Narrow Band FLIP for Liquid Simulations
The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small‐scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, becau...
Saved in:
| Published in: | Computer graphics forum Vol. 35; no. 2; pp. 225 - 232 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.05.2016
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small‐scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naïve realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation. |
|---|---|
| AbstractList | The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small-scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naive realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation. The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small‐scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naïve realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation. |
| Author | Ando, Ryoichi Wojtan, Chris Thuerey, Nils Westermann, Rüdiger Ferstl, Florian |
| Author_xml | – sequence: 1 givenname: Florian surname: Ferstl fullname: Ferstl, Florian organization: Technische Universität München – sequence: 2 givenname: Ryoichi surname: Ando fullname: Ando, Ryoichi organization: IST Austria – sequence: 3 givenname: Chris surname: Wojtan fullname: Wojtan, Chris organization: IST Austria – sequence: 4 givenname: Rüdiger surname: Westermann fullname: Westermann, Rüdiger organization: Technische Universität München – sequence: 5 givenname: Nils surname: Thuerey fullname: Thuerey, Nils organization: Technische Universität München |
| BookMark | eNp1kE1PwkAQhjcGEwE9-A-aeFAPhd12290elQiSNIgRA7fNsh9msbSw2wb595YPPRCdy8zheSYzbws08iJXAFwj2EF1dcWH7qCABtEZaCIcE5_GUdIATYjqmcAougAt5xYQQkziqAluR9zaYuM98lx6_XQ49nRhvdSsKyO9N7OsMl6aIneX4FzzzKmrY2-D9_7TpPfspy-DYe8h9QUOceTHAklI-FwpKhWNqaAygaHWkUQ8wTKGUnHIMeFSJVrMFdZSo7nQGoVECz0P2-DusHdli3WlXMmWxgmVZTxXReUYql_DcYADWKM3J-iiqGxeX8cQSRClSZjsqO6BErZwzirNhCn3P5WWm4whyHbBsTo4tg-uNu5PjJU1S263f7LH7RuTqe3_IOsN-j-GfzCMK9XXr8HtJ4tJSCI2HQ3YoDeZTWd0zF7Dbw2QjWg |
| CitedBy_id | crossref_primary_10_1109_TVCG_2018_2886322 crossref_primary_10_1111_cgf_15022 crossref_primary_10_1111_cgf_14010 crossref_primary_10_1109_ACCESS_2020_3008006 crossref_primary_10_1007_s41095_023_0368_y crossref_primary_10_1109_TVCG_2022_3211414 crossref_primary_10_1111_cgf_13522 crossref_primary_10_1111_cgf_13523 crossref_primary_10_1016_j_cag_2020_03_001 crossref_primary_10_1002_cav_1901 crossref_primary_10_1145_3272127_3275095 crossref_primary_10_1016_j_cag_2018_08_005 crossref_primary_10_1145_3386569_3392438 crossref_primary_10_1007_s13319_018_0173_z crossref_primary_10_1145_3658124 crossref_primary_10_1088_1742_6596_2074_1_012007 crossref_primary_10_1155_2021_5545051 crossref_primary_10_1145_3730399 crossref_primary_10_1145_3306346_3322947 crossref_primary_10_1109_TVCG_2018_2873375 crossref_primary_10_1145_3386569_3392473 crossref_primary_10_1016_j_gmod_2017_09_001 crossref_primary_10_1109_ACCESS_2021_3091726 crossref_primary_10_1145_3618377 crossref_primary_10_1016_j_cag_2018_10_007 crossref_primary_10_1111_cgf_13620 crossref_primary_10_1111_cgf_14478 crossref_primary_10_1145_3476576_3476659 crossref_primary_10_1145_3414685_3417794 crossref_primary_10_1111_cgf_14638 crossref_primary_10_1002_cav_1967 crossref_primary_10_1145_3450626_3459865 crossref_primary_10_1145_3130800_3130878 crossref_primary_10_1145_3092818 crossref_primary_10_3390_w12010215 crossref_primary_10_1109_TVCG_2019_2947437 crossref_primary_10_1111_cgf_13350 crossref_primary_10_1111_cgf_13351 crossref_primary_10_1007_s11432_018_9518_3 crossref_primary_10_1111_cgf_13510 crossref_primary_10_1145_3528223_3530066 crossref_primary_10_1145_3072959_3092818 crossref_primary_10_1145_3480147 crossref_primary_10_1145_3730854 crossref_primary_10_1145_3522608 crossref_primary_10_3390_w10060811 crossref_primary_10_1002_cav_1835 crossref_primary_10_3390_jmse12091498 crossref_primary_10_1016_j_gmod_2019_101028 crossref_primary_10_1109_TVCG_2018_2883628 crossref_primary_10_1145_3072959_3073633 |
| Cites_doi | 10.1145/2751541 10.1109/TVCG.2008.37 10.1145/383259.383261 10.1109/TVCG.2012.86 10.1145/2508363.2508430 10.1145/2461912.2461948 10.1016/j.compstruc.2004.04.024 10.1111/cgf.12489 10.1109/TVCG.2012.87 10.1145/2766935 10.1145/2010324.1964976 10.1006/gmip.1996.0039 10.1145/2461912.2461982 10.1145/2159516.2159522 10.1145/1073204.1073298 10.1109/TVCG.2015.2449303 10.1145/2508363.2508429 10.1145/2366145.2366167 10.1145/311535.311548 10.1201/b10635 10.1111/cgf.12324 10.1145/2019406.2019411 10.1145/2786784.2786798 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12825 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 232 |
| ExternalDocumentID | 4069770281 10_1111_cgf_12825 CGF12825 ark_67375_WNG_GCTXWX8P_Q |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c4345-6c1d07abee8de868c8d903ff5d1a94d60dea0a47ade9fcbe4fdf1bcff137fcfb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377222200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Nov 09 10:40:27 EST 2025 Fri Jul 25 23:43:51 EDT 2025 Sat Nov 29 07:52:06 EST 2025 Tue Nov 18 21:01:46 EST 2025 Wed Jan 22 16:36:04 EST 2025 Tue Nov 11 03:34:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4345-6c1d07abee8de868c8d903ff5d1a94d60dea0a47ade9fcbe4fdf1bcff137fcfb3 |
| Notes | ArticleID:CGF12825 istex:0C9708ABB9EBEA5DBBADF4450767C967BB6A3A11 Supporting Information ark:/67375/WNG-GCTXWX8P-Q SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1791889390 |
| PQPubID | 30877 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1825462420 proquest_journals_1791889390 crossref_citationtrail_10_1111_cgf_12825 crossref_primary_10_1111_cgf_12825 wiley_primary_10_1111_cgf_12825_CGF12825 istex_primary_ark_67375_WNG_GCTXWX8P_Q |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05 May 2016 2016-05-00 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Ando R., Thuerey N., Wojtan C.: A stream function solver for liquid simulations. ACM Transactions on Graphics 34, 4 (2015), 53:1-53:9. 2 Um K., Baek S., Han J.: Advanced hybrid particle-grid method with sub-grid particle correction. Computer Graphics Forum 33, 7 (Oct. 2014), 209-218. 2, 3 Boyd L., Bridson R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. on Graphics 31, 2 (2012), 16:1-16:12. 2, 3 Stomakhin A., Schroeder C., Chai L., Teran J., Selle A.: A material point method for snow simulation. ACM Transactions on Graphics 32, 4 (2013), 102. 2 Yue Y., Smith B., Batty C., Zheng C., Grinspun E.: Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics 34, 5 (Nov. 2015), 160:1-160:20. 2 Ando R., Thuerey N., Tsuruno R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. on Visualization and Computer Graphics 18 (8) (2012), 1202-1214. 2, 3, 6, 7 Solenthaler B., Gross M.: Two-scale particle simulation. ACM Transactions on Graphics 30, 4 (2011), 81:1-81:8. 2 Golas A., Narain R., Sewall J., Krajcevski P., Dubey P., Lin M.: Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6(2012), 148:1-148:9. 2 Ando R., Thuerey N., Wojtan C.: Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics 32, 4 (2013), 103:1-103:10. 2 Chentanez N., Mueller-Fischer M.: A multigrid fluid pressure solver handling separating solid boundary conditions. IEEE Trans. Visualization and Comp. Graph. 18, 8 (2012), 1191-1201. 6 Losasso F., Talton J., Kwatra N., Fedkiw R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. on Visualization and Computer Graphics 14, 4 (2008), 797-804. 2 Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 2 Gerszewski D., Bargteil A. W.: Physics-based animation of large-scale splashing liquids. ACM Transactions on Graphics 32, 6 (2013), 185:1-185:6. 3 Enright D., Losasso F., Fedkiw R.: A fast and accurate semi-Lagrangian particle level set method. Computers & Structures 83, 6-7(2005), 479-490. 2 Pan Z., Huang J., Tong Y., Zheng C., Bao H.: Interactive localized liquid motion editing. ACM Transactions on Graphics 32, 6 (2013), 184:1-184:10. 2 Cornelis J., Ihmsen M., Peer A., Teschner M.: IISPH-FLIP for incompressible fluids. Computer Graphics Forum 33, 2 (2014), 255-262. 2 Bridson R.: Fluid Simulation for Computer Graphics. AK Peters/CRC Press, 2008. 2, 3 Foster N., Metaxas D.: Realistic animation of liquids. Graph. Models and Img. Proc. 58, 5 (1996), 471-483. 2 2015; 34 2001 2013; 32 2011 2008; 14 2008 2011; 30 2006 2012; 18 2015 2014 2003 2013 2005; 83 1996; 58 2012; 31 2014; 33 2005; 24 1999 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 Bailey D. (e_1_2_6_7_2) 2015 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
| References_xml | – reference: Pan Z., Huang J., Tong Y., Zheng C., Bao H.: Interactive localized liquid motion editing. ACM Transactions on Graphics 32, 6 (2013), 184:1-184:10. 2 – reference: Cornelis J., Ihmsen M., Peer A., Teschner M.: IISPH-FLIP for incompressible fluids. Computer Graphics Forum 33, 2 (2014), 255-262. 2 – reference: Gerszewski D., Bargteil A. W.: Physics-based animation of large-scale splashing liquids. ACM Transactions on Graphics 32, 6 (2013), 185:1-185:6. 3 – reference: Losasso F., Talton J., Kwatra N., Fedkiw R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. on Visualization and Computer Graphics 14, 4 (2008), 797-804. 2 – reference: Yue Y., Smith B., Batty C., Zheng C., Grinspun E.: Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics 34, 5 (Nov. 2015), 160:1-160:20. 2 – reference: Stomakhin A., Schroeder C., Chai L., Teran J., Selle A.: A material point method for snow simulation. ACM Transactions on Graphics 32, 4 (2013), 102. 2 – reference: Ando R., Thuerey N., Wojtan C.: A stream function solver for liquid simulations. ACM Transactions on Graphics 34, 4 (2015), 53:1-53:9. 2 – reference: Bridson R.: Fluid Simulation for Computer Graphics. AK Peters/CRC Press, 2008. 2, 3 – reference: Golas A., Narain R., Sewall J., Krajcevski P., Dubey P., Lin M.: Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6(2012), 148:1-148:9. 2 – reference: Um K., Baek S., Han J.: Advanced hybrid particle-grid method with sub-grid particle correction. Computer Graphics Forum 33, 7 (Oct. 2014), 209-218. 2, 3 – reference: Ando R., Thuerey N., Tsuruno R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. on Visualization and Computer Graphics 18 (8) (2012), 1202-1214. 2, 3, 6, 7 – reference: Foster N., Metaxas D.: Realistic animation of liquids. Graph. Models and Img. Proc. 58, 5 (1996), 471-483. 2 – reference: Solenthaler B., Gross M.: Two-scale particle simulation. ACM Transactions on Graphics 30, 4 (2011), 81:1-81:8. 2 – reference: Ando R., Thuerey N., Wojtan C.: Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics 32, 4 (2013), 103:1-103:10. 2 – reference: Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 2 – reference: Boyd L., Bridson R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. on Graphics 31, 2 (2012), 16:1-16:12. 2, 3 – reference: Enright D., Losasso F., Fedkiw R.: A fast and accurate semi-Lagrangian particle level set method. Computers & Structures 83, 6-7(2005), 479-490. 2 – reference: Chentanez N., Mueller-Fischer M.: A multigrid fluid pressure solver handling separating solid boundary conditions. IEEE Trans. Visualization and Comp. Graph. 18, 8 (2012), 1191-1201. 6 – volume: 31 start-page: 16:1 issue: 2 year: 2012 end-page: 16:12 article-title: MultiFLIP for energetic two‐phase fluid simulation publication-title: ACM Trans. on Graphics – start-page: 2 year: 2006 article-title: A mesh‐particle model for fluid animation – volume: 31 start-page: 148:1 issue: 6 year: 2012 end-page: 148:9 article-title: Large‐scale fluid simulation using velocity‐vorticity domain decomposition publication-title: ACM Trans. Graph. – start-page: 219 year: 2008 end-page: 228 article-title: Accurate viscous free surfaces for buckling, coiling, and rotating liquids – start-page: 2 year: 2008 – volume: 83 start-page: 479 issue: 6–7 year: 2005 end-page: 490 article-title: A fast and accurate semi‐Lagrangian particle level set method publication-title: Computers & Structures – volume: 14 start-page: 797 issue: 4 year: 2008 end-page: 804 article-title: Two‐way coupled SPH and particle level set fluid simulation publication-title: IEEE Trans. on Visualization and Computer Graphics – volume: 33 start-page: 209 issue: 7 year: 2014 end-page: 218 article-title: Advanced hybrid particle‐grid method with sub‐grid particle correction publication-title: Computer Graphics Forum – volume: 34 start-page: 160:1 issue: 5 year: 2015 end-page: 160:20 article-title: Continuum foam: A material point method for shear‐dependent flows publication-title: ACM Transactions on Graphics – volume: 24 start-page: 965 issue: 3 year: 2005 end-page: 972 article-title: Animating sand as a fluid publication-title: ACM Transactions on Graphics – start-page: 285:1 year: 2015 end-page: 285:1 article-title: Distributing liquids using OpenVDB – start-page: 33 year: 2011 end-page: 42 article-title: Hybrid smoothed particle hydrodynamics – volume: 32 start-page: 103:1 issue: 4 year: 2013 end-page: 103:10 article-title: Highly adaptive liquid simulations on tetrahedral meshes publication-title: ACM Transactions on Graphics – start-page: 21 year: 2014 end-page: 42 article-title: SPH fluids in computer graphics – start-page: 157 year: 2015 end-page: 163 article-title: A material point method for viscoelastic fluids, foams and sponges – volume: 33 start-page: 255 issue: 2 year: 2014 end-page: 262 article-title: IISPH‐FLIP for incompressible fluids publication-title: Computer Graphics Forum – start-page: 121 year: 1999 end-page: 128 article-title: Stable fluids – volume: 18 start-page: 1202 issue: 8 year: 2012 end-page: 1214 article-title: Preserving fluid sheets with adaptively sampled anisotropic particles publication-title: IEEE Trans. on Visualization and Computer Graphics – start-page: 154 year: 2003 end-page: 159 article-title: Particle‐based fluid simulation for interactive applications – start-page: 23 year: 2001 end-page: 30 article-title: Practical animation of liquids – volume: 34 start-page: 53:1 issue: 4 year: 2015 end-page: 53:9 article-title: A stream function solver for liquid simulations publication-title: ACM Transactions on Graphics – start-page: 1 year: 2013 article-title: Liquids in “The Croods” – volume: 32 start-page: 184:1 issue: 6 year: 2013 end-page: 184:10 article-title: Interactive localized liquid motion editing publication-title: ACM Transactions on Graphics – start-page: 6 year: 2015 article-title: MantaFlow – volume: 18 start-page: 1191 issue: 8 year: 2012 end-page: 1201 article-title: A multigrid fluid pressure solver handling separating solid boundary conditions publication-title: IEEE Trans. Visualization and Comp. Graph. – start-page: 1 year: 2014 end-page: 10 article-title: Coupling 3D Eulerian, heightfield and particle methods for interactive simulation of large scale liquid phenomena – volume: 30 start-page: 81:1 issue: 4 year: 2011 end-page: 81:8 article-title: Two‐scale particle simulation publication-title: ACM Transactions on Graphics – volume: 58 start-page: 471 issue: 5 year: 1996 end-page: 483 article-title: Realistic animation of liquids publication-title: Graph. Models and Img. Proc. – volume: 32 start-page: 102 issue: 4 year: 2013 article-title: A material point method for snow simulation publication-title: ACM Transactions on Graphics – volume: 32 start-page: 185:1 issue: 6 year: 2013 end-page: 185:6 article-title: Physics‐based animation of large‐scale splashing liquids publication-title: ACM Transactions on Graphics – ident: e_1_2_6_5_2 – ident: e_1_2_6_30_2 doi: 10.1145/2751541 – ident: e_1_2_6_19_2 doi: 10.1109/TVCG.2008.37 – ident: e_1_2_6_14_2 doi: 10.1145/383259.383261 – start-page: 285:1 volume-title: ACM SIGGRAPH 2015 Talks year: 2015 ident: e_1_2_6_7_2 – ident: e_1_2_6_11_2 doi: 10.1109/TVCG.2012.86 – ident: e_1_2_6_16_2 doi: 10.1145/2508363.2508430 – ident: e_1_2_6_27_2 doi: 10.1145/2461912.2461948 – ident: e_1_2_6_8_2 – ident: e_1_2_6_13_2 doi: 10.1016/j.compstruc.2004.04.024 – ident: e_1_2_6_29_2 doi: 10.1111/cgf.12489 – ident: e_1_2_6_2_2 doi: 10.1109/TVCG.2012.87 – ident: e_1_2_6_4_2 doi: 10.1145/2766935 – ident: e_1_2_6_20_2 – ident: e_1_2_6_25_2 doi: 10.1145/2010324.1964976 – ident: e_1_2_6_26_2 – ident: e_1_2_6_15_2 doi: 10.1006/gmip.1996.0039 – ident: e_1_2_6_3_2 doi: 10.1145/2461912.2461982 – ident: e_1_2_6_18_2 – ident: e_1_2_6_6_2 doi: 10.1145/2159516.2159522 – ident: e_1_2_6_31_2 doi: 10.1145/1073204.1073298 – ident: e_1_2_6_12_2 doi: 10.1109/TVCG.2015.2449303 – ident: e_1_2_6_21_2 doi: 10.1145/2508363.2508429 – ident: e_1_2_6_17_2 doi: 10.1145/2366145.2366167 – ident: e_1_2_6_22_2 – ident: e_1_2_6_28_2 doi: 10.1145/311535.311548 – ident: e_1_2_6_9_2 doi: 10.1201/b10635 – ident: e_1_2_6_10_2 doi: 10.1111/cgf.12324 – ident: e_1_2_6_24_2 doi: 10.1145/2019406.2019411 – ident: e_1_2_6_23_2 doi: 10.1145/2786784.2786798 |
| SSID | ssj0004765 |
| Score | 2.4509685 |
| Snippet | The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 225 |
| SubjectTerms | Analysis Categories and Subject Descriptors (according to ACM CCS) Computational fluid dynamics Computer simulation Coupling Fluid mechanics Fluids I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Animation Liquid surfaces Liquids Sampling Simulation Studies Visual Volume |
| Title | Narrow Band FLIP for Liquid Simulations |
| URI | https://api.istex.fr/ark:/67375/WNG-GCTXWX8P-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12825 https://www.proquest.com/docview/1791889390 https://www.proquest.com/docview/1825462420 |
| Volume | 35 |
| WOSCitedRecordID | wos000377222200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9EUXUSyTJbpMNnrSaepBStcXels0-pKiptlb8-e7mZQsKgrdAJjC7M7P7TXb2G4BD0y0axaZKXBFkY4Zcm7hSaSCn1dbLnxf6WbOJoNUivV7YnoGz4i5Mxg9R_nAzkZGu1ybAWTyaCHL-qE5dc_NyFqqe9ltcgerlXdS9-b4WGfj1gtrbkMbkxEKmkKf8eGo7qpqZ_ZzCmpOINd1yoqV_KbsMiznStM4z11iBGZmswsIE_-AaHLdSCkbrgiXCinSOb2kIa93038Z9Yd33X_LWXqN16EZXnca1nXdOsDlGuG773BVOwGIpiZDEJ5yI0EFK1YXLQix8R0jmMBwwIUPFY4mVUG7MlXJRoLiK0QZUkkEiN8HydE6o01hHoMDBKBaEKS4cHawilp4X4hqcFBNIeU4rbrpbPNMivdBjp-nYa3BQir5mXBo_CR2lVigl2PDJFJ8FdfrQatJmo9N76JE2va3BTmEmmsfdiBqyVaIhWOjUYL98rSPGHIOwRA7GWibtAaChiZY5SY32uza00YzSh62_i27DvEZVflYVuQOV9-FY7sIc_3jvj4Z7uZN-AYlx594 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED91LdLGA5-b1tFBQIj1JVNSO4kj8cIKaRElKqxV82Y5_piqjRT6MfHnY-eLVtokJN4i5SKdfXf275zz7wDemm7RKDVV4oogGzPk2sSVSgM5rbZe_nqhXzSbCOKYJEk4bsD76i5MwQ9RH7iZyMjXaxPg5kB6K8r5lTp3zdXLPWhh7UZeE1ofv0fT0d97kYHvVdzehjWmZBYylTz1xzv7UctM7e8dsLkNWfM9J3r8f9o-gUcl1rQ-FM7xFBoyewYPtxgIn8NZnJMwWhcsE1aks3xLg1hrNP-1mQvrcv6jbO61OoRp9GnSH9pl7wSbY4Q92-eucAKWSkmEJD7hRIQOUsoTLgux8B0hmcNwwIQMFU8lVkK5KVfKRYHiKkVH0MwWmTwGq6ezQp3IOgIFDkapIExx4ehwFans9ULchm41g5SXxOKmv8UNrRIMPXaaj70Nb2rRnwWbxl1C73Iz1BJseW3KzwKPzuIBHfQnySwhY_qtDZ3KTrSMvBU1dKtEg7DQacPr-rWOGfMjhGVysdEyeRcADU60TDe32v3a0P4gyh9O_l30FewPJ19HdPQ5_vICDjTG8osayQ4018uNPIUH_HY9Xy1flh77B3N-684 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-tAEB48rRz0wdtRrNco4vElknQ3yQZ80WqqWEK9Yd-WzV6kqFFbK_58d3OzggcO-BbIJMzu7Ox-k8x8A7BjukWjxGSJK4JszJBrE1cqDeS02nr7a4Z-3mwiiGPS64XdCTgoa2Fyfojqg5vxjGy_Ng4un4Ua83J-p_ZdU3r5C-rY0--sQf34MrrpfNZFBr5Xcnsb1piCWchk8lQPfzmP6mZq37-AzXHImp050ezPtJ2DmQJrWof54piHCZkuwPQYA-Ef-BtnJIzWEUuFFeko39Ig1ur0X0Z9YV31H4vmXsNFuIlOrlundtE7weYYYc_2uSucgCVSEiGJTzgRoYOU8oTLQix8R0jmMBwwIUPFE4mVUG7ClXJRoLhK0BLU0qdULoPV1FGhDmQdgQIHo0QQprhwtLuKRDabIW7AXjmDlBfE4qa_xQMtAww9dpqNvQHblehzzqbxndBuZoZKgg3uTfpZ4NHbuE3brevebY906UUD1ko70cLzhtTQrRINwkKnAVvVbe0z5kcIS-XTSMtkXQA0ONEye5nV_q0NbbWj7GLl_0U34Xf3OKKds_h8FaY0xPLzFMk1qL0ORnIdJvnba3842CgW7AcbmutJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Narrow+Band+FLIP+for+Liquid+Simulations&rft.jtitle=Computer+graphics+forum&rft.au=Ferstl%2C+Florian&rft.au=Ando%2C+Ryoichi&rft.au=Wojtan%2C+Chris&rft.au=Westermann%2C+Rudiger&rft.date=2016-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=2&rft.spage=225&rft_id=info:doi/10.1111%2Fcgf.12825&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4069770281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |