWpzx-VOfPRP8G_0L3Fn8-EVFATfApkJw8zO7Mxm5rcAzxIlTMqtjnJnWMQynkaKxioyVGXc7qQlVwHEdSyKIjs5yQ834HU3C9PgQ_QHbugZIV6jg9u5cWterk_dSx93hbgEA8bz1LvlYP_j6Gj8ey5SpLzD9kbUmBZZCDt5euYL-9EAVfvtQrK5nrKGPWd04_-kvQnX21yT7DaL4xZs2Oo2XFtDILwD50XTBl6TmSMFdsy-Ip-n9cqzNd15wXBEVYZ8sufTn99_7K6WswDzSiYKT6tPkbMZ8iX9x3BohWD8nKu5XXQS1HfhaPRmsvc2am9giDSjTES-xGTO28wmOcupSRXXJQLGMJs4y3WWG-1ik6WGloJpm4gsERrhfoTieezr9HuwWc0quwWEcb2TGJ8Oaoo1nCpj5ZwyrKSJYca5Ibzo7CB1C0-Ot2R8kV2Z4jUogwaH8LQnnTeYHH8ieh6M2VOoxRk2sQkuj4sDmX6YUMZpLMdD2O6sLVv_rSUmlgg-RtkQnvSvvefh7xRV2dkKaXwxFiDOvOzB9n-XRu4djMLD_X8nfQxXDvdHcvyueP8ArvpEjTUtatuwuVys7EO4rL8up_XiUbvsfwGTFQWf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Networks+of+Names%3A+Visual+Exploration+and+Semi-Automatic+Tagging+of+Social+Networks+from+Newspaper+Articles&rft.jtitle=Computer+graphics+forum&rft.au=Kochtchi%2C+A.&rft.au=Landesberger%2C+T.+von&rft.au=Biemann%2C+C.&rft.date=2014-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=211&rft.epage=220&rft_id=info:doi/10.1111%2Fcgf.12377&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6QT34530_L |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |