Narrow Band FLIP for Liquid Simulations

The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small‐scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, becau...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 35; číslo 2; s. 225 - 232
Hlavní autoři: Ferstl, Florian, Ando, Ryoichi, Wojtan, Chris, Westermann, Rüdiger, Thuerey, Nils
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.05.2016
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small‐scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naïve realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation.
AbstractList The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small-scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naive realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation.
The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small‐scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naïve realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation.
Author Ando, Ryoichi
Wojtan, Chris
Thuerey, Nils
Westermann, Rüdiger
Ferstl, Florian
Author_xml – sequence: 1
  givenname: Florian
  surname: Ferstl
  fullname: Ferstl, Florian
  organization: Technische Universität München
– sequence: 2
  givenname: Ryoichi
  surname: Ando
  fullname: Ando, Ryoichi
  organization: IST Austria
– sequence: 3
  givenname: Chris
  surname: Wojtan
  fullname: Wojtan, Chris
  organization: IST Austria
– sequence: 4
  givenname: Rüdiger
  surname: Westermann
  fullname: Westermann, Rüdiger
  organization: Technische Universität München
– sequence: 5
  givenname: Nils
  surname: Thuerey
  fullname: Thuerey, Nils
  organization: Technische Universität München
BookMark eNp1kE1PwkAQhjcGEwE9-A-aeFAPhd12290elQiSNIgRA7fNsh9msbSw2wb595YPPRCdy8zheSYzbws08iJXAFwj2EF1dcWH7qCABtEZaCIcE5_GUdIATYjqmcAougAt5xYQQkziqAluR9zaYuM98lx6_XQ49nRhvdSsKyO9N7OsMl6aIneX4FzzzKmrY2-D9_7TpPfspy-DYe8h9QUOceTHAklI-FwpKhWNqaAygaHWkUQ8wTKGUnHIMeFSJVrMFdZSo7nQGoVECz0P2-DusHdli3WlXMmWxgmVZTxXReUYql_DcYADWKM3J-iiqGxeX8cQSRClSZjsqO6BErZwzirNhCn3P5WWm4whyHbBsTo4tg-uNu5PjJU1S263f7LH7RuTqe3_IOsN-j-GfzCMK9XXr8HtJ4tJSCI2HQ3YoDeZTWd0zF7Dbw2QjWg
CitedBy_id crossref_primary_10_1109_TVCG_2018_2886322
crossref_primary_10_1111_cgf_15022
crossref_primary_10_1111_cgf_14010
crossref_primary_10_1109_ACCESS_2020_3008006
crossref_primary_10_1007_s41095_023_0368_y
crossref_primary_10_1109_TVCG_2022_3211414
crossref_primary_10_1111_cgf_13522
crossref_primary_10_1111_cgf_13523
crossref_primary_10_1016_j_cag_2020_03_001
crossref_primary_10_1002_cav_1901
crossref_primary_10_1145_3272127_3275095
crossref_primary_10_1016_j_cag_2018_08_005
crossref_primary_10_1145_3386569_3392438
crossref_primary_10_1007_s13319_018_0173_z
crossref_primary_10_1145_3658124
crossref_primary_10_1088_1742_6596_2074_1_012007
crossref_primary_10_1155_2021_5545051
crossref_primary_10_1145_3730399
crossref_primary_10_1145_3306346_3322947
crossref_primary_10_1109_TVCG_2018_2873375
crossref_primary_10_1145_3386569_3392473
crossref_primary_10_1016_j_gmod_2017_09_001
crossref_primary_10_1109_ACCESS_2021_3091726
crossref_primary_10_1145_3618377
crossref_primary_10_1016_j_cag_2018_10_007
crossref_primary_10_1111_cgf_13620
crossref_primary_10_1111_cgf_14478
crossref_primary_10_1145_3476576_3476659
crossref_primary_10_1145_3414685_3417794
crossref_primary_10_1111_cgf_14638
crossref_primary_10_1002_cav_1967
crossref_primary_10_1145_3450626_3459865
crossref_primary_10_1145_3130800_3130878
crossref_primary_10_1145_3092818
crossref_primary_10_3390_w12010215
crossref_primary_10_1109_TVCG_2019_2947437
crossref_primary_10_1111_cgf_13350
crossref_primary_10_1111_cgf_13351
crossref_primary_10_1007_s11432_018_9518_3
crossref_primary_10_1111_cgf_13510
crossref_primary_10_1145_3528223_3530066
crossref_primary_10_1145_3072959_3092818
crossref_primary_10_1145_3480147
crossref_primary_10_1145_3730854
crossref_primary_10_1145_3522608
crossref_primary_10_3390_w10060811
crossref_primary_10_1002_cav_1835
crossref_primary_10_3390_jmse12091498
crossref_primary_10_1016_j_gmod_2019_101028
crossref_primary_10_1109_TVCG_2018_2883628
crossref_primary_10_1145_3072959_3073633
Cites_doi 10.1145/2751541
10.1109/TVCG.2008.37
10.1145/383259.383261
10.1109/TVCG.2012.86
10.1145/2508363.2508430
10.1145/2461912.2461948
10.1016/j.compstruc.2004.04.024
10.1111/cgf.12489
10.1109/TVCG.2012.87
10.1145/2766935
10.1145/2010324.1964976
10.1006/gmip.1996.0039
10.1145/2461912.2461982
10.1145/2159516.2159522
10.1145/1073204.1073298
10.1109/TVCG.2015.2449303
10.1145/2508363.2508429
10.1145/2366145.2366167
10.1145/311535.311548
10.1201/b10635
10.1111/cgf.12324
10.1145/2019406.2019411
10.1145/2786784.2786798
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12825
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 232
ExternalDocumentID 4069770281
10_1111_cgf_12825
CGF12825
ark_67375_WNG_GCTXWX8P_Q
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4345-6c1d07abee8de868c8d903ff5d1a94d60dea0a47ade9fcbe4fdf1bcff137fcfb3
IEDL.DBID DRFUL
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377222200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 10:40:27 EST 2025
Fri Jul 25 23:43:51 EDT 2025
Sat Nov 29 07:52:06 EST 2025
Tue Nov 18 21:01:46 EST 2025
Wed Jan 22 16:36:04 EST 2025
Tue Nov 11 03:34:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4345-6c1d07abee8de868c8d903ff5d1a94d60dea0a47ade9fcbe4fdf1bcff137fcfb3
Notes ArticleID:CGF12825
istex:0C9708ABB9EBEA5DBBADF4450767C967BB6A3A11
Supporting Information
ark:/67375/WNG-GCTXWX8P-Q
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1791889390
PQPubID 30877
PageCount 8
ParticipantIDs proquest_miscellaneous_1825462420
proquest_journals_1791889390
crossref_citationtrail_10_1111_cgf_12825
crossref_primary_10_1111_cgf_12825
wiley_primary_10_1111_cgf_12825_CGF12825
istex_primary_ark_67375_WNG_GCTXWX8P_Q
PublicationCentury 2000
PublicationDate 2016-05
May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Ando R., Thuerey N., Wojtan C.: A stream function solver for liquid simulations. ACM Transactions on Graphics 34, 4 (2015), 53:1-53:9. 2
Um K., Baek S., Han J.: Advanced hybrid particle-grid method with sub-grid particle correction. Computer Graphics Forum 33, 7 (Oct. 2014), 209-218. 2, 3
Boyd L., Bridson R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. on Graphics 31, 2 (2012), 16:1-16:12. 2, 3
Stomakhin A., Schroeder C., Chai L., Teran J., Selle A.: A material point method for snow simulation. ACM Transactions on Graphics 32, 4 (2013), 102. 2
Yue Y., Smith B., Batty C., Zheng C., Grinspun E.: Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics 34, 5 (Nov. 2015), 160:1-160:20. 2
Ando R., Thuerey N., Tsuruno R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. on Visualization and Computer Graphics 18 (8) (2012), 1202-1214. 2, 3, 6, 7
Solenthaler B., Gross M.: Two-scale particle simulation. ACM Transactions on Graphics 30, 4 (2011), 81:1-81:8. 2
Golas A., Narain R., Sewall J., Krajcevski P., Dubey P., Lin M.: Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6(2012), 148:1-148:9. 2
Ando R., Thuerey N., Wojtan C.: Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics 32, 4 (2013), 103:1-103:10. 2
Chentanez N., Mueller-Fischer M.: A multigrid fluid pressure solver handling separating solid boundary conditions. IEEE Trans. Visualization and Comp. Graph. 18, 8 (2012), 1191-1201. 6
Losasso F., Talton J., Kwatra N., Fedkiw R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. on Visualization and Computer Graphics 14, 4 (2008), 797-804. 2
Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 2
Gerszewski D., Bargteil A. W.: Physics-based animation of large-scale splashing liquids. ACM Transactions on Graphics 32, 6 (2013), 185:1-185:6. 3
Enright D., Losasso F., Fedkiw R.: A fast and accurate semi-Lagrangian particle level set method. Computers & Structures 83, 6-7(2005), 479-490. 2
Pan Z., Huang J., Tong Y., Zheng C., Bao H.: Interactive localized liquid motion editing. ACM Transactions on Graphics 32, 6 (2013), 184:1-184:10. 2
Cornelis J., Ihmsen M., Peer A., Teschner M.: IISPH-FLIP for incompressible fluids. Computer Graphics Forum 33, 2 (2014), 255-262. 2
Bridson R.: Fluid Simulation for Computer Graphics. AK Peters/CRC Press, 2008. 2, 3
Foster N., Metaxas D.: Realistic animation of liquids. Graph. Models and Img. Proc. 58, 5 (1996), 471-483. 2
2015; 34
2001
2013; 32
2011
2008; 14
2008
2011; 30
2006
2012; 18
2015
2014
2003
2013
2005; 83
1996; 58
2012; 31
2014; 33
2005; 24
1999
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
Bailey D. (e_1_2_6_7_2) 2015
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Pan Z., Huang J., Tong Y., Zheng C., Bao H.: Interactive localized liquid motion editing. ACM Transactions on Graphics 32, 6 (2013), 184:1-184:10. 2
– reference: Cornelis J., Ihmsen M., Peer A., Teschner M.: IISPH-FLIP for incompressible fluids. Computer Graphics Forum 33, 2 (2014), 255-262. 2
– reference: Gerszewski D., Bargteil A. W.: Physics-based animation of large-scale splashing liquids. ACM Transactions on Graphics 32, 6 (2013), 185:1-185:6. 3
– reference: Losasso F., Talton J., Kwatra N., Fedkiw R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. on Visualization and Computer Graphics 14, 4 (2008), 797-804. 2
– reference: Yue Y., Smith B., Batty C., Zheng C., Grinspun E.: Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics 34, 5 (Nov. 2015), 160:1-160:20. 2
– reference: Stomakhin A., Schroeder C., Chai L., Teran J., Selle A.: A material point method for snow simulation. ACM Transactions on Graphics 32, 4 (2013), 102. 2
– reference: Ando R., Thuerey N., Wojtan C.: A stream function solver for liquid simulations. ACM Transactions on Graphics 34, 4 (2015), 53:1-53:9. 2
– reference: Bridson R.: Fluid Simulation for Computer Graphics. AK Peters/CRC Press, 2008. 2, 3
– reference: Golas A., Narain R., Sewall J., Krajcevski P., Dubey P., Lin M.: Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6(2012), 148:1-148:9. 2
– reference: Um K., Baek S., Han J.: Advanced hybrid particle-grid method with sub-grid particle correction. Computer Graphics Forum 33, 7 (Oct. 2014), 209-218. 2, 3
– reference: Ando R., Thuerey N., Tsuruno R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. on Visualization and Computer Graphics 18 (8) (2012), 1202-1214. 2, 3, 6, 7
– reference: Foster N., Metaxas D.: Realistic animation of liquids. Graph. Models and Img. Proc. 58, 5 (1996), 471-483. 2
– reference: Solenthaler B., Gross M.: Two-scale particle simulation. ACM Transactions on Graphics 30, 4 (2011), 81:1-81:8. 2
– reference: Ando R., Thuerey N., Wojtan C.: Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics 32, 4 (2013), 103:1-103:10. 2
– reference: Zhu Y., Bridson R.: Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965-972. 2
– reference: Boyd L., Bridson R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. on Graphics 31, 2 (2012), 16:1-16:12. 2, 3
– reference: Enright D., Losasso F., Fedkiw R.: A fast and accurate semi-Lagrangian particle level set method. Computers & Structures 83, 6-7(2005), 479-490. 2
– reference: Chentanez N., Mueller-Fischer M.: A multigrid fluid pressure solver handling separating solid boundary conditions. IEEE Trans. Visualization and Comp. Graph. 18, 8 (2012), 1191-1201. 6
– volume: 31
  start-page: 16:1
  issue: 2
  year: 2012
  end-page: 16:12
  article-title: MultiFLIP for energetic two‐phase fluid simulation
  publication-title: ACM Trans. on Graphics
– start-page: 2
  year: 2006
  article-title: A mesh‐particle model for fluid animation
– volume: 31
  start-page: 148:1
  issue: 6
  year: 2012
  end-page: 148:9
  article-title: Large‐scale fluid simulation using velocity‐vorticity domain decomposition
  publication-title: ACM Trans. Graph.
– start-page: 219
  year: 2008
  end-page: 228
  article-title: Accurate viscous free surfaces for buckling, coiling, and rotating liquids
– start-page: 2
  year: 2008
– volume: 83
  start-page: 479
  issue: 6–7
  year: 2005
  end-page: 490
  article-title: A fast and accurate semi‐Lagrangian particle level set method
  publication-title: Computers & Structures
– volume: 14
  start-page: 797
  issue: 4
  year: 2008
  end-page: 804
  article-title: Two‐way coupled SPH and particle level set fluid simulation
  publication-title: IEEE Trans. on Visualization and Computer Graphics
– volume: 33
  start-page: 209
  issue: 7
  year: 2014
  end-page: 218
  article-title: Advanced hybrid particle‐grid method with sub‐grid particle correction
  publication-title: Computer Graphics Forum
– volume: 34
  start-page: 160:1
  issue: 5
  year: 2015
  end-page: 160:20
  article-title: Continuum foam: A material point method for shear‐dependent flows
  publication-title: ACM Transactions on Graphics
– volume: 24
  start-page: 965
  issue: 3
  year: 2005
  end-page: 972
  article-title: Animating sand as a fluid
  publication-title: ACM Transactions on Graphics
– start-page: 285:1
  year: 2015
  end-page: 285:1
  article-title: Distributing liquids using OpenVDB
– start-page: 33
  year: 2011
  end-page: 42
  article-title: Hybrid smoothed particle hydrodynamics
– volume: 32
  start-page: 103:1
  issue: 4
  year: 2013
  end-page: 103:10
  article-title: Highly adaptive liquid simulations on tetrahedral meshes
  publication-title: ACM Transactions on Graphics
– start-page: 21
  year: 2014
  end-page: 42
  article-title: SPH fluids in computer graphics
– start-page: 157
  year: 2015
  end-page: 163
  article-title: A material point method for viscoelastic fluids, foams and sponges
– volume: 33
  start-page: 255
  issue: 2
  year: 2014
  end-page: 262
  article-title: IISPH‐FLIP for incompressible fluids
  publication-title: Computer Graphics Forum
– start-page: 121
  year: 1999
  end-page: 128
  article-title: Stable fluids
– volume: 18
  start-page: 1202
  issue: 8
  year: 2012
  end-page: 1214
  article-title: Preserving fluid sheets with adaptively sampled anisotropic particles
  publication-title: IEEE Trans. on Visualization and Computer Graphics
– start-page: 154
  year: 2003
  end-page: 159
  article-title: Particle‐based fluid simulation for interactive applications
– start-page: 23
  year: 2001
  end-page: 30
  article-title: Practical animation of liquids
– volume: 34
  start-page: 53:1
  issue: 4
  year: 2015
  end-page: 53:9
  article-title: A stream function solver for liquid simulations
  publication-title: ACM Transactions on Graphics
– start-page: 1
  year: 2013
  article-title: Liquids in “The Croods”
– volume: 32
  start-page: 184:1
  issue: 6
  year: 2013
  end-page: 184:10
  article-title: Interactive localized liquid motion editing
  publication-title: ACM Transactions on Graphics
– start-page: 6
  year: 2015
  article-title: MantaFlow
– volume: 18
  start-page: 1191
  issue: 8
  year: 2012
  end-page: 1201
  article-title: A multigrid fluid pressure solver handling separating solid boundary conditions
  publication-title: IEEE Trans. Visualization and Comp. Graph.
– start-page: 1
  year: 2014
  end-page: 10
  article-title: Coupling 3D Eulerian, heightfield and particle methods for interactive simulation of large scale liquid phenomena
– volume: 30
  start-page: 81:1
  issue: 4
  year: 2011
  end-page: 81:8
  article-title: Two‐scale particle simulation
  publication-title: ACM Transactions on Graphics
– volume: 58
  start-page: 471
  issue: 5
  year: 1996
  end-page: 483
  article-title: Realistic animation of liquids
  publication-title: Graph. Models and Img. Proc.
– volume: 32
  start-page: 102
  issue: 4
  year: 2013
  article-title: A material point method for snow simulation
  publication-title: ACM Transactions on Graphics
– volume: 32
  start-page: 185:1
  issue: 6
  year: 2013
  end-page: 185:6
  article-title: Physics‐based animation of large‐scale splashing liquids
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_6_5_2
– ident: e_1_2_6_30_2
  doi: 10.1145/2751541
– ident: e_1_2_6_19_2
  doi: 10.1109/TVCG.2008.37
– ident: e_1_2_6_14_2
  doi: 10.1145/383259.383261
– start-page: 285:1
  volume-title: ACM SIGGRAPH 2015 Talks
  year: 2015
  ident: e_1_2_6_7_2
– ident: e_1_2_6_11_2
  doi: 10.1109/TVCG.2012.86
– ident: e_1_2_6_16_2
  doi: 10.1145/2508363.2508430
– ident: e_1_2_6_27_2
  doi: 10.1145/2461912.2461948
– ident: e_1_2_6_8_2
– ident: e_1_2_6_13_2
  doi: 10.1016/j.compstruc.2004.04.024
– ident: e_1_2_6_29_2
  doi: 10.1111/cgf.12489
– ident: e_1_2_6_2_2
  doi: 10.1109/TVCG.2012.87
– ident: e_1_2_6_4_2
  doi: 10.1145/2766935
– ident: e_1_2_6_20_2
– ident: e_1_2_6_25_2
  doi: 10.1145/2010324.1964976
– ident: e_1_2_6_26_2
– ident: e_1_2_6_15_2
  doi: 10.1006/gmip.1996.0039
– ident: e_1_2_6_3_2
  doi: 10.1145/2461912.2461982
– ident: e_1_2_6_18_2
– ident: e_1_2_6_6_2
  doi: 10.1145/2159516.2159522
– ident: e_1_2_6_31_2
  doi: 10.1145/1073204.1073298
– ident: e_1_2_6_12_2
  doi: 10.1109/TVCG.2015.2449303
– ident: e_1_2_6_21_2
  doi: 10.1145/2508363.2508429
– ident: e_1_2_6_17_2
  doi: 10.1145/2366145.2366167
– ident: e_1_2_6_22_2
– ident: e_1_2_6_28_2
  doi: 10.1145/311535.311548
– ident: e_1_2_6_9_2
  doi: 10.1201/b10635
– ident: e_1_2_6_10_2
  doi: 10.1111/cgf.12324
– ident: e_1_2_6_24_2
  doi: 10.1145/2019406.2019411
– ident: e_1_2_6_23_2
  doi: 10.1145/2786784.2786798
SSID ssj0004765
Score 2.4508896
Snippet The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 225
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computational fluid dynamics
Computer simulation
Coupling
Fluid mechanics
Fluids
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Animation
Liquid surfaces
Liquids
Sampling
Simulation
Studies
Visual
Volume
Title Narrow Band FLIP for Liquid Simulations
URI https://api.istex.fr/ark:/67375/WNG-GCTXWX8P-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12825
https://www.proquest.com/docview/1791889390
https://www.proquest.com/docview/1825462420
Volume 35
WOSCitedRecordID wos000377222200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6lSQ_lQKEPEQjIoKrl4sqPtXetntqAwyGKUkhEbqt9VlHBQB5Vfz67G9skEpUqcbPksbS7M-P5xp75BuCTCTvaAA3t8xhLH3HCfB6GqZ8IAxeM_UQSczdsAg8GZDLJhg34VvXCrPgh6g9u1jPc-9o6OOPzNScXv_TX0HZevoJWZOwWNaF1dpmP-09tkThNKmpvSxpTEgvZQp764Y1w1LIn-3cDa64jVhdy8rcvWuwObJdI0_u-Mo1daKjiHWyt8Q--hy8DR8Ho_WCF9HKT43sGwnr96cNyKr2r6W052mv-Acb5-ah74ZeTE3yBYpT4qQhlgBlXikhFUiKIzIJY60SGLEMyDaRiAUOYSZVpwRXSUodcaB3GWAvN44_QLO4KtQdeJBJlYXgWsQhxwUjKYoxMlqKlxLHmbTitDpCKklbcTre4oVV6YfZO3d7bcFKL3q-4NJ4T-uy0UEuw2W9bfIYTej3o0V53NLmekCH92YZOpSZa-t2cWrJVYiBYFrThuL5tPMb-BmGFulsaGTcDwEATI3PqlPbv1dBuL3cX-_8vegBvDKpKV1WRHWguZkt1CK_Fn8V0PjsqjfQRBkDoig
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6xdtLYA2wwRAdj2TQxXjIljRM7Ei-sLGVaFxXWqn2z_BNVsLC1dOLPx3aT0EqbhLS3SLlItu8u99m--w7ggwk72gAN7fMISx9xwnwehokfCwMXjP20Jeau2QTOczIep_01OK5qYRb8EPWBm_UM97-2Dm4PpJe8XFzqT6EtvXwCTWTMKG5A8_QiG_Ye6iJxElfc3pY1pmQWspk89ccr8ahpl_ZuBWwuQ1YXc7LN_xvtC9gosaZ3sjCOl7Cmii14vsRAuA0fc0fC6H1mhfQys8v3DIj1epPf84n0fkx-ls29Zq9gmH0ZdM78sneCL1CEYj8RoQww40oRqUhCBJFpEGkdy5ClSCaBVCxgCDOpUi24QlrqkAutwwhroXm0A43iplC74LVFrCwQT9usjbhgJGERRmafoqXEkeYtOKpWkIqSWNz2t7im1QbDzJ26ubfgfS36a8Gm8TehQ6eGWoJNr2z6GY7pKO_SbmcwHo1Jn563YL_SEy09b0Yt3SoxICwNWvCufm18xl6EsELdzI2M6wJgwImROXJa-_doaKebuYfXjxd9C8_OBt97tPc1_7YH6wZjJYscyX1o3E7n6g08FX9uJ7PpQWmx9_j67Ho
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61CargAH2AMJTiIkR7MfJj7V1LXCCpU0RkhdKqua32iSLAKUmD-Pnsbmw3kVqpEjdLHku7OzOeb-yZbwDemrCjDdDQAU-wDBAnLOBRlAWpMHDB2E8sMXfDJnBZkvE4H23Ah6YXZskP0X5ws57h3tfWwdWV1CteLr7r95FtvdyELkrzzLhlt39WXAxv-iJxljbc3pY1pmYWspU87cNr8ahrj_bvGthchawu5hRP_m-12_C4xpr-x6Vx7MCGqnbh0QoD4R4clY6E0f_EKukXJsv3DYj1h5Pfi4n0v01-1cO95k_hojg5750G9eyEQKAEpUEmIhlixpUiUpGMCCLzMNE6lRHLkcxCqVjIEGZS5VpwhbTUERdaRwnWQvPkGXSqaaWegx-LVFkgnscsRlwwkrEEI5OnaClxorkHx80JUlETi9v5Fj9pk2CYvVO3dw_etKJXSzaN24TeOTW0Emz2w5af4ZRelgM66J2PL8dkRL96sN_oidaeN6eWbpUYEJaHHhy2t43P2B8hrFLThZFxUwAMODEyx05rd6-G9gaFu3hxf9HXsDXqF3T4ufzyEh4aiJUtSyT3oXM9W6hX8ED8uZ7MZwe1wf4DoGrr9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Narrow+Band+FLIP+for+Liquid+Simulations&rft.jtitle=Computer+graphics+forum&rft.au=Ferstl%2C+Florian&rft.au=Ando%2C+Ryoichi&rft.au=Wojtan%2C+Chris&rft.au=Westermann%2C+Rudiger&rft.date=2016-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=2&rft.spage=225&rft_id=info:doi/10.1111%2Fcgf.12825&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4069770281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon