Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo

The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to simultaneously detect birefringent elements at any orientation unlike orientation‐sensitive techniques using linear polarized light alone. A met...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ophthalmic & physiological optics Ročník 27; číslo 3; s. 256 - 264
Hlavný autor: Misson, Gary P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.05.2007
Blackwell
Predmet:
ISSN:0275-5408, 1475-1313
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to simultaneously detect birefringent elements at any orientation unlike orientation‐sensitive techniques using linear polarized light alone. A method of biomicroscopy using circular polarized light is described and tested in a physical model. The method is then used to investigate the lamellar structure of human corneas in vivo in pairs of eyes of 38 subjects. An approximate confocal elliptic/hyperbolic distribution of stromal fibrils, presumed to be collagen, is clearly identified within central and intermediate areas of the cornea. All subjects tested demonstrate approximate mirror symmetry between pairs of eyes typically with a preferred orientation of central fibrils at approximately 15° to the horizontal in a superotemporal–inferonasal direction.
AbstractList The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to simultaneously detect birefringent elements at any orientation unlike orientation-sensitive techniques using linear polarized light alone. A method of biomicroscopy using circular polarized light is described and tested in a physical model. The method is then used to investigate the lamellar structure of human corneas in vivo in pairs of eyes of 38 subjects. An approximate confocal elliptic/hyperbolic distribution of stromal fibrils, presumed to be collagen, is clearly identified within central and intermediate areas of the cornea. All subjects tested demonstrate approximate mirror symmetry between pairs of eyes typically with a preferred orientation of central fibrils at approximately 15 degrees to the horizontal in a superotemporal-inferonasal direction.
The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to simultaneously detect birefringent elements at any orientation unlike orientation‐sensitive techniques using linear polarized light alone. A method of biomicroscopy using circular polarized light is described and tested in a physical model. The method is then used to investigate the lamellar structure of human corneas in vivo in pairs of eyes of 38 subjects. An approximate confocal elliptic/hyperbolic distribution of stromal fibrils, presumed to be collagen, is clearly identified within central and intermediate areas of the cornea. All subjects tested demonstrate approximate mirror symmetry between pairs of eyes typically with a preferred orientation of central fibrils at approximately 15° to the horizontal in a superotemporal–inferonasal direction.
The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to simultaneously detect birefringent elements at any orientation unlike orientation-sensitive techniques using linear polarized light alone. A method of biomicroscopy using circular polarized light is described and tested in a physical model. The method is then used to investigate the lamellar structure of human corneas in vivo in pairs of eyes of 38 subjects. An approximate confocal elliptic/hyperbolic distribution of stromal fibrils, presumed to be collagen, is clearly identified within central and intermediate areas of the cornea. All subjects tested demonstrate approximate mirror symmetry between pairs of eyes typically with a preferred orientation of central fibrils at approximately 15 degrees to the horizontal in a superotemporal-inferonasal direction.The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to simultaneously detect birefringent elements at any orientation unlike orientation-sensitive techniques using linear polarized light alone. A method of biomicroscopy using circular polarized light is described and tested in a physical model. The method is then used to investigate the lamellar structure of human corneas in vivo in pairs of eyes of 38 subjects. An approximate confocal elliptic/hyperbolic distribution of stromal fibrils, presumed to be collagen, is clearly identified within central and intermediate areas of the cornea. All subjects tested demonstrate approximate mirror symmetry between pairs of eyes typically with a preferred orientation of central fibrils at approximately 15 degrees to the horizontal in a superotemporal-inferonasal direction.
The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to simultaneously detect birefringent elements at any orientation unlike orientation‐sensitive techniques using linear polarized light alone. A method of biomicroscopy using circular polarized light is described and tested in a physical model. The method is then used to investigate the lamellar structure of human corneas in vivo in pairs of eyes of 38 subjects. An approximate confocal elliptic/hyperbolic distribution of stromal fibrils, presumed to be collagen, is clearly identified within central and intermediate areas of the cornea. All subjects tested demonstrate approximate mirror symmetry between pairs of eyes typically with a preferred orientation of central fibrils at approximately 15° to the horizontal in a superotemporal–inferonasal direction.
Author Misson, Gary P.
Author_xml – sequence: 1
  givenname: Gary P.
  surname: Misson
  fullname: Misson, Gary P.
  organization: Department of Ophthalmology, Warwick Hospital, South Warwickshire NHS Trust, Lakin Road, Warwick, CV34 5BW, and Optical Engineering Laboratory, School of Engineering, University of Warwick, Coventry, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18702707$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17470238$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFv0zAUhS00xLrBX0B-gbcEO3FqByEkVLEBqihCICReLMe52Vxiu7OT0fLrcdauSLyAH-wr-TvHvvecoRPnHSCEKclpWi_WOWW8ymhJy7wghOeEMFHk2wdodrw4QTNSpLpiRJyisxjXJJGci0folHLGSVGKGbpZmKDHXgW88Wk3v9RgvMON8dbo4KP2m91LrLCF4dq3uPMBtzBAsMYZd4WvR6sc1j44UD2OQ_A2nb2y0E-ePlwpd-9pHL41t_4xetipPsKTw3mOvl68_bJ4ly1Xl-8Xb5aZZiUrsqYFVbe07RpoRU3rpqqrigOBotXAaacqYBURkNqtaMVY3XSkoayshS7mJczLc_R877sJ_maEOEhrop7-5cCPUXLC5gUjNIFPD-DYWGjlJhirwk7eDykBzw6Ailr1XVBOm_iHEwnjhCfu9Z6bBhcDdFKb4a73ISjTS0rklJ5cyykkOYUkp_TkXXpymwzEXwbHN_4tfbWX_jQ97P5bJ1efVqlI8mwvN3GA7VGuwg8552VSfvt4KWnxQXz-vryQpPwNeQXB1A
CODEN OPOPD5
CitedBy_id crossref_primary_10_1016_j_ijleo_2021_166529
crossref_primary_10_1016_j_bpj_2011_05_029
crossref_primary_10_1016_j_jcrs_2010_05_004
crossref_primary_10_1038_s41598_024_55800_4
crossref_primary_10_1117_1_3447923
crossref_primary_10_1007_s11340_022_00910_1
crossref_primary_10_1038_srep08899
crossref_primary_10_1111_j_1475_1313_2010_00782_x
crossref_primary_10_1016_j_jtos_2016_07_003
crossref_primary_10_1080_09500340701467801
crossref_primary_10_1186_s12886_021_01959_7
crossref_primary_10_1364_OE_16_013738
crossref_primary_10_1371_journal_pone_0178397
crossref_primary_10_1155_2020_9842803
crossref_primary_10_1016_j_optlaseng_2023_107747
crossref_primary_10_1038_s41598_023_44706_2
crossref_primary_10_1088_2040_8978_12_8_084002
crossref_primary_10_1111_opo_12835
crossref_primary_10_1016_j_preteyeres_2009_06_005
crossref_primary_10_1117_1_3486540
crossref_primary_10_1097_ICO_0b013e3181f236df
Cites_doi 10.1016/S0006-3495(02)75673-7
10.1001/archopht.120.7.901
10.1002/jemt.20373
10.1038/250163a0
10.1364/JOSAA.2.000072
10.1364/JOSAA.16.002103
10.1016/S0002-9394(00)00353-6
10.1167/iovs.04-1520
10.3109/02713688709034853
10.1136/bjo.34.4.201
10.1016/j.aanat.2006.02.006
10.1364/JOSAA.4.000082
10.1007/BF01856375
10.1016/j.exer.2003.07.003
10.4159/harvard.9780674424135
10.1046/j.1475-1313.2003.00138.x
10.1016/S0006-3495(98)77695-7
10.1016/j.jcrs.2006.08.027
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1475-1313.2007.00482.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1475-1313
EndPage 264
ExternalDocumentID 17470238
18702707
10_1111_j_1475_1313_2007_00482_x
OPO482
ark_67375_WNG_12J8RZLF_0
Genre article
Journal Article
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
123
1B1
1OB
1OC
1~5
29N
31~
33P
36B
3SF
4.4
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHQN
AAIPD
AALRI
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABMAC
ABPVW
ABQWH
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACVFH
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADCNI
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFPUW
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
R2-
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SEW
SSZ
SUPJJ
SV3
TEORI
TUS
UB1
UHS
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
WUP
9DU
AAYXX
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4342-bdea9d1dfbed8919b59557e0e2dce71fa5e4508e475515449bf0b14398c263e63
IEDL.DBID DRFUL
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246039500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0275-5408
IngestDate Sun Nov 09 10:39:03 EST 2025
Wed Feb 19 01:43:44 EST 2025
Mon Jul 21 09:12:53 EDT 2025
Sat Nov 29 03:36:36 EST 2025
Tue Nov 18 21:09:15 EST 2025
Wed Jan 22 17:05:33 EST 2025
Sun Sep 21 06:19:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biomicroscopy
Human
Polarization
Cornea
Organization
corneal stromal structure
Stroma
Method
Polarized light
In vivo
Mueller matrices
collagen lamellae
Collagen
Ophthalmology
Structure
circular polarized light
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4342-bdea9d1dfbed8919b59557e0e2dce71fa5e4508e475515449bf0b14398c263e63
Notes ArticleID:OPO482
istex:87C1C1347704D8F47EC7412BBCEA349E4C8BF313
ark:/67375/WNG-12J8RZLF-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17470238
PQID 70462401
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_70462401
pubmed_primary_17470238
pascalfrancis_primary_18702707
crossref_citationtrail_10_1111_j_1475_1313_2007_00482_x
crossref_primary_10_1111_j_1475_1313_2007_00482_x
wiley_primary_10_1111_j_1475_1313_2007_00482_x_OPO482
istex_primary_ark_67375_WNG_12J8RZLF_0
PublicationCentury 2000
PublicationDate May 2007
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: May 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Ophthalmic & physiological optics
PublicationTitleAlternate Ophthalmic Physiol Opt
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Stoller, P., Reiser, K. M., Celliers, P. M. and Rubenchik, A. M. (2002) Polarization-modulated second harmonic generation in collagen. Biophys. J., 82, 3330-3342.
Greenfield, D. S., Knighton, R. W. and Huang, X. R. (2000) Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry. Am. J. Ophthalmol., 129, 715-722.
Newton, R. H. and Meek, K. M. (1998a) Circumcorneal annulus of collagen fibrils in the human limbus. Invest. Ophthalmol. Vis. Sci., 39, 1125-1134.
Shurcliff, W. A. (1962) Polarized Light: Production and Use. Harvard University Press, Cambridge, MA.
Stanworth, A. and Naylor, E. J. (1950) The polarization optics of the isolated cornea. Br. J. Ophthalmol., 34, 201-211.
Misson, G. P. (2003) A Mueller matrix model of Haidinger's brushes. Ophthalmic Physiol. Opt., 23, 441-447.
Koeppe, L. (1921) Die ultra und polarizationsmikroskopische Erforschung des Lebenden Auges und Ihre Ergebnisse. Ernst Bircher, Leibzig.
Knighton, R. W., Huang, X. R. and Greenfield, D. S. (2002) Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment. Invest. Ophthalmol. Vis. Sci., 43, 383-392.
Collett, E. (1993) Polarized Light. Fundamentals and Applications. Marcel Dekker, New York.
Daxer, A. and Fratzl, P. (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest. Ophthalmol. Vis. Sci., 38, 121-129.
Weinreb, R. N., Bowd, C., Greenfield, D. S. and Zangwill, L. M. (2002) Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry. Arch. Ophthalmol., 120, 901-906.
Hunter, D. G., Sandruck, J. C., Sau, S., Patel, S. N. and Guyton, D. L. (1999) Mathematical modeling of retinal birefringence scanning. J. Opt. Soc. Am. A, 16, 2103-2111.
Stokes, G. G. (1852) On the composition and resolution of streams of polarized light from different sources. Trans. Cambridge Phil. Soc., 9, 399-416.
Bron, A. J., Tripathi, R. C. and Tripathi, B. J. (1997) Wolff's Anatomy of the Eye and Orbit. Chapman and Hall Medical, London.
Mishima, S. (1958) The biomicroscopy of the human eye using polarized light: findings in normal cornea. Jap. J. Ophthalmol., 2, 183-187.
Wahlstrom, E. E. (1979) Optical Crystallography. John Wiley and Sons, New York.
Lo, W., Teng, S.-W., Tan, H.-Y., Kim, K. H., Chen, H.-C., Lee, H.-S., Chen, Y.-F., So, P. T. C. and Dong, C.-Y. (2006) Intact corneal stroma visualization of GFP mouse revealed by multiphoton imaging. Microsc. Res. Tech., 69, 973-975.
Shute, C. C. (1974) Haidinger's brushes and predominant orientation of collagen in corneal stroma. Nature, 250, 163-164.
Kokott, W. (1938) Uber mechanisch-funktionelle Strukturen des Auges. Albrecht Von Graefes Arch. Ophthalmol., 138, 424-485.
Van Blokland, G. J. and Verhelst, S. C. (1987) Corneal polarization in the living human eye explained with a biaxial model. J. Opt. Soc. Am. A, 4, 82-90.
Meek, K. M. and Boote, C. (2004) The organization of collagen in the corneal stroma. Exp. Eye Res., 78, 503-512.
Rasband, W. S. (19972006) ImageJ. U.S. National Institutes of Health, Bethesda, MD.
Morishige, N., Petroll, W. M., Nishida, T., Kenney, M. C. and Jester, J. V. (2006) Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. J. Cataract Refract. Surg., 32, 1784-1791.
Teng, S.-W., Tan, H.-Y., Peng, J.-L., Lin, H.-H., Kim, K. H., Lo, W., Sun, Y., Lin, W.-C., Lin, S.-J., Jee, S.-H., So, P. T. C. and Dong, C.-Y. (2006) Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye. Invest. Ophthalmol. Vis. Sci., 47, 1216-1224.
Van Blokland, G. J. (1985) Ellipsometry of the human retina in vivo: preservation of polarization. J. Opt. Soc. Am. A, 2, 72-75.
Mishima, S. (1960) The use of polarized light in the biomicroscopy of the eye. Report I. Bibl. Ophthalmol., 55, 1-20.
Meek, K. M., Blamires, T., Elliott, G. F., Gyi, T. J. and Nave, C. (1987) The organisation of collagen fibrils in the human corneal stroma: a synchrotron X-ray diffraction study. Curr. Eye Res., 6, 841-846.
Wang, B. G. and Halbhuber, K. J. (2006) Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers. Ann. Anat., 188, 395-409.
Newton, R. H. and Meek, K. M. (1998b) The integration of the corneal and limbal fibrils in the human eye. Biophys. J., 75, 2508-2512.
Clarke, D. and Grainger, J. F. (1971) Polarized Light and Optical Measurement. Pergamon Press, Oxford.
1960; 55
2006; 32
1985; 2
1987; 4
1987; 6
1997
1998b; 75
1971
1993
2002; 82
1991
1979
1998a; 39
1950; 34
2002; 120
2000; 129
1999; 16
2002; 43
2006; 69
2004; 78
2006; 47
1921
1997; 38
1962
1852; 9
19972006
1958; 2
1938; 138
1969
2006; 188
1974; 250
2003; 23
Bron A. J. (e_1_2_6_5_1) 1997
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_30_1
Mishima S. (e_1_2_6_18_1) 1958; 2
Knighton R. W. (e_1_2_6_11_1) 2002; 43
Bour L. J. (e_1_2_6_4_1) 1991
Rasband W. S. (e_1_2_6_24_1) 1997
Clarke D. (e_1_2_6_6_1) 1971
Wahlstrom E. E. (e_1_2_6_31_1) 1979
Newton R. H. (e_1_2_6_22_1) 1998; 39
Daxer A. (e_1_2_6_8_1) 1997; 38
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_17_1
Koeppe L. (e_1_2_6_12_1) 1921
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Collett E. (e_1_2_6_7_1) 1993
Mishima S. (e_1_2_6_19_1) 1960; 55
e_1_2_6_9_1
e_1_2_6_25_1
Stokes G. G. (e_1_2_6_28_1) 1852; 9
e_1_2_6_3_1
Maurice D. M. (e_1_2_6_15_1) 1969
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Shute, C. C. (1974) Haidinger's brushes and predominant orientation of collagen in corneal stroma. Nature, 250, 163-164.
– reference: Hunter, D. G., Sandruck, J. C., Sau, S., Patel, S. N. and Guyton, D. L. (1999) Mathematical modeling of retinal birefringence scanning. J. Opt. Soc. Am. A, 16, 2103-2111.
– reference: Kokott, W. (1938) Uber mechanisch-funktionelle Strukturen des Auges. Albrecht Von Graefes Arch. Ophthalmol., 138, 424-485.
– reference: Shurcliff, W. A. (1962) Polarized Light: Production and Use. Harvard University Press, Cambridge, MA.
– reference: Meek, K. M. and Boote, C. (2004) The organization of collagen in the corneal stroma. Exp. Eye Res., 78, 503-512.
– reference: Rasband, W. S. (19972006) ImageJ. U.S. National Institutes of Health, Bethesda, MD.
– reference: Knighton, R. W., Huang, X. R. and Greenfield, D. S. (2002) Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment. Invest. Ophthalmol. Vis. Sci., 43, 383-392.
– reference: Stokes, G. G. (1852) On the composition and resolution of streams of polarized light from different sources. Trans. Cambridge Phil. Soc., 9, 399-416.
– reference: Morishige, N., Petroll, W. M., Nishida, T., Kenney, M. C. and Jester, J. V. (2006) Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. J. Cataract Refract. Surg., 32, 1784-1791.
– reference: Newton, R. H. and Meek, K. M. (1998b) The integration of the corneal and limbal fibrils in the human eye. Biophys. J., 75, 2508-2512.
– reference: Lo, W., Teng, S.-W., Tan, H.-Y., Kim, K. H., Chen, H.-C., Lee, H.-S., Chen, Y.-F., So, P. T. C. and Dong, C.-Y. (2006) Intact corneal stroma visualization of GFP mouse revealed by multiphoton imaging. Microsc. Res. Tech., 69, 973-975.
– reference: Newton, R. H. and Meek, K. M. (1998a) Circumcorneal annulus of collagen fibrils in the human limbus. Invest. Ophthalmol. Vis. Sci., 39, 1125-1134.
– reference: Collett, E. (1993) Polarized Light. Fundamentals and Applications. Marcel Dekker, New York.
– reference: Wang, B. G. and Halbhuber, K. J. (2006) Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers. Ann. Anat., 188, 395-409.
– reference: Daxer, A. and Fratzl, P. (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest. Ophthalmol. Vis. Sci., 38, 121-129.
– reference: Meek, K. M., Blamires, T., Elliott, G. F., Gyi, T. J. and Nave, C. (1987) The organisation of collagen fibrils in the human corneal stroma: a synchrotron X-ray diffraction study. Curr. Eye Res., 6, 841-846.
– reference: Mishima, S. (1960) The use of polarized light in the biomicroscopy of the eye. Report I. Bibl. Ophthalmol., 55, 1-20.
– reference: Misson, G. P. (2003) A Mueller matrix model of Haidinger's brushes. Ophthalmic Physiol. Opt., 23, 441-447.
– reference: Stanworth, A. and Naylor, E. J. (1950) The polarization optics of the isolated cornea. Br. J. Ophthalmol., 34, 201-211.
– reference: Teng, S.-W., Tan, H.-Y., Peng, J.-L., Lin, H.-H., Kim, K. H., Lo, W., Sun, Y., Lin, W.-C., Lin, S.-J., Jee, S.-H., So, P. T. C. and Dong, C.-Y. (2006) Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye. Invest. Ophthalmol. Vis. Sci., 47, 1216-1224.
– reference: Stoller, P., Reiser, K. M., Celliers, P. M. and Rubenchik, A. M. (2002) Polarization-modulated second harmonic generation in collagen. Biophys. J., 82, 3330-3342.
– reference: Bron, A. J., Tripathi, R. C. and Tripathi, B. J. (1997) Wolff's Anatomy of the Eye and Orbit. Chapman and Hall Medical, London.
– reference: Van Blokland, G. J. (1985) Ellipsometry of the human retina in vivo: preservation of polarization. J. Opt. Soc. Am. A, 2, 72-75.
– reference: Wahlstrom, E. E. (1979) Optical Crystallography. John Wiley and Sons, New York.
– reference: Van Blokland, G. J. and Verhelst, S. C. (1987) Corneal polarization in the living human eye explained with a biaxial model. J. Opt. Soc. Am. A, 4, 82-90.
– reference: Mishima, S. (1958) The biomicroscopy of the human eye using polarized light: findings in normal cornea. Jap. J. Ophthalmol., 2, 183-187.
– reference: Koeppe, L. (1921) Die ultra und polarizationsmikroskopische Erforschung des Lebenden Auges und Ihre Ergebnisse. Ernst Bircher, Leibzig.
– reference: Weinreb, R. N., Bowd, C., Greenfield, D. S. and Zangwill, L. M. (2002) Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry. Arch. Ophthalmol., 120, 901-906.
– reference: Clarke, D. and Grainger, J. F. (1971) Polarized Light and Optical Measurement. Pergamon Press, Oxford.
– reference: Greenfield, D. S., Knighton, R. W. and Huang, X. R. (2000) Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry. Am. J. Ophthalmol., 129, 715-722.
– volume: 9
  start-page: 399
  year: 1852
  end-page: 416
  article-title: On the composition and resolution of streams of polarized light from different sources
  publication-title: Trans. Cambridge Phil. Soc.
– volume: 16
  start-page: 2103
  year: 1999
  end-page: 2111
  article-title: Mathematical modeling of retinal birefringence scanning
  publication-title: J. Opt. Soc. Am. A
– year: 19972006
– volume: 23
  start-page: 441
  year: 2003
  end-page: 447
  article-title: A Mueller matrix model of Haidinger's brushes
  publication-title: Ophthalmic Physiol. Opt.
– volume: 6
  start-page: 841
  year: 1987
  end-page: 846
  article-title: The organisation of collagen fibrils in the human corneal stroma: a synchrotron X‐ray diffraction study
  publication-title: Curr. Eye Res.
– year: 1962
– volume: 32
  start-page: 1784
  year: 2006
  end-page: 1791
  article-title: Noninvasive corneal stromal collagen imaging using two‐photon‐generated second‐harmonic signals
  publication-title: J. Cataract Refract. Surg.
– volume: 78
  start-page: 503
  year: 2004
  end-page: 512
  article-title: The organization of collagen in the corneal stroma
  publication-title: Exp. Eye Res.
– volume: 120
  start-page: 901
  year: 2002
  end-page: 906
  article-title: Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry
  publication-title: Arch. Ophthalmol.
– year: 1921
– volume: 2
  start-page: 72
  year: 1985
  end-page: 75
  article-title: Ellipsometry of the human retina in vivo: preservation of polarization
  publication-title: J. Opt. Soc. Am. A
– year: 1971
– volume: 47
  start-page: 1216
  year: 2006
  end-page: 1224
  article-title: Multiphoton autofluorescence and second‐harmonic generation imaging of the ex vivo porcine eye
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 34
  start-page: 201
  year: 1950
  end-page: 211
  article-title: The polarization optics of the isolated cornea
  publication-title: Br. J. Ophthalmol.
– year: 1979
– volume: 188
  start-page: 395
  year: 2006
  end-page: 409
  article-title: Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near‐infrared pulsed lasers
  publication-title: Ann. Anat.
– volume: 250
  start-page: 163
  year: 1974
  end-page: 164
  article-title: Haidinger's brushes and predominant orientation of collagen in corneal stroma
  publication-title: Nature
– start-page: 489
  year: 1969
  end-page: 600
– volume: 129
  start-page: 715
  year: 2000
  end-page: 722
  article-title: Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry
  publication-title: Am. J. Ophthalmol.
– volume: 43
  start-page: 383
  year: 2002
  end-page: 392
  article-title: Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 138
  start-page: 424
  year: 1938
  end-page: 485
  article-title: Uber mechanisch‐funktionelle Strukturen des Auges
  publication-title: Albrecht Von Graefes Arch. Ophthalmol.
– volume: 75
  start-page: 2508
  year: 1998b
  end-page: 2512
  article-title: The integration of the corneal and limbal fibrils in the human eye
  publication-title: Biophys. J.
– volume: 39
  start-page: 1125
  year: 1998a
  end-page: 1134
  article-title: Circumcorneal annulus of collagen fibrils in the human limbus
  publication-title: Invest. Ophthalmol. Vis. Sci.
– year: 1997
– volume: 69
  start-page: 973
  year: 2006
  end-page: 975
  article-title: Intact corneal stroma visualization of GFP mouse revealed by multiphoton imaging
  publication-title: Microsc. Res. Tech.
– volume: 82
  start-page: 3330
  year: 2002
  end-page: 3342
  article-title: Polarization‐modulated second harmonic generation in collagen
  publication-title: Biophys. J.
– start-page: 310
  year: 1991
  end-page: 325
– volume: 2
  start-page: 183
  year: 1958
  end-page: 187
  article-title: The biomicroscopy of the human eye using polarized light: findings in normal cornea
  publication-title: Jap. J. Ophthalmol.
– volume: 38
  start-page: 121
  year: 1997
  end-page: 129
  article-title: Collagen fibril orientation in the human corneal stroma and its implication in keratoconus
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 55
  start-page: 1
  year: 1960
  end-page: 20
  article-title: The use of polarized light in the biomicroscopy of the eye. Report I
  publication-title: Bibl. Ophthalmol.
– year: 1993
– volume: 4
  start-page: 82
  year: 1987
  end-page: 90
  article-title: Corneal polarization in the living human eye explained with a biaxial model
  publication-title: J. Opt. Soc. Am. A
– ident: e_1_2_6_29_1
  doi: 10.1016/S0006-3495(02)75673-7
– ident: e_1_2_6_33_1
  doi: 10.1001/archopht.120.7.901
– ident: e_1_2_6_14_1
  doi: 10.1002/jemt.20373
– volume: 43
  start-page: 383
  year: 2002
  ident: e_1_2_6_11_1
  article-title: Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment
  publication-title: Invest. Ophthalmol. Vis. Sci.
– ident: e_1_2_6_26_1
  doi: 10.1038/250163a0
– volume-title: Optical Crystallography
  year: 1979
  ident: e_1_2_6_31_1
– volume: 38
  start-page: 121
  year: 1997
  ident: e_1_2_6_8_1
  article-title: Collagen fibril orientation in the human corneal stroma and its implication in keratoconus
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume-title: Wolff's Anatomy of the Eye and Orbit
  year: 1997
  ident: e_1_2_6_5_1
– ident: e_1_2_6_2_1
  doi: 10.1364/JOSAA.2.000072
– ident: e_1_2_6_10_1
  doi: 10.1364/JOSAA.16.002103
– start-page: 489
  volume-title: The Eye, 1
  year: 1969
  ident: e_1_2_6_15_1
– ident: e_1_2_6_9_1
  doi: 10.1016/S0002-9394(00)00353-6
– volume: 55
  start-page: 1
  year: 1960
  ident: e_1_2_6_19_1
  article-title: The use of polarized light in the biomicroscopy of the eye. Report I
  publication-title: Bibl. Ophthalmol.
– ident: e_1_2_6_30_1
  doi: 10.1167/iovs.04-1520
– ident: e_1_2_6_17_1
  doi: 10.3109/02713688709034853
– ident: e_1_2_6_27_1
  doi: 10.1136/bjo.34.4.201
– ident: e_1_2_6_32_1
  doi: 10.1016/j.aanat.2006.02.006
– volume-title: Polarized Light. Fundamentals and Applications
  year: 1993
  ident: e_1_2_6_7_1
– start-page: 310
  volume-title: Visual Optics and Instrumentation, 1
  year: 1991
  ident: e_1_2_6_4_1
– ident: e_1_2_6_3_1
  doi: 10.1364/JOSAA.4.000082
– volume-title: Polarized Light and Optical Measurement
  year: 1971
  ident: e_1_2_6_6_1
– volume-title: Die ultra und polarizationsmikroskopische Erforschung des Lebenden Auges und Ihre Ergebnisse
  year: 1921
  ident: e_1_2_6_12_1
– volume: 2
  start-page: 183
  year: 1958
  ident: e_1_2_6_18_1
  article-title: The biomicroscopy of the human eye using polarized light: findings in normal cornea
  publication-title: Jap. J. Ophthalmol.
– ident: e_1_2_6_13_1
  doi: 10.1007/BF01856375
– volume: 39
  start-page: 1125
  year: 1998
  ident: e_1_2_6_22_1
  article-title: Circumcorneal annulus of collagen fibrils in the human limbus
  publication-title: Invest. Ophthalmol. Vis. Sci.
– ident: e_1_2_6_16_1
  doi: 10.1016/j.exer.2003.07.003
– ident: e_1_2_6_25_1
  doi: 10.4159/harvard.9780674424135
– volume: 9
  start-page: 399
  year: 1852
  ident: e_1_2_6_28_1
  article-title: On the composition and resolution of streams of polarized light from different sources
  publication-title: Trans. Cambridge Phil. Soc.
– ident: e_1_2_6_20_1
  doi: 10.1046/j.1475-1313.2003.00138.x
– ident: e_1_2_6_23_1
  doi: 10.1016/S0006-3495(98)77695-7
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jcrs.2006.08.027
– volume-title: ImageJ
  year: 1997
  ident: e_1_2_6_24_1
SSID ssj0007778
Score 1.9107693
Snippet The theory of polarization biomicroscopy is explored using Stokes vectors and Mueller matrices. It is established that circular polarization can be used to...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 256
SubjectTerms Adult
Aged
Aged, 80 and over
Biological and medical sciences
biomicroscopy
circular polarized light
Collagen - ultrastructure
collagen lamellae
cornea
Cornea - physiology
Corneal Stroma - ultrastructure
corneal stromal structure
Eye and associated structures. Visual pathways and centers. Vision
Female
Fundamental and applied biological sciences. Psychology
Humans
Male
Microscopy, Polarization - methods
Middle Aged
Models, Biological
Mueller matrices
Ocular Physiological Phenomena
Vertebrates: nervous system and sense organs
Title Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo
URI https://api.istex.fr/ark:/67375/WNG-12J8RZLF-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1475-1313.2007.00482.x
https://www.ncbi.nlm.nih.gov/pubmed/17470238
https://www.proquest.com/docview/70462401
Volume 27
WOSCitedRecordID wos000246039500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1475-1313
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007778
  issn: 0275-5408
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BAlUvPAql5hH2gLgZ-bHr3eWGCgGhkFYVhYiLtV6vpYjWLnYalX_PjO2kDeqhQpziQ8bJrr_Z_cb7zQzAq9Ch--mY-0Gmlc-5tr7KEuMnFrcbE0Q6byvefJvI6VTNZvqw1z9RLkxXH2L9wo08o12vycFN1vzl5FL4YRzGq0qEXEVvkE8OI4SxGMDw_dH4eLJel6Xs1uUIrZCnqE1dz7X32tishjTvFySeNA3OX9E1vriOmW4S3XanGt__n2N8APd6vsredQB7CLdcuQNbX_oT-R2420pIbfMIfu3P61bUys4oXO7zOxnl95Poj9Jffr9lhnU9qxmSZZb3WhzcPlnbLJBhLFwidWXNoq5O8RPxSvKsmlVXckbZvGTL-bJ6DMfjD1_3P_l9Qwff8phHfpY7gw8_LzKXKx3qTGghpAtclFsnw8IIx5EwOhyzoCpBOiuCDAmdVjZKYpfEuzAoq9LtAcOw1kpls8K4GGPSwlDKMOdUfqyQYZR4IFdPLrV9tXNqunGSXo16pEhpbqkXJx3D49ymFx6Ea8uzruLHDWxet-BYG5j6Jynm8Lvfpx_TMPqsjn5MxmngwWgDPZe_gOsmwlZ68HIFpxQdnU5vTOmq8yaVlEaMA_TgSYeyS1sMCYl6eSBaMN34b6cHhwd48fQf7Z7Bdvemm-Sfz2GwqM_dC7hjl4t5U4_gtpypUe-EfwBuPixT
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hLq8Lj_IKj9YHxC0ocZw45oYKS4F0W1UtVFwsx3GkVUtSku2q_Htmkuy2i3qoEKfdw87u2vnG_sb-ZgbgdejQ_VQk_CBXqS-Esn6aJ8ZPLG43JuCq6CrefMvkZJIeHam9oR0Q5cL09SGWB27kGd16TQ5OB9J_ebmM_TAKo0UpQpHyt0goRwJRhXAffdgfH2bLhVnKfmHmaIVEJV0V9lz5XSu71Ygm_pzUk6bFCSz7zhdXUdNVptttVeP7_3WQD-DewFjZ-x5iD-GGq9bh9s5wJ78OtzoRqW0fwa-tadPJWtkpBcxDhiejDH-S_VECzO93zLC-azVDusyKQY2DGyjr2gUyjIYrJK-snTX1T3xFxJJAq2H1paxRNq3YfDqvH8Ph-OPB1rY_tHTwrYgE9_PCGXz8RZm7IlWhymMVx9IFjhfWybA0sRNIGR2OOaY6QSovgxwpnUotTyKXRE9graor9wwYBrZWpjYvjYswKi0NJQ0LQQXIShnyxAO5eHTaDvXOqe3Gib4c98hY09xSN066iMe51ecehEvL077mxzVs3nToWBqY5pg0c_jZ75NPOuRf0v0f2VgHHmyswOfiF3Dl5DKQHmwu8KTR1en-xlSuPmu1pERiHKAHT3uYXdhiUEjky4O4Q9O1_7be3dvFN8__0W4T7mwf7GQ6-zz5-gLu9ufeJAZ9CWuz5sy9gpt2Ppu2zcbgi38AXr0vWw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXai48CiPBkrrA-IWlIcTx9xQ2_BatquKQsXFchxHWtEm22S7Kv-emSS77aIeKsQpOWSS2J6xv7G_mQF47Vs0Pxly18tk4nIujZtksXZjg8uN9gKZtxlvvo_EeJycnMhJXw6IYmG6_BCrDTeyjHa-JgO3s7z4y8pF5PqhHy5TEfIkeIuAcsippswAhvtH6fFoNTEL0U3MAUohUEnWiT03vmtttRpSx18Se1I32IFFV_niJmi6jnTbpSp9-F8b-Qge9IiVve9U7DHcseUmbHztz-Q34V5LIjXNEzjfm9YtrZXNyGHuIzwZRfgT7Y8CYH6_Y5p1VasZwmWW92wcXEBZWy6QoTdcInhlzbyuzvCKGksErZpV16JG2bRki-miegrH6cG3vY9uX9LBNTzkgZvlVuPw50Vm80T6MotkFAnr2SA3VviFjixHyGixzRHlCZJZ4WUI6WRigji0cfgMBmVV2i1g6NgakZis0DZEr7TQFDTMOSUgK4QfxA6I5dAp0-c7p7Ibp-q63yMiRX1L1TjpIB77Vl064K8kZ13Oj1vIvGm1YyWg61_EmcNnf4w_KD_4nBz9HKXKc2BnTX2uvoAzZyA84cDuUp8Umjqd3-jSVheNEhRIjA104HmnZley6BQS-HIgarXp1r-tDieHePPiH-V2YWOyn6rRp_GXl3C_2_YmLug2DOb1hX0Fd81iPm3qnd4U_wCiVi7W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+polarization+biomicroscopy+%3A+a+method+for+determining+human+corneal+stromal+lamellar+organization+in+vivo&rft.jtitle=Ophthalmic+%26+physiological+optics&rft.au=MISSON%2C+Gary+P&rft.date=2007-05-01&rft.pub=Blackwell&rft.issn=0275-5408&rft.volume=27&rft.issue=3&rft.spage=256&rft.epage=264&rft_id=info:doi/10.1111%2Fj.1475-1313.2007.00482.x&rft.externalDBID=n%2Fa&rft.externalDocID=18702707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-5408&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-5408&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-5408&client=summon