Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline

In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat deterioration, primarily related to human land use, resulted in population declines and range contractions became obvious. At the edge of a specie...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology Vol. 11; no. 9; pp. 1669 - 1677
Main Authors: Segelbacher, Gernot, Storch, Ilse
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Science Ltd 01.09.2002
Subjects:
ISSN:0962-1083, 1365-294X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat deterioration, primarily related to human land use, resulted in population declines and range contractions became obvious. At the edge of a species’ range, lower connectivity and less gene flow may render populations more susceptible to decline and extinction than in the core of the range. If this were true for the capercaillie in the Alps, edge populations should be subject to limited gene flow and should show genetic signs of a more severe population decline than core populations. To test this hypothesis, we used microsatellite DNA typing techniques. We assessed genetic variation within and among 18 local capercaillie populations across the Alps in relation to geographical distribution within the metapopulation system. All populations showed high levels of genetic variation in terms of average number of alleles, allelic richness and heterozygosity. Excess heterozygosity suggested a recent population decline, that was more pronounced in edge than core populations. We found high gene flow, but also significant differentiation among populations. Differentiation among edge populations was related to geographical distance, and appeared to be a recent process, most probably caused by reduced gene flow after population decline. In the core group, the high mountains of the central Alps seem to limit dispersal, and genetic drift was the most likely explanation for the observed differentiation among populations. We conclude that maintaining connectivity within the metapopulation system is vital for capercaillie conservation in the Alps.
AbstractList In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat deterioration, primarily related to human land use, resulted in population declines and range contractions became obvious. At the edge of a species' range, lower connectivity and less gene flow may render populations more susceptible to decline and extinction than in the core of the range. If this were true for the capercaillie in the Alps, edge populations should be subject to limited gene flow and should show genetic signs of a more severe population decline than core populations. To test this hypothesis, we used microsatellite DNA typing techniques. We assessed genetic variation within and among 18 local capercaillie populations across the Alps in relation to geographical distribution within the metapopulation system. All populations showed high levels of genetic variation in terms of average number of alleles, allelic richness and heterozygosity. Excess heterozygosity suggested a recent population decline, that was more pronounced in edge than core populations. We found high gene flow, but also significant differentiation among populations. Differentiation among edge populations was related to geographical distance, and appeared to be a recent process, most probably caused by reduced gene flow after population decline. In the core group, the high mountains of the central Alps seem to limit dispersal, and genetic drift was the most likely explanation for the observed differentiation among populations. We conclude that maintaining connectivity within the metapopulation system is vital for capercaillie conservation in the Alps.In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat deterioration, primarily related to human land use, resulted in population declines and range contractions became obvious. At the edge of a species' range, lower connectivity and less gene flow may render populations more susceptible to decline and extinction than in the core of the range. If this were true for the capercaillie in the Alps, edge populations should be subject to limited gene flow and should show genetic signs of a more severe population decline than core populations. To test this hypothesis, we used microsatellite DNA typing techniques. We assessed genetic variation within and among 18 local capercaillie populations across the Alps in relation to geographical distribution within the metapopulation system. All populations showed high levels of genetic variation in terms of average number of alleles, allelic richness and heterozygosity. Excess heterozygosity suggested a recent population decline, that was more pronounced in edge than core populations. We found high gene flow, but also significant differentiation among populations. Differentiation among edge populations was related to geographical distance, and appeared to be a recent process, most probably caused by reduced gene flow after population decline. In the core group, the high mountains of the central Alps seem to limit dispersal, and genetic drift was the most likely explanation for the observed differentiation among populations. We conclude that maintaining connectivity within the metapopulation system is vital for capercaillie conservation in the Alps.
In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat deterioration, primarily related to human land use, resulted in population declines and range contractions became obvious. At the edge of a species’ range, lower connectivity and less gene flow may render populations more susceptible to decline and extinction than in the core of the range. If this were true for the capercaillie in the Alps, edge populations should be subject to limited gene flow and should show genetic signs of a more severe population decline than core populations. To test this hypothesis, we used microsatellite DNA typing techniques. We assessed genetic variation within and among 18 local capercaillie populations across the Alps in relation to geographical distribution within the metapopulation system. All populations showed high levels of genetic variation in terms of average number of alleles, allelic richness and heterozygosity. Excess heterozygosity suggested a recent population decline, that was more pronounced in edge than core populations. We found high gene flow, but also significant differentiation among populations. Differentiation among edge populations was related to geographical distance, and appeared to be a recent process, most probably caused by reduced gene flow after population decline. In the core group, the high mountains of the central Alps seem to limit dispersal, and genetic drift was the most likely explanation for the observed differentiation among populations. We conclude that maintaining connectivity within the metapopulation system is vital for capercaillie conservation in the Alps.
Author Storch, Ilse
Segelbacher, Gernot
Author_xml – sequence: 1
  givenname: Gernot
  surname: Segelbacher
  fullname: Segelbacher, Gernot
  email: gernot.segelbacher@uni-tuebingen.de
  organization: E-mail: gernot.segelbacher@uni-tuebingen.de
– sequence: 2
  givenname: Ilse
  surname: Storch
  fullname: Storch, Ilse
  organization: Wildlife Research and Management Unit, Weihenstephan Center of Life and Food Sciences, TU Munich, Am Hochanger 13, D-85354 Freising, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12207718$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6FSRPvs2Y_zMjKLRLXYVaQRRFkJDN3NGs2cyYZHT77Z3p1kV8qU_3wj2_c7n3nKCj0AdACFNSUiLU001JuZIFa8SnkhHCSkKlkuXuHlocBkdoQRrFCkpqfoxOUtoQQjmT8gE6poyRqqL1An1ZmgGiNc57B9gFnL8BPvNDeoa_QoDsLIafroVgAfcd3kI2Qz-M3mTXB5xyHG0eI2ATWvzXoAXrXYCH6H5nfIJHt_UUfXh58X75qrh8u3q9PLssrOBCFgo6qlRNjDCkaWrJWiWadSetMlZ1gtC2kkxIu-YARE2dYAIUYbyihlEg_BQ92fsOsf8xQsp665IF702Afky6YkRJSsWdQlqLileCT8LHt8JxvYVWD9FtTbzWfz43CV7sBTb2KUXotHX55vgcp29qSvQcld7oORE9J6LnqPRNVHo3GdT_GBx23I0-36O_nIfr_-b0m4vl3E18seddyrA78CZ-12o6X-qPVystzt-trmjzWSv-GwF_ueY
CitedBy_id crossref_primary_10_1007_s10592_010_0159_8
crossref_primary_10_1016_j_biocon_2012_04_011
crossref_primary_10_3390_app9061164
crossref_primary_10_1007_s10336_021_01893_x
crossref_primary_10_1007_s10592_008_9606_1
crossref_primary_10_1111_icad_12601
crossref_primary_10_1007_s10344_013_0727_6
crossref_primary_10_1016_j_ecolmodel_2008_02_001
crossref_primary_10_1371_journal_pone_0023602
crossref_primary_10_1086_657434
crossref_primary_10_1002_ece3_86
crossref_primary_10_1371_journal_pone_0029827
crossref_primary_10_1016_j_jnc_2005_02_002
crossref_primary_10_1016_j_foreco_2005_05_019
crossref_primary_10_1016_j_theriogenology_2011_09_015
crossref_primary_10_1093_jhered_esi040
crossref_primary_10_1007_s10592_006_9212_z
crossref_primary_10_1002_ece3_3795
crossref_primary_10_1007_s10344_016_1002_4
crossref_primary_10_2478_s11535_012_0051_2
crossref_primary_10_1111_j_1365_294X_2004_02190_x
crossref_primary_10_1007_s00442_020_04808_4
crossref_primary_10_1111_j_2006_0030_1299_14778_x
crossref_primary_10_1007_s10592_023_01552_z
crossref_primary_10_1007_s10531_005_0771_y
crossref_primary_10_1525_auk_2011_128_2_205
crossref_primary_10_1111_j_1523_1739_2006_00331_x
crossref_primary_10_1002_jwmg_597
crossref_primary_10_1111_jav_01681
crossref_primary_10_1007_s10344_017_1099_0
crossref_primary_10_1007_s10336_012_0844_0
crossref_primary_10_1046_j_1365_294X_2003_01889_x
crossref_primary_10_1371_journal_pone_0169165
crossref_primary_10_1371_journal_pone_0145433
crossref_primary_10_2981_wlb_2003_028
crossref_primary_10_1007_s10592_006_9165_2
crossref_primary_10_1046_j_1365_294X_2003_01903_x
crossref_primary_10_1111_j_1365_294X_2008_03720_x
crossref_primary_10_1007_s10344_014_0848_6
crossref_primary_10_1111_j_1472_4642_2010_00724_x
crossref_primary_10_1111_bij_12643
crossref_primary_10_1007_s10592_016_0815_8
crossref_primary_10_1111_j_1600_0587_2010_06314_x
crossref_primary_10_1046_j_1365_294X_2003_01873_x
crossref_primary_10_1007_s10342_017_1034_7
crossref_primary_10_1111_mec_13349
crossref_primary_10_1111_j_1365_294X_2009_04200_x
crossref_primary_10_1111_1440_1703_1068
crossref_primary_10_1650_CONDOR_15_34_1
crossref_primary_10_1046_j_1365_294X_2003_02013_x
crossref_primary_10_1007_s10592_005_9097_2
crossref_primary_10_1139_z05_060
crossref_primary_10_1111_j_1365_294X_2010_04703_x
crossref_primary_10_1111_j_1420_9101_2007_01314_x
crossref_primary_10_1016_j_biocon_2010_03_038
crossref_primary_10_1093_jhered_esr004
Cites_doi 10.1046/j.1523-1739.1995.09040792.x
10.1046/j.1471-8286.2002.00180.x
10.1093/genetics/147.4.1943
10.1111/j.1558-5646.1975.tb00807.x
10.5751/ES-00381-060106
10.1093/oso/9780198540663.001.0001
10.2981/wlb.2000.014
10.1093/genetics/76.2.379
10.1111/j.1095-8312.1999.tb01159.x
10.1093/genetics/111.3.675
10.1111/j.1095-8312.2001.tb01319.x
10.1111/j.1523-1739.1998.96388.x
10.1016/B978-012323445-2/50023-7
10.1111/j.0014-3820.2001.tb00641.x
10.1111/j.1558-5646.1995.tb04456.x
10.1086/282771
10.1007/PL00006589
10.1093/oxfordjournals.jhered.a111573
10.1046/j.0173-9565.2003.00795.x
10.1111/j.1601-5223.1998.00133.x
10.1017/CBO9780511623400
10.1093/jhered/90.4.502
10.1093/genetics/144.1.383
10.1046/j.1523-1739.2000.99345.x
10.1093/genetics/144.4.2001
10.1038/33136
10.1046/j.1365-294X.2003.01702.x
10.1007/BF00264987
10.1046/j.1365-294X.2001.01305.x
10.1111/j.1095-8312.1991.tb00558.x
10.1111/j.1095-8312.1999.tb01164.x
10.1006/fgbi.1999.1174
10.1111/j.1523-1739.1998.96489.x
10.1111/j.1558-5646.1984.tb05657.x
10.1126/science.1069349
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1046/j.1365-294X.2002.01565.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Geography
EISSN 1365-294X
EndPage 1677
ExternalDocumentID 12207718
10_1046_j_1365_294X_2002_01565_x
MEC1565
ark_67375_WNG_4BRGN19Z_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
XJT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
8FD
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c4345-6ef16680a4a099852d649bf5c6ac6f401d75245cb3ee06245424e602371a21e03
IEDL.DBID DRFUL
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000177775600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
IngestDate Sun Aug 24 03:09:55 EDT 2025
Tue Oct 07 09:19:59 EDT 2025
Wed Feb 19 01:32:14 EST 2025
Sat Nov 29 02:38:04 EST 2025
Tue Nov 18 22:18:22 EST 2025
Wed Jan 22 16:21:17 EST 2025
Tue Nov 11 03:31:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4345-6ef16680a4a099852d649bf5c6ac6f401d75245cb3ee06245424e602371a21e03
Notes ark:/67375/WNG-4BRGN19Z-6
istex:F6C118B0195B8F0F3EEF3BBEB5A8557E2BFF7EB5
ArticleID:MEC1565
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 12207718
PQID 18473743
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_72065114
proquest_miscellaneous_18473743
pubmed_primary_12207718
crossref_citationtrail_10_1046_j_1365_294X_2002_01565_x
crossref_primary_10_1046_j_1365_294X_2002_01565_x
wiley_primary_10_1046_j_1365_294X_2002_01565_x_MEC1565
istex_primary_ark_67375_WNG_4BRGN19Z_6
PublicationCentury 2000
PublicationDate 2002-09
September 2002
2002-09-00
2002-Sep
20020901
PublicationDateYYYYMMDD 2002-09-01
PublicationDate_xml – month: 09
  year: 2002
  text: 2002-09
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2002
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Rosewich UL, Pettway RE, McDonald BA, Kistler HC (1999) High levels of gene flow and heterozygote excess characterize Rihzoctonia solani AG-1 IA (Thanatephorus cucumeris) from Texas. Fungal Genetics and Biology, 28, 148-159.
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
Storch I (1997) The role of metapopulation concept in conservation of European woodland grouse. Abstract. Wildlife Biology, 3, 272.
Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective numbers of breeders from heterozygote-excess in progeny. Genetics, 144, 383-387.
Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12, 228-237.
Raymond M, Rousset F (1995b) Genepop. Version 3.1d: population genetics software for exact tests and ecumenism. Journal of Heredity, 86, 248-249.
Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics, 76, 379-390.
Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK.
Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York.
Storch I (2001) Capercaillie BWP Update. The Journal of Birds of the Western Palearctic, 3, 1-24.
Luitjen SH, Dierick A, Gerard J, Oostermeijer B, Raijmann LEL, Den Nijs HCM (2000) Population size, genetic variation, and reproductive success in a rapidly declining, self incompatible perrenial (Arnica montana) in the Netherlands. Conservation Biology, 14, 1776-1787.
Hanski I (1999) Metapopulation Ecology. Oxford University Press, Oxford.
Stewart WA, Dallas JF, Piertney SB, Marshall F, Lambin X, Tefler S (1999) Metapopulation genetic structure in the water vole, Arvicola terrestris, in NE Scotland. Biological Journal of the Linnean Society, 68, 159-171.
Bätzing W (1991) Die Alpen. Entstehung und Gefährdung Einer Europäischen Kulturlandschaft. Verlag, München.
Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855.
Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent bottlenecks from allele frequency data. Genetics, 144, 2001-2014.
Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48, 351-372.
Klaus S, Andreev AV, Bergmann HH, Müller F, Porkert J, Wiesner J (1989) Die Auerhühner. Neue Brehm Bücherei. Ziemsen Verlag, Wittenberg Lutherstadt.
Rooney AP, Honeycutt RL, Davis SK (1999) Evaluating a putative bottleneck in a population of bowhead whales from patterns of microsatellite diversity and genetic disequilibria. Journal of Molecular Evolution, 49, 682-690.
Hutchinson DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1989-1914.
Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in effective population size from allele frequency data. Journal of Heredity, 90, 502-503.
Storz JF, Bhat HR, Kunz TH (2001) Genetic consequences of polygyny and social structure in an indian fruit bat, Cynopterus sphinx. I. Inbreeding, outbreeding, and population subdivision. Evolution, 55, 1215-1223.
Segelbacher G (2002b) Non-invasive genetic analysis in birds: testing reliability. Molecular Ecology Notes, in press.
Gilpin ME (1991) The genetic effective size of a metapopulation. Biological Journal of the Linnean Society, 42, 165-176.
Schneider S, Roessli D, Excoffier L (2000) arlequin, Version 2.000: a Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory. University of Geneva, Switzerland.
Nei M (1972) Genetic distances between populations. American Naturalist, 106, 283-292.
Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics, 147, 1943-1957.
Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution, 49, 1280-1283.
Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494.
Storch I (1995) Habitat requirements of capercaillie. Proceedings of the International Symposium on Grouse, 6, 151-154.
Frankham R (1995) Inbreeding and extinction: a threshold effect. Conservation Biology, 9, 227-229.
Storch I, Segelbacher G (2000) Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T. tetrix: a project in progress. Wildlife Biology, 6, 305-310.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Soulé ME (1987) Viable Populations for Conservation. Cambridge University Press, New York.
Dallas JF, Bacon PJ, Carss DN et al. (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biological Journal of the Linnean Society, 68, 73-86.
Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561-576.
Baker AM, Mather PB, Hughes JM (2001) Evidence for long-distance dispersal in a sedentary passerine, Gymnorhina tibicen (Artamidae). Biological Journal of the Linnean Society, 72, 333-343.
Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science, 296, 904-907.
Lee PLM, Bradbury RB, Wilson JD, Flanagan NS, Richardson L, Perkins AJ, Krebs JR (2001) Microsatellite variation in the yellowhammer Emberiza citrinella: population structure of a declining farmland bird. Molecular Ecology, 10, 1633-1644.
Prout T (1981) A note on the island model with sex dependent migration. Theoretical and Applied Genetics, 59, 327-332.
Kvist L, Ruokonen M, Thessing A, Lumme J, Orell M (1998) Mitochondrial control region polymorphisms reveal a high amount of gene flow in Fennoscandian willow tits (Parus montanus borealis). Hereditas, 128, 133-143.
Maruyama T, Fuerst PA (1985) Population bottlenecks and non-equilibrium models in population genetics. II. Number of alleles in small population that was formed by a recent bottleneck. Genetics, 111, 675-689.
1995; 9
2001; 72
1995a; 49
1974; 76
2002; 296
2000; 6
1964; 49
1999; 28
1999; 49
1999; 68
1997
1995b; 86
1996
1995
1996; 144
1993
1991
2002
1997; 3
1995; 6
1998; 392
1999
1997; 147
2001
2000; 14
2000
1984; 38
1991; 42
1975; 29
1987
1981; 59
1999; 53
2001; 3
2002b
1992; 48
1998; 128
2002a
2001; 55
1999; 90
1998; 12
1972; 106
1989
2001; 10
1985; 111
e_1_2_6_32_1
Guo SW (e_1_2_6_12_1) 1992; 48
e_1_2_6_30_1
Storch I (e_1_2_6_43_1) 1997; 3
Maruyama T (e_1_2_6_21_1) 1985; 111
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
Hutchinson DW (e_1_2_6_14_1) 1999; 53
e_1_2_6_15_1
Pudovkin AI (e_1_2_6_29_1) 1996; 144
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
Storch I (e_1_2_6_42_1) 1995; 6
Bätzing W (e_1_2_6_3_1) 1991
e_1_2_6_5_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
Hanski I (e_1_2_6_13_1) 1999
e_1_2_6_10_1
e_1_2_6_31_1
Schneider S (e_1_2_6_35_1) 2000
Frankham R (e_1_2_6_7_1) 1995; 9
Storch I (e_1_2_6_45_1) 2001; 3
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_37_1
Klaus S (e_1_2_6_16_1) 1989
Sokal RR (e_1_2_6_38_1) 1995
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
Wiens JA (e_1_2_6_50_1) 1996
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Klaus S, Andreev AV, Bergmann HH, Müller F, Porkert J, Wiesner J (1989) Die Auerhühner. Neue Brehm Bücherei. Ziemsen Verlag, Wittenberg Lutherstadt.
– reference: Nei M (1972) Genetic distances between populations. American Naturalist, 106, 283-292.
– reference: Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics, 147, 1943-1957.
– reference: Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK.
– reference: Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12, 228-237.
– reference: Storch I (1995) Habitat requirements of capercaillie. Proceedings of the International Symposium on Grouse, 6, 151-154.
– reference: Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48, 351-372.
– reference: Lee PLM, Bradbury RB, Wilson JD, Flanagan NS, Richardson L, Perkins AJ, Krebs JR (2001) Microsatellite variation in the yellowhammer Emberiza citrinella: population structure of a declining farmland bird. Molecular Ecology, 10, 1633-1644.
– reference: Storch I, Segelbacher G (2000) Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T. tetrix: a project in progress. Wildlife Biology, 6, 305-310.
– reference: Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective numbers of breeders from heterozygote-excess in progeny. Genetics, 144, 383-387.
– reference: Storz JF, Bhat HR, Kunz TH (2001) Genetic consequences of polygyny and social structure in an indian fruit bat, Cynopterus sphinx. I. Inbreeding, outbreeding, and population subdivision. Evolution, 55, 1215-1223.
– reference: Frankham R (1995) Inbreeding and extinction: a threshold effect. Conservation Biology, 9, 227-229.
– reference: Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494.
– reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
– reference: Hutchinson DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1989-1914.
– reference: Rooney AP, Honeycutt RL, Davis SK (1999) Evaluating a putative bottleneck in a population of bowhead whales from patterns of microsatellite diversity and genetic disequilibria. Journal of Molecular Evolution, 49, 682-690.
– reference: Dallas JF, Bacon PJ, Carss DN et al. (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biological Journal of the Linnean Society, 68, 73-86.
– reference: Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
– reference: Prout T (1981) A note on the island model with sex dependent migration. Theoretical and Applied Genetics, 59, 327-332.
– reference: Baker AM, Mather PB, Hughes JM (2001) Evidence for long-distance dispersal in a sedentary passerine, Gymnorhina tibicen (Artamidae). Biological Journal of the Linnean Society, 72, 333-343.
– reference: Storch I (1997) The role of metapopulation concept in conservation of European woodland grouse. Abstract. Wildlife Biology, 3, 272.
– reference: Raymond M, Rousset F (1995b) Genepop. Version 3.1d: population genetics software for exact tests and ecumenism. Journal of Heredity, 86, 248-249.
– reference: Soulé ME (1987) Viable Populations for Conservation. Cambridge University Press, New York.
– reference: Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent bottlenecks from allele frequency data. Genetics, 144, 2001-2014.
– reference: Gilpin ME (1991) The genetic effective size of a metapopulation. Biological Journal of the Linnean Society, 42, 165-176.
– reference: Maruyama T, Fuerst PA (1985) Population bottlenecks and non-equilibrium models in population genetics. II. Number of alleles in small population that was formed by a recent bottleneck. Genetics, 111, 675-689.
– reference: Kvist L, Ruokonen M, Thessing A, Lumme J, Orell M (1998) Mitochondrial control region polymorphisms reveal a high amount of gene flow in Fennoscandian willow tits (Parus montanus borealis). Hereditas, 128, 133-143.
– reference: Segelbacher G (2002b) Non-invasive genetic analysis in birds: testing reliability. Molecular Ecology Notes, in press.
– reference: Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science, 296, 904-907.
– reference: Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in effective population size from allele frequency data. Journal of Heredity, 90, 502-503.
– reference: Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution, 49, 1280-1283.
– reference: Rosewich UL, Pettway RE, McDonald BA, Kistler HC (1999) High levels of gene flow and heterozygote excess characterize Rihzoctonia solani AG-1 IA (Thanatephorus cucumeris) from Texas. Fungal Genetics and Biology, 28, 148-159.
– reference: Schneider S, Roessli D, Excoffier L (2000) arlequin, Version 2.000: a Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory. University of Geneva, Switzerland.
– reference: Storch I (2001) Capercaillie BWP Update. The Journal of Birds of the Western Palearctic, 3, 1-24.
– reference: Hanski I (1999) Metapopulation Ecology. Oxford University Press, Oxford.
– reference: Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York.
– reference: Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics, 76, 379-390.
– reference: Bätzing W (1991) Die Alpen. Entstehung und Gefährdung Einer Europäischen Kulturlandschaft. Verlag, München.
– reference: Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855.
– reference: Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561-576.
– reference: Luitjen SH, Dierick A, Gerard J, Oostermeijer B, Raijmann LEL, Den Nijs HCM (2000) Population size, genetic variation, and reproductive success in a rapidly declining, self incompatible perrenial (Arnica montana) in the Netherlands. Conservation Biology, 14, 1776-1787.
– reference: Stewart WA, Dallas JF, Piertney SB, Marshall F, Lambin X, Tefler S (1999) Metapopulation genetic structure in the water vole, Arvicola terrestris, in NE Scotland. Biological Journal of the Linnean Society, 68, 159-171.
– volume: 29
  start-page: 1
  year: 1975
  end-page: 10
  article-title: The bottleneck effect and genetic variability in populations
  publication-title: Evolution
– volume: 12
  start-page: 844
  year: 1998
  end-page: 855
  article-title: Identifying populations for conservation on the basis of genetic markers
  publication-title: Conservation Biology
– volume: 6
  start-page: 151
  year: 1995
  end-page: 154
  article-title: Habitat requirements of capercaillie
  publication-title: Proceedings of the International Symposium on Grouse
– volume: 9
  start-page: 227
  year: 1995
  end-page: 229
  article-title: Inbreeding and extinction: a threshold effect
  publication-title: Conservation Biology
– volume: 49
  start-page: 682
  year: 1999
  end-page: 690
  article-title: Evaluating a putative bottleneck in a population of bowhead whales from patterns of microsatellite diversity and genetic disequilibria
  publication-title: Journal of Molecular Evolution
– year: 2001
– year: 1987
– year: 1989
– volume: 53
  start-page: 1989
  year: 1999
  end-page: 1914
  article-title: Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability
  publication-title: Evolution
– year: 2002b
  article-title: Non‐invasive genetic analysis in birds: testing reliability
  publication-title: Molecular Ecology Notes
– volume: 144
  start-page: 2001
  year: 1996
  end-page: 2014
  article-title: Description and power analysis of two tests for detecting recent bottlenecks from allele frequency data
  publication-title: Genetics
– volume: 14
  start-page: 1776
  year: 2000
  end-page: 1787
  article-title: Population size, genetic variation, and reproductive success in a rapidly declining, self incompatible perrenial ( ) in the Netherlands
  publication-title: Conservation Biology
– year: 2000
– year: 1996
– volume: 3
  start-page: 1
  year: 2001
  end-page: 24
  article-title: Capercaillie BWP Update
  publication-title: The Journal of Birds of the Western Palearctic
– volume: 48
  start-page: 351
  year: 1992
  end-page: 372
  article-title: Performing the exact test of Hardy–Weinberg proportion for multiple alleles
  publication-title: Biometrics
– volume: 147
  start-page: 1943
  year: 1997
  end-page: 1957
  article-title: An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations
  publication-title: Genetics
– volume: 86
  start-page: 248
  year: 1995b
  end-page: 249
  article-title: Genepop. Version 3.1d: population genetics software for exact tests and ecumenism
  publication-title: Journal of Heredity
– year: 2002a
– volume: 55
  start-page: 1215
  year: 2001
  end-page: 1223
  article-title: Genetic consequences of polygyny and social structure in an indian fruit bat, . I. Inbreeding, outbreeding, and population subdivision
  publication-title: Evolution
– volume: 49
  start-page: 561
  year: 1964
  end-page: 576
  article-title: The stepping stone model of population structure and the decrease of genetic correlation with distance
  publication-title: Genetics
– volume: 128
  start-page: 133
  year: 1998
  end-page: 143
  article-title: Mitochondrial control region polymorphisms reveal a high amount of gene flow in Fennoscandian willow tits ( )
  publication-title: Hereditas
– volume: 3
  start-page: 272
  year: 1997
  article-title: The role of metapopulation concept in conservation of European woodland grouse. Abstract
  publication-title: Wildlife Biology
– volume: 68
  start-page: 73
  year: 1999
  end-page: 86
  article-title: Genetic diversity in the Eurasian otter, , in Scotland. Evidence from microsatellite polymorphism
  publication-title: Biological Journal of the Linnean Society
– start-page: 429
  year: 1997
  end-page: 454
– volume: 68
  start-page: 159
  year: 1999
  end-page: 171
  article-title: Metapopulation genetic structure in the water vole, , in NE Scotland
  publication-title: Biological Journal of the Linnean Society
– volume: 28
  start-page: 148
  year: 1999
  end-page: 159
  article-title: High levels of gene flow and heterozygote excess characterize AG‐1 IA ( ) from Texas
  publication-title: Fungal Genetics and Biology
– volume: 144
  start-page: 383
  year: 1996
  end-page: 387
  article-title: On the potential for estimating the effective numbers of breeders from heterozygote‐excess in progeny
  publication-title: Genetics
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 12
  start-page: 228
  year: 1998
  end-page: 237
  article-title: Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data
  publication-title: Conservation Biology
– volume: 59
  start-page: 327
  year: 1981
  end-page: 332
  article-title: A note on the island model with sex dependent migration
  publication-title: Theoretical and Applied Genetics
– year: 2002
– volume: 42
  start-page: 165
  year: 1991
  end-page: 176
  article-title: The genetic effective size of a metapopulation
  publication-title: Biological Journal of the Linnean Society
– volume: 49
  start-page: 1280
  year: 1995a
  end-page: 1283
  article-title: An exact test for population differentiation
  publication-title: Evolution
– volume: 6
  start-page: 305
  year: 2000
  end-page: 310
  article-title: Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T. tetrix: a project in progress
  publication-title: Wildlife Biology
– volume: 296
  start-page: 904
  year: 2002
  end-page: 907
  article-title: Mammal population losses and the extinction crisis
  publication-title: Science
– year: 1995
– volume: 72
  start-page: 333
  year: 2001
  end-page: 343
  article-title: Evidence for long‐distance dispersal in a sedentary passerine, (Artamidae)
  publication-title: Biological Journal of the Linnean Society
– year: 1991
– volume: 392
  start-page: 491
  year: 1998
  end-page: 494
  article-title: Inbreeding and extinction in a butterfly metapopulation
  publication-title: Nature
– volume: 76
  start-page: 379
  year: 1974
  end-page: 390
  article-title: Sampling variances of heterozygosity and genetic distance
  publication-title: Genetics
– year: 1993
– volume: 111
  start-page: 675
  year: 1985
  end-page: 689
  article-title: Population bottlenecks and non‐equilibrium models in population genetics. II. Number of alleles in small population that was formed by a recent bottleneck
  publication-title: Genetics
– volume: 90
  start-page: 502
  year: 1999
  end-page: 503
  article-title: Bottleneck: a computer program for detecting recent reductions in effective population size from allele frequency data
  publication-title: Journal of Heredity
– volume: 10
  start-page: 1633
  year: 2001
  end-page: 1644
  article-title: Microsatellite variation in the yellowhammer : population structure of a declining farmland bird
  publication-title: Molecular Ecology
– volume: 106
  start-page: 283
  year: 1972
  end-page: 292
  article-title: Genetic distances between populations
  publication-title: American Naturalist
– year: 1999
– volume: 6
  start-page: 151
  year: 1995
  ident: e_1_2_6_42_1
  article-title: Habitat requirements of capercaillie
  publication-title: Proceedings of the International Symposium on Grouse
– volume: 9
  start-page: 227
  year: 1995
  ident: e_1_2_6_7_1
  article-title: Inbreeding and extinction: a threshold effect
  publication-title: Conservation Biology
  doi: 10.1046/j.1523-1739.1995.09040792.x
– volume: 53
  start-page: 1989
  year: 1999
  ident: e_1_2_6_14_1
  article-title: Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability
  publication-title: Evolution
– ident: e_1_2_6_37_1
  doi: 10.1046/j.1471-8286.2002.00180.x
– ident: e_1_2_6_25_1
  doi: 10.1093/genetics/147.4.1943
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1558-5646.1975.tb00807.x
– ident: e_1_2_6_46_1
  doi: 10.5751/ES-00381-060106
– volume-title: Metapopulation Ecology
  year: 1999
  ident: e_1_2_6_13_1
  doi: 10.1093/oso/9780198540663.001.0001
– ident: e_1_2_6_36_1
– ident: e_1_2_6_47_1
  doi: 10.2981/wlb.2000.014
– ident: e_1_2_6_24_1
  doi: 10.1093/genetics/76.2.379
– volume-title: Die Alpen. Entstehung und Gefährdung Einer Europäischen Kulturlandschaft
  year: 1991
  ident: e_1_2_6_3_1
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1095-8312.1999.tb01159.x
– volume: 111
  start-page: 675
  year: 1985
  ident: e_1_2_6_21_1
  article-title: Population bottlenecks and non‐equilibrium models in population genetics. II. Number of alleles in small population that was formed by a recent bottleneck
  publication-title: Genetics
  doi: 10.1093/genetics/111.3.675
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1095-8312.2001.tb01319.x
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1523-1739.1998.96388.x
– ident: e_1_2_6_9_1
  doi: 10.1016/B978-012323445-2/50023-7
– ident: e_1_2_6_44_1
– ident: e_1_2_6_48_1
  doi: 10.1111/j.0014-3820.2001.tb00641.x
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1558-5646.1995.tb04456.x
– ident: e_1_2_6_22_1
  doi: 10.1086/282771
– ident: e_1_2_6_32_1
  doi: 10.1007/PL00006589
– ident: e_1_2_6_31_1
  doi: 10.1093/oxfordjournals.jhered.a111573
– ident: e_1_2_6_15_1
  doi: 10.1046/j.0173-9565.2003.00795.x
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1601-5223.1998.00133.x
– ident: e_1_2_6_39_1
  doi: 10.1017/CBO9780511623400
– ident: e_1_2_6_27_1
  doi: 10.1093/jhered/90.4.502
– volume: 144
  start-page: 383
  year: 1996
  ident: e_1_2_6_29_1
  article-title: On the potential for estimating the effective numbers of breeders from heterozygote‐excess in progeny
  publication-title: Genetics
  doi: 10.1093/genetics/144.1.383
– volume: 48
  start-page: 351
  year: 1992
  ident: e_1_2_6_12_1
  article-title: Performing the exact test of Hardy–Weinberg proportion for multiple alleles
  publication-title: Biometrics
– ident: e_1_2_6_20_1
  doi: 10.1046/j.1523-1739.2000.99345.x
– ident: e_1_2_6_5_1
  doi: 10.1093/genetics/144.4.2001
– ident: e_1_2_6_34_1
  doi: 10.1038/33136
– ident: e_1_2_6_8_1
  doi: 10.1046/j.1365-294X.2003.01702.x
– volume-title: arlequin, Version 2.000: a Software for Population Genetics Data Analysis.
  year: 2000
  ident: e_1_2_6_35_1
– ident: e_1_2_6_11_1
– ident: e_1_2_6_28_1
  doi: 10.1007/BF00264987
– ident: e_1_2_6_18_1
  doi: 10.1046/j.1365-294X.2001.01305.x
– volume-title: Metapopulations and Wildlife Conservation
  year: 1996
  ident: e_1_2_6_50_1
– volume: 3
  start-page: 272
  year: 1997
  ident: e_1_2_6_43_1
  article-title: The role of metapopulation concept in conservation of European woodland grouse. Abstract
  publication-title: Wildlife Biology
– ident: e_1_2_6_41_1
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1095-8312.1991.tb00558.x
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1095-8312.1999.tb01164.x
– volume-title: Die Auerhühner. Neue Brehm Bücherei.
  year: 1989
  ident: e_1_2_6_16_1
– ident: e_1_2_6_33_1
  doi: 10.1006/fgbi.1999.1174
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1523-1739.1998.96489.x
– volume: 3
  start-page: 1
  year: 2001
  ident: e_1_2_6_45_1
  article-title: Capercaillie BWP Update
  publication-title: The Journal of Birds of the Western Palearctic
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– volume-title: Biometry
  year: 1995
  ident: e_1_2_6_38_1
– ident: e_1_2_6_4_1
  doi: 10.1126/science.1069349
SSID ssj0013255
Score 1.9950556
Snippet In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1669
SubjectTerms Alps
Animals
Birds - genetics
capercaillie
dispersal
Ecosystem
Europe
Feathers
Genetic Drift
Genetics, Population
Geography
habitat fragmentation
Humans
metapopulation
Microsatellite Repeats
microsatellites
Population Density
Tetrao urogallus
Title Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline
URI https://api.istex.fr/ark:/67375/WNG-4BRGN19Z-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-294X.2002.01565.x
https://www.ncbi.nlm.nih.gov/pubmed/12207718
https://www.proquest.com/docview/18473743
https://www.proquest.com/docview/72065114
Volume 11
WOSCitedRecordID wos000177775600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2ZIO-rPuut67Tw9ibiy3Lkv3YpUn3sIVRVhYGQ0jyCco6J6TtaP_7nWQna6GFMvYmsM_I0p30k-7jB_BOFKIhHG7T3KBNhZGWTMrXKVdeYWGc5c5Esgk1nVazWf2lj38KuTBdfYj1hVuwjLheBwM3tmMhyWJ121WEVi1mMdJgNyQFl7uEJ4ec1LgcwHD_cHL06YpPIXKgEmbntPhURR_X0_s4b_zWtc1qGMb94iYkeh3Yxp1psvk__-kxPOrxKdvrFOoJ3MP2KTzsGCsvqTWOVa4vn8GPkVng0plwX4PsuGWEJNneCXWFkU6G1EiGPWMpm3v2C8_MYk0WxrqytedLZKZt2JUHDYZcTXwOR5Px19HHtOdqSB1Nd5lK9LmUVWaEIcxZlbyRora-dNI46ekQ16iSi9LZAjGT1BJcoCTAoHLDc8yKFzBo5y1uAZOisVzVvvDOCl974xqCLZW0irA1ljwBtZoU7fpC5oFP40RHh7oIyWdhGHUYxkCzyXUcRn2RQL6WXHTFPO4g8z7O-1rALH-GYDhV6m_TAy0-HB5M8_q7lgm8XSmGJhMNfhfT4vz8VNMhmt4Xxe1vKE5IkE6mCbzsNOpv9zjPFOGHBGRUnDv3W38ej0Lr1b8KvoaNyHwT4-m2YUB6gW_ggft9dny63IH7albt9Cb2B1n5IXI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kp-iL39X1q3kQ37beZrPJ7mM971rxukhp8RAkZLMTKNa949pK-987yaZnCxWK-BbYzZKdzCS_ZD5-AG9FLlrC4U2aGWxSYWRDJuWqlCunMDe24dYEsglV1-VsVn2JdEA-F6avD7G6cPOWEdZrb-D-Qvp9dEv2Vh5CtCoxC6EGmz4ruNgkQDkQpFWk7oOPe5OD6SWnQiBBJdDOafUp8xjYE52c137rym418II_uw6KXkW2YWuaPPivP_UQ7keEyrZ6lXoEt7B7DHd6zspzao1DnevzJ_B9ZBa4tMbf2CA77BhhSbZ1RGNhpJU-OZJh5Cxlc8d-4olZrOjCWF-49nSJzHQtu_SgRZ-tiU_hYDLeH-2kka0htTThRSrRZVKWQyMMoc6y4K0UVeMKK42Vjo5xrSq4KGyTIw4ltQQXKAkyqMzwDIf5Oqx18w6fA5OibbiqXO5sI1zljG0JuJSyUYSuseAJqItZ0TaWMveMGkc6uNSFTz_zYtRejJ5ok-sgRn2WQLbquejLedygz7sw8asOZvnDh8OpQn-tt7X4sLddZ9U3LRPYuNAMTUbqPS-mw_npsaZjNL0v8r-_oThhQTqbJvCsV6k_w-N8qAhBJCCD5tx43Hp3PPKtF__acQPu7uzvTvX0U_35JdwLPDghuu4VrJGO4Gu4bX-dHB4v30RL-w3rtiR6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_kTsUXv7XrV_Mgvm29zWaT3cd6vatiXUqxeAgSstkJFNu949pK-987yaZnCxWK-BbYzZKdzCS_ZD5-AG9FLlrC4U2aGWxSYWRDJuWqlCunMDe24dYEsglV1-VsVu1GOiCfC9PXh1hduHnLCOu1N3BctO59dEv2Vh5CtCoxC6EGGz4ruNggQDkUnlNmAMOtven-ziWnQiBBJdDOafUp8xjYE52c137rym419II_uw6KXkW2YWuaPvivP_UQ7keEyjZ7lXoEt7B7DHd6zspzak1CnevzJ_BjbBa4tMbf2CA76BhhSbZ5SGNhpJU-OZJh5Cxlc8eO8MQsVnRhrC9ce7pEZrqWXXrQos_WxKewP518HX9MI1tDamnCi1Siy6QsR0YYQp1lwVspqsYVVhorHR3jWlVwUdgmRxxJagkuUBJkUJnhGY7yZzDo5h2uAZOibbiqXO5sI1zljG0JuJSyUYSuseAJqItZ0TaWMveMGoc6uNSFTz_zYtRejJ5ok-sgRn2WQLbquejLedygz7sw8asOZvnTh8OpQn-rt7X4sLddZ9V3LRNYv9AMTUbqPS-mw_npsaZjNL0v8r-_oThhQTqbJvC8V6k_w-N8pAhBJCCD5tx43PrLZOxbL_614zrc3d2a6p1P9eeXcC_Q4ITgulcwIBXB13Db_jo5OF6-iYb2Gz5wI_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capercaillie+in+the+Alps%3A+genetic+evidence+of+metapopulation+structure+and+population+decline&rft.jtitle=Molecular+ecology&rft.au=Segelbacher%2C+G&rft.au=Storch%2C+I&rft.date=2002-09-01&rft.issn=0962-1083&rft.volume=11&rft.issue=9&rft.spage=1669&rft.epage=1677&rft_id=info:doi/10.1046%2Fj.1365-294X.2002.01565.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon