Networks of Names: Visual Exploration and Semi-Automatic Tagging of Social Networks from Newspaper Articles

Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social net...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 3; pp. 211 - 220
Main Authors: Kochtchi, A., Landesberger, T. von, Biemann, C.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.06.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract “interesting” neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same “globally interesting” neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user‐driven pattern‐based classifier for discovery and tagging of non‐taxonomic semantic relations. Our approach does not require any a‐priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico‐syntactic patterns as well as various domain‐specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text‐based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too or overly specific relationship labels.
AbstractList Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract "interesting" neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same "globally interesting" neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user-driven pattern-based classifier for discovery and tagging of non-taxonomic semantic relations. Our approach does not require any a-priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico-syntactic patterns as well as various domain-specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text-based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too abstract or overly specific relationship labels.
Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract “interesting” neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same “globally interesting” neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user‐driven pattern‐based classifier for discovery and tagging of non‐taxonomic semantic relations. Our approach does not require any a‐priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico‐syntactic patterns as well as various domain‐specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text‐based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too or overly specific relationship labels.
Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract “interesting” neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same “globally interesting” neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user‐driven pattern‐based classifier for discovery and tagging of non‐taxonomic semantic relations. Our approach does not require any a‐priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico‐syntactic patterns as well as various domain‐specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text‐based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too abstract or overly specific relationship labels.
Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data. To address this problem, we present and evaluate a new visual analytics system, which offers interactive exploration and tagging of social networks extracted from newspapers. For the visual exploration of the network, we extract "interesting" neighbourhoods of nodes, using a new degree of interest (DOI) measure based on edges instead of nodes. It improves the seminal definition of DOI, which we find to produce the same "globally interesting" neighbourhoods in our use case, regardless of the query. Our approach allows answering different user queries appropriately, avoiding uniform search results. We propose a user-driven pattern-based classifier for discovery and tagging of non-taxonomic semantic relations. Our approach does not require any a-priori user knowledge, such as expertise in syntax or pattern creation. An evaluation shows that our classifier is capable of identifying known lexico-syntactic patterns as well as various domain-specific patters. Our classifier yields good results already with a small amount of training, and continuously improves through user feedback. We conduct a user study to evaluate whether our visual interactive system has an impact on how users tag relationships, as compared to traditional text-based interfaces. Study results suggest that users of the visual system tend to tag more concisely, avoiding too abstract or overly specific relationship labels. [PUBLICATION ABSTRACT]
Author Kochtchi, A.
Biemann, C.
Landesberger, T. von
Author_xml – sequence: 1
  givenname: A.
  surname: Kochtchi
  fullname: Kochtchi, A.
  organization: TU Darmstadt, Language Technology Group, Germany
– sequence: 2
  givenname: T. von
  surname: Landesberger
  fullname: Landesberger, T. von
  organization: TU Darmstadt, Interactive Graphics Systems Group, Germany
– sequence: 3
  givenname: C.
  surname: Biemann
  fullname: Biemann, C.
  organization: TU Darmstadt, Language Technology Group, Germany
BookMark eNp1kE9LwzAYh4MoOP8c_AYFL3qoJiZpGm9jzCmMiTj1GLL07Yhrm5q0TL-90akH0VySNzzPj5ffHtpuXAMIHRF8RuI5N8vyjFxQIbbQgLBMpHnG5TYaYBLfAnO-i_ZCeMYYM5HxAVrNoFs7vwqJK5OZriFcJo829LpKxq9t5bzurGsS3RTJPdQ2Hfadq-OfSeZ6ubTN8sO7d8ZG4Seq9K6O0zq0ugWfDH3kKwgHaKfUVYDDr3sfPVyN56PrdHo7uRkNp6lhlIlUipyVOQcgkklaZJqbBeZYMiAlcJPLwpS4yLOCLgQzQEROhGEiF0JziWFB99HJJrf17qWH0KnaBgNVpRtwfVCEcxmrIEJG9PgX-ux638TtIsV4bC2uFKnzDWW8C8FDqYztPovpvLaVIlh9lK9i-eqz_Gic_jJab2vt3_5kv9LXtoK3_0E1mlx9G-nGsKGD1x9D-5XKBBVcPc0mKrubU8YpVlP6DtGdpCk
CitedBy_id crossref_primary_10_1111_cgf_12873
crossref_primary_10_1016_j_wpi_2018_10_002
crossref_primary_10_1109_TVCG_2015_2467555
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1111_cgf_13408
crossref_primary_10_1109_TMM_2016_2614224
crossref_primary_10_1109_TVCG_2018_2834341
crossref_primary_10_1007_s11042_020_09872_9
crossref_primary_10_1515_libri_2019_0135
crossref_primary_10_1007_s11280_020_00790_2
Cites_doi 10.1137/070710111
10.1016/0377-2217(91)90073-5
10.1561/1900000003
10.1109/INFVIS.2004.1
10.1109/TVCG.2009.165
10.4304/jsw.5.2.195-205
10.1016/S0020-0190(01)00323-4
10.2200/S00489ED1V01Y201303HLT019
10.3115/1219840.1219885
10.1109/TVCG.2009.108
10.1016/j.datak.2007.10.001
10.1017/CBO9780511809071
10.1145/1978942.1978967
10.1145/22339.22342
10.1109/VAST.2011.6102443
10.3115/992133.992154
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12377
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 220
ExternalDocumentID 3372545661
10_1111_cgf_12377
CGF12377
ark_67375_WNG_6QT34530_L
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4347-9784f85ee19493d6a5cb05094e1fe5c89dcf0d86d3b74ce17817c47877a590eb3
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340597400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Wed Oct 01 13:47:51 EDT 2025
Sun Nov 09 08:19:09 EST 2025
Sat Nov 29 08:02:50 EST 2025
Tue Nov 18 22:24:36 EST 2025
Wed Jan 22 16:24:44 EST 2025
Tue Nov 11 03:31:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4347-9784f85ee19493d6a5cb05094e1fe5c89dcf0d86d3b74ce17817c47877a590eb3
Notes istex:34C6168FEF145E7FAC56D12CFFA6170EE568C532
ArticleID:CGF12377
ark:/67375/WNG-6QT34530-L
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1545016434
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1559705179
proquest_journals_1545016434
crossref_citationtrail_10_1111_cgf_12377
crossref_primary_10_1111_cgf_12377
wiley_primary_10_1111_cgf_12377_CGF12377
istex_primary_ark_67375_WNG_6QT34530_L
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Manning C.D., Raghavan P., Schütze H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge, 2008. 6, 7
Sánchez D., Moreno A.: Learning Non-taxonomic Relationships from Web Documents for Domain Ontology Construction. Data & Knowledge Engineering 64, 3 (2008), 600-623. 2
Ohshima H., Tanaka K.: High-speed Detection of Ontological Knowledge and Bi-directional Lexico-Syntactic Patterns from the Web. JSW 5, 2 (2010), 195-205. 9
Clauset A., Shalizi C.R., Newman M.E.: Power-law Distributions in Empirical Data. SIAM Review 51, 4 (2009), 661-703. 4
van Dongen S. M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, 2000. 6
Smith R.: Mark Lombardi, 48, an Artist Who Was Inspired by Scandals. The New York Times, 2000. http://www.nytimes.com/2000/03/25/arts/mark-lombardi-48-an-artist-who-was-inspired-by-scandals.html, accessed on September 23rd 2013. 1
Nastase V., Nakov P., Séaghdha D. Ó., Szpakowicz S.: Semantic relations between nominals. Synthesis Lectures on Human Language Technologies 6, 1 (2013), 1-119. 2
van Ham F., Wattenberg M., Viégas F. B.: Mapping Text with Phrase Nets. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1169-1176. 2
Malpani N., Chen J.: A Note on Practical Construction of Maximum Bandwidth Paths. Information Processing Letters 83, 3 (2002), 175-180. 6
Biemann C.: Ontology Learning from Text: A Survey of Methods. LDV Forum 20, 2 (2005), 75-93. 2
Sarawagi S.: Information Extraction. Foundations and Trends in Databases 1, 3 (2008), 261-377. 2, 3, 7, 9
Grobelnik M., Mladenić D.: Visualization of News Articles. Informatica 28, 4 (2004). 2
Punnen A.P.: A Linear Time Algorithm for the Maximum Capacity Path Problem. European Journal of Operational Research 53, 3 (1991), 402-404. 6
van Ham F., Perer A.: "Search, Show Context, Expand on Demand": Supporting Large Graph Exploration with Degree-of-Interest. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 953-960. 2, 5, 9
2009; 51
2011
2000
2010
2002; 83
2004; 28
1991; 53
2009
1986
2008
2007
2005; 20
2006
2005
2004
1992
2013
2002
2008; 64
2008; 1
2010; 5
2013; 6
2009; 15
e_1_2_7_5_2
van Dongen S. M. (e_1_2_7_30_2) 2000
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
Biemann C. (e_1_2_7_4_2) 2005; 20
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
Smith R. (e_1_2_7_29_2) 2000
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
Grobelnik M. (e_1_2_7_14_2) 2004; 28
e_1_2_7_28_2
Kavalec M. (e_1_2_7_18_2) 2005
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_20_2
Snow R. (e_1_2_7_27_2) 2005
References_xml – reference: Biemann C.: Ontology Learning from Text: A Survey of Methods. LDV Forum 20, 2 (2005), 75-93. 2
– reference: Malpani N., Chen J.: A Note on Practical Construction of Maximum Bandwidth Paths. Information Processing Letters 83, 3 (2002), 175-180. 6
– reference: Nastase V., Nakov P., Séaghdha D. Ó., Szpakowicz S.: Semantic relations between nominals. Synthesis Lectures on Human Language Technologies 6, 1 (2013), 1-119. 2
– reference: Punnen A.P.: A Linear Time Algorithm for the Maximum Capacity Path Problem. European Journal of Operational Research 53, 3 (1991), 402-404. 6
– reference: Grobelnik M., Mladenić D.: Visualization of News Articles. Informatica 28, 4 (2004). 2
– reference: Clauset A., Shalizi C.R., Newman M.E.: Power-law Distributions in Empirical Data. SIAM Review 51, 4 (2009), 661-703. 4
– reference: Smith R.: Mark Lombardi, 48, an Artist Who Was Inspired by Scandals. The New York Times, 2000. http://www.nytimes.com/2000/03/25/arts/mark-lombardi-48-an-artist-who-was-inspired-by-scandals.html, accessed on September 23rd 2013. 1
– reference: van Ham F., Perer A.: "Search, Show Context, Expand on Demand": Supporting Large Graph Exploration with Degree-of-Interest. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 953-960. 2, 5, 9
– reference: Sarawagi S.: Information Extraction. Foundations and Trends in Databases 1, 3 (2008), 261-377. 2, 3, 7, 9
– reference: Manning C.D., Raghavan P., Schütze H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge, 2008. 6, 7
– reference: van Ham F., Wattenberg M., Viégas F. B.: Mapping Text with Phrase Nets. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1169-1176. 2
– reference: Sánchez D., Moreno A.: Learning Non-taxonomic Relationships from Web Documents for Domain Ontology Construction. Data & Knowledge Engineering 64, 3 (2008), 600-623. 2
– reference: van Dongen S. M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, 2000. 6
– reference: Ohshima H., Tanaka K.: High-speed Detection of Ontological Knowledge and Bi-directional Lexico-Syntactic Patterns from the Web. JSW 5, 2 (2010), 195-205. 9
– start-page: 2670
  year: 2007
  end-page: 2676
– year: 2011
– start-page: 539
  year: 1992
  end-page: 545
– start-page: 360
  year: 2002
  end-page: 364
– start-page: 44
  year: 2005
  end-page: 58
– volume: 83
  start-page: 175
  issue: 3
  year: 2002
  end-page: 180
  article-title: A Note on Practical Construction of Maximum Bandwidth Paths
  publication-title: Information Processing Letters
– volume: 15
  start-page: 953
  issue: 6
  year: 2009
  end-page: 960
  article-title: “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree‐of‐Interest
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 15
  start-page: 1169
  issue: 6
  year: 2009
  end-page: 1176
  article-title: Mapping Text with Phrase Nets
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 31
  year: 2009
  end-page: 40
– volume: 64
  start-page: 600
  issue: 3
  year: 2008
  end-page: 623
  article-title: Learning Non‐taxonomic Relationships from Web Documents for Domain Ontology Construction
  publication-title: Data & Knowledge Engineering
– year: 2000
– start-page: 17
  year: 2004
  end-page: 24
– volume: 20
  start-page: 75
  issue: 2
  year: 2005
  end-page: 93
  article-title: Ontology Learning from Text: A Survey of Methods
  publication-title: LDV Forum
– year: 2010
– volume: 5
  start-page: 195
  issue: 2
  year: 2010
  end-page: 205
  article-title: High‐speed Detection of Ontological Knowledge and Bi‐directional Lexico‐Syntactic Patterns from the Web
  publication-title: JSW
– volume: 53
  start-page: 402
  issue: 3
  year: 1991
  end-page: 404
  article-title: A Linear Time Algorithm for the Maximum Capacity Path Problem
  publication-title: European Journal of Operational Research
– volume: 1
  start-page: 261
  issue: 3
  year: 2008
  end-page: 377
  article-title: Information Extraction
  publication-title: Foundations and Trends in Databases
– start-page: 167
  year: 2011
  end-page: 176
– volume: 6
  start-page: 1
  issue: 1
  year: 2013
  end-page: 119
  article-title: Semantic relations between nominals
  publication-title: Synthesis Lectures on Human Language Technologies
– year: 2008
– start-page: 1799
  year: 2006
  end-page: 1802
– volume: 28
  issue: 4
  year: 2004
  article-title: Visualization of News Articles
  publication-title: Informatica
– start-page: 9
  year: 2006
  end-page: 16
– start-page: 1297
  year: 2005
  end-page: 1304
– start-page: 363
  year: 2005
  end-page: 370
– start-page: 16
  year: 1986
  end-page: 23
– start-page: 71
  year: 2011
  end-page: 79
– year: 2013
– volume: 51
  start-page: 661
  issue: 4
  year: 2009
  end-page: 703
  article-title: Power‐law Distributions in Empirical Data
  publication-title: SIAM Review
– ident: e_1_2_7_5_2
– ident: e_1_2_7_8_2
  doi: 10.1137/070710111
– ident: e_1_2_7_24_2
  doi: 10.1016/0377-2217(91)90073-5
– ident: e_1_2_7_2_2
– ident: e_1_2_7_16_2
– ident: e_1_2_7_26_2
  doi: 10.1561/1900000003
– volume: 20
  start-page: 75
  issue: 2
  year: 2005
  ident: e_1_2_7_4_2
  article-title: Ontology Learning from Text: A Survey of Methods
  publication-title: LDV Forum
– ident: e_1_2_7_10_2
– ident: e_1_2_7_12_2
  doi: 10.1109/INFVIS.2004.1
– ident: e_1_2_7_32_2
  doi: 10.1109/TVCG.2009.165
– ident: e_1_2_7_13_2
– ident: e_1_2_7_22_2
  doi: 10.4304/jsw.5.2.195-205
– start-page: 44
  volume-title: Frontiers in Artificial Intelligence and Applications
  year: 2005
  ident: e_1_2_7_18_2
– ident: e_1_2_7_19_2
  doi: 10.1016/S0020-0190(01)00323-4
– volume-title: Graph Clustering by Flow Simulation
  year: 2000
  ident: e_1_2_7_30_2
– ident: e_1_2_7_6_2
– start-page: 1297
  volume-title: Advances in Neural Information Processing Systems
  year: 2005
  ident: e_1_2_7_27_2
– ident: e_1_2_7_21_2
  doi: 10.2200/S00489ED1V01Y201303HLT019
– ident: e_1_2_7_9_2
  doi: 10.3115/1219840.1219885
– ident: e_1_2_7_31_2
  doi: 10.1109/TVCG.2009.108
– volume: 28
  issue: 4
  year: 2004
  ident: e_1_2_7_14_2
  article-title: Visualization of News Articles
  publication-title: Informatica
– ident: e_1_2_7_28_2
  doi: 10.1016/j.datak.2007.10.001
– ident: e_1_2_7_20_2
  doi: 10.1017/CBO9780511809071
– ident: e_1_2_7_3_2
– ident: e_1_2_7_7_2
  doi: 10.1145/1978942.1978967
– ident: e_1_2_7_25_2
– volume-title: Mark Lombardi, 48, an Artist Who Was Inspired by Scandals
  year: 2000
  ident: e_1_2_7_29_2
– ident: e_1_2_7_17_2
– ident: e_1_2_7_11_2
  doi: 10.1145/22339.22342
– ident: e_1_2_7_23_2
  doi: 10.1109/VAST.2011.6102443
– ident: e_1_2_7_15_2
  doi: 10.3115/992133.992154
SSID ssj0004765
Score 2.1860318
Snippet Understanding relationships between people and organizations by reading newspaper articles is difficult to manage for humans due to the large amount of data....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms (D.2.2, H.1.2, I.3.6)—Interaction styles (e. g., commands, menus, forms, direct manipulation)
Analysis
Categories and Subject Descriptors (according to ACM CCS)
Classifiers
commands
D.2.2
direct manipulation
Exploration
forms
H.1.2
H.5.2 [Information Interfaces and Presentation]: User Interfaces
I.3.6 [Computer Graphics]: Methodology and Techniques-Graphics data structures and data types
I.3.6)-Interaction styles (e. g
Information science
Interactive
Marking
menus
Networks
Social networks
Studies
Visual
Visualization
Web analytics
Title Networks of Names: Visual Exploration and Semi-Automatic Tagging of Social Networks from Newspaper Articles
URI https://api.istex.fr/ark:/67375/WNG-6QT34530-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12377
https://www.proquest.com/docview/1545016434
https://www.proquest.com/docview/1559705179
Volume 33
WOSCitedRecordID wos000340597400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXQ5w4F2xUJBBCHEJStZ2nMCpKt1yWEU8ttCb5fhRraDZ1WYXceQn9Df2l-BxHt1KICFxi5SZaOR5eMaZ-QzwIlHCpNzqKHeGRSzjaaRorCJDVcbtOC25CiCuU1EU2clJ_mEH3nazMA0-RH_ghp4R4jU6uCrrLSfXp-61D7tCXIPh2NstG8Dw3afJ8fRyLFKkvIP2RtCYFlgIG3l65ivb0RBX9ueVXHM7Yw1bzuT2fwl7B261mSbZb0zjLuzY6h7c3MIfvA9nRdMEXpOFIwX2y74hX-b1xrM1vXlBbURVhny2Z_OLX-f7m_UigLySmcKz6lPkbEZ8Sf8xHFkhGD2XamlXnQT1AzieHM4O3kft_QuRZpSJyBeYzHmN2SRnOTWp4rpEuBhmE2e5znKjXWyy1NBSMG0TkSVCI9iPUDyPfZW-C4NqUdmHQBjX48T4ZFBTrOBUGSvnlGElTQwzzo3gVacGqVtwcrwj47vsihS_gjKs4Aie96TLBpHjT0Qvgy57CrX6hi1sgsuvxZFMP84o4zSW0xHsdcqWrffWEtNKhB6jbATP-tfe7_BniqrsYoM0vhQLAGde9qD6v0sjD44m4eHRv5M-hhs-N2NNV9oeDNarjX0C1_WP9bxePW1N_TehbQI0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tLRJw4I0oLGAQQlyCkrUdJ4jLaqG7iBLx6C57sxw_VhVsWjUt4shP4DfyS_A4D7oSSEjcImUmGs147JnJzGeAx4kSJuVWR7kzLGIZTyNFYxUZqjJud9KSqwDiOhFFkR0f5--24EU3C9PgQ_QFN_SMsF-jg2NBesPL9Yl75vddIc7BkPllxAcwfPlhfDj5PRcpUt5heyNqTIsshJ08PfOZ82iIqv12JtjcDFnDmTO-8n_SXoXLbaxJdpvFcQ22bHUdLm0gEN6A06JpA6_J3JECO2afk6NZvfZsTXdeMBxRlSEf7ens5_cfu-vVPMC8kqnCavUJcjZDvqT_GA6tENw_F2phl50E9U04HL-a7h1E7Q0MkWaUicinmMx5m9kkZzk1qeK6RMAYZhNnuc5yo11sstTQUjBtE5ElQiPcj1A8j32efgsG1byyt4EwrncS48NBTTGHU2WsnFOGlTQxzDg3gqedHaRu4cnxlowvsktTvAZl0OAIHvWkiwaT409ET4Ixewq1_IxNbILLT8W-TN9PKeM0lpMRbHfWlq3_1hIDSwQfo2wED_vX3vPwd4qq7HyNND4ZCxBnXvZg-79LI_f2x-Hhzr-TPoALB9O3Ezl5Xby5Cxd9pMaaHrVtGKyWa3sPzuuvq1m9vN-u-18QhgYk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qT0Qf_JaeVl1FxJdI0t3NJuJLab0qHqHq1fZt2exHOWpzx-VOfPRP8G_0L3Fn8-EVFATfApkJw8zO7Mxm5rcAzxIlTMqtjnJnWMQynkaKxioyVGXc7qQlVwHEdSyKIjs5yQ834HU3C9PgQ_QHbugZIV6jg9u5cWterk_dSx93hbgEA8bz1LvlYP_j6Gj8ey5SpLzD9kbUmBZZCDt5euYL-9EAVfvtQrK5nrKGPWd04_-kvQnX21yT7DaL4xZs2Oo2XFtDILwD50XTBl6TmSMFdsy-Ip-n9cqzNd15wXBEVYZ8sufTn99_7K6WswDzSiYKT6tPkbMZ8iX9x3BohWD8nKu5XXQS1HfhaPRmsvc2am9giDSjTES-xGTO28wmOcupSRXXJQLGMJs4y3WWG-1ik6WGloJpm4gsERrhfoTieezr9HuwWc0quwWEcb2TGJ8Oaoo1nCpj5ZwyrKSJYca5Ibzo7CB1C0-Ot2R8kV2Z4jUogwaH8LQnnTeYHH8ieh6M2VOoxRk2sQkuj4sDmX6YUMZpLMdD2O6sLVv_rSUmlgg-RtkQnvSvvefh7xRV2dkKaXwxFiDOvOzB9n-XRu4djMLD_X8nfQxXDvdHcvyueP8ArvpEjTUtatuwuVys7EO4rL8up_XiUbvsfwGTFQWf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Networks+of+Names%3A+Visual+Exploration+and+Semi-Automatic+Tagging+of+Social+Networks+from+Newspaper+Articles&rft.jtitle=Computer+graphics+forum&rft.au=Kochtchi%2C+A.&rft.au=Landesberger%2C+T.+von&rft.au=Biemann%2C+C.&rft.date=2014-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=211&rft.epage=220&rft_id=info:doi/10.1111%2Fcgf.12377&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6QT34530_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon